Дисертації з теми "Packing-covering"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Packing-covering.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-30 дисертацій для дослідження на тему "Packing-covering".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bezdek, Andras. "Packing and covering problems /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487266691095136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Zhibin, and 陳智斌. "On various packing and covering problems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43085520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Zhibin. "On various packing and covering problems." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43085520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stardom, John. "Metaheuristics and the search for covering and packing arrays." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ61608.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chang, Engder. "Neural computing for minimum set covering and gate-packing problems." Case Western Reserve University School of Graduate Studies / OhioLINK, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=case1056655652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nielsen, Torben Noerup. "Combinatorial Bin Packing Problems." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the past few years, there has been a strong and growing interest in evaluating the expected behavior of what we call combinatorial bin packing problems. A combinatorial bin packing problem consists of a number of items of various sizes and value ratios (value per unit of size) along with a collection of bins of fixed capacity into which the items are to be packed. The packing must be done in such a way that the sum of the sizes of the items into a given bin does not exceed the capacity of that bin. Moreover, an item must either be packed into a bin in its entirety or not at all: this "all or nothing" requirement is why these problems are characterized as being combinatorial. The objective of the packing is to optimize a given criterion Junction. Here optimize means either maximize or minimize, depending on the problem. We study two problems that fit into this framework: the Knapsack Problem and the Minimum Sum of Squares Problem. Both of these problems are known to be in the class of NP-hard problems and there is ample reason to suspect that these problems do not admit of efficient exact solution. We obtain results concerning the performance of heuristics under the assumption that the inputs are random samples from some distribution. For the Knapsack Problem, we develop four heuristics, two of which are on-line and two off-line. All four heuristics are shown to be asymptotically optimal in expectation when the item sizes and value ratios are assumed to be independent and uniform. One heuristic is shown to be asymptotically optimal in expectation when the item sizes are uniformly distributed and the value ratios are exponentially distributed. The amount of time required by these heuristics is no more than proportional to the amount of time required to sort the items in order of nonincreasing value ratios. For the Minimum Sum of Squares Problem, we develop two heuristics, both of which are off-line. Both of these heuristics are shown to be asymptotically optimal in expectation when the sizes of the items input are assumed uniformly distributed.
7

許眞眞 and Zhenzhen Xu. "A min-max theorem on packing and covering cycles in graphs." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31226966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xu, Zhenzhen. "A min-max theorem on packing and covering cycles in graphs /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25155301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bossenger, Wayne. "2D irregular strip packing at Kohler signs." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (MCom)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: Kohler Signs (PTY) Ltd is a sign production company located in Cape Town, South Africa. They manufacture and install signs for the City of Cape Town and private companies as well as manufacture advertisement signs to be placed on vehicles. Road signs consist of steel sheets that are cut and bent to the appropriate size and frame, and an image design, which is cut from re ective vinyl, are applied to the bent steel sheet. The image design consists of various letters, numbers and symbols which are categorised as irregular items. When these irregular items are combined in a distinctive way, with the use of di erent coloured vinyl, they convey a message to the road user which may be to yield for pedestrians crossing the street, or indicate to the road user the various highway exits that exist on the interchange ahead. These irregular items are placed upon re ective vinyl for cutting which results in vinyl o cuts that are wasted. The focus of this thesis is to minimise the waste incurred by placing these irregular items upon the vinyl in an optimal and timely manner for industry use. The vinyl printer, which cuts the irregular items out of the vinyl, consists of a xed width and is only limited in height by the vinyl itself. Thus, this problem may be described as a Two Dimensional Irregular Strip Packing Problem. These irregular items have only a few possible heights for each type of irregular item packed, which allows these irregular items to be packed as a level packing problem. The items are packed within levels as though they are regular items with the assistance of a prede ned rule-set. In this thesis various packing algorithms and image processing methodologies from the literature are researched and used to develop a new packing algorithm for this speci c problem. The newly developed algorithm is put through various benchmarks to test its performance. Some of these benchmarks are procured from Kohler Signs themselves, whereas others are randomly generated under certain conditions. These benchmarks reveal that the newly developed algorithm performs better for both the minimisation of waste and the minimisation of algorithm running time than the tried and trusted techniques utilised in industry by Kohler Signs.
AFRIKAANSE OPSOMMING: Kohler Signs (EDMS) Bpk is 'n padteken produksie maatskappy gele e in Kaapstad, Suid-Afrika. Hulle vervaardig en installeer tekens vir die Stad van Kaapstad en privaat maatskappye, sowel as advertensietekens wat op voertuie geplaas word. Padtekens bestaan uit staalplate wat gesny en gebuig word tot die toepaslike grootte en vorm. 'n Beeldontwerp, wat gesny is uit re ektiewe viniel, word vasgesit op die gebuigde staalplaat. Die beeldontwerp bestaan uit verskeie letters, getalle en simbole wat geklassi seer word as onre elmatige items. Wanneer hierdie onre elmatige items gekombineer word op 'n eiesoortige manier, met die gebruik van verskillende kleure viniel, dra hulle 'n boodskap oor aan die padgebruiker, soos byvoorbeeld om toe te gee aan voetgangers by 'n voetoorgang of dit dui aan die padgebruiker die verskillende snelweguitgange wat bestaan op die wisselaar wat voorl^e. Hierdie onre elmatige items word op re ektiewe viniel geplaas en uitgesny wat lei tot die vermorsing van stukkies viniel. Die fokus van hierdie tesis is om die onre elmatige items op 'n optimale en tydige wyse vir gebruik in industrie, op die viniel te plaas sodat die afval stukkies viniel geminimeer word. Die vinieldrukker, wat die onre elmatige items sny uit die viniel, bestaan uit 'n vaste wydte en is slegs beperk in hoogte deur die viniel self. Dus kan hierdie probleem beskryf word as 'n Twee-Dimensionele Onre elmatige Strookverpakkingsprobleem. Hierdie onre elmatige items het slegs 'n paar moontlike hoogtes vir elke tipe van onre elmatige item wat verpak word, wat dit moontlik maak om hierdie onre elmatige items te verpak as 'n strook verpakkingsprobleem. Die items word met behulp van 'n gede nieerde stel re els binne vlakke verpak asof hulle re elmatige items is. In hierdie tesis is verskeie verpakkingsalgoritmes en beeldverwerkingsmetodes van die literatuur nagevors en gebruik om 'n nuwe verpakkingsalgoritme vir hierdie spesi eke probleem te ontwikkel. Die nuut ontwikkelde algoritme se prestasie is deur middel van verskeie normbepalingsvoorbeelde getoets. Sommige van hierdie normbepalingsvoorbeelde is verkry van Kohler Signs self, terwyl ander lukraak gegenereer is onder sekere voorwaardes. Hierdie normbepalingsvoorbeelde toon dat die nuut ontwikkelde algoritme beter vaar as die beproefde tegnieke gebruik in industrie deur Kohler Signs vir beide die minimering van vermorsde viniel sowel as die minimering van die algoritme se uitvoertyd.
10

Song, Yongqiang. "Improved Approximation Algorithms for Geometric Packing Problems With Experimental Evaluation." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4355/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Geometric packing problems are NP-complete problems that arise in VLSI design. In this thesis, we present two novel algorithms using dynamic programming to compute exactly the maximum number of k x k squares of unit size that can be packed without overlap into a given n x m grid. The first algorithm was implemented and ran successfully on problems of large input up to 1,000,000 nodes for different values. A heuristic based on the second algorithm is implemented. This heuristic is fast in practice, but may not always be giving optimal times in theory. However, over a wide range of random data this version of the algorithm is giving very good solutions very fast and runs on problems of up to 100,000,000 nodes in a grid and different ranges for the variables. It is also shown that this version of algorithm is clearly superior to the first algorithm and has shown to be very efficient in practice.
11

Wierz, Andreas [Verfasser]. "Algorithms and Complexity Results for Packing and Covering Problems and Robust Dynamic Network Flows under Primal-Dual Aspects / Andreas Wierz." München : Verlag Dr. Hut, 2018. http://d-nb.info/1156510368/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Asgeirsson, Agni. "On-line algorithms for bin-covering problems with known item distributions." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis focuses on algorithms solving the on-line Bin-Covering problem, when the items are generated from a known, stationary distribution. We introduce the Prospect Algorithm. The main idea behind the Prospect Algorithm is to use information on the item distribution to estimate how easy it will be to fill a bin with small overfill as a function of the empty space left in it. This estimate is then used to determine where to place the items, so that all active bins either stay easily fillable, or are finished with small overfill. We test the performance of the algorithm by simulation, and discuss how it can be modified to cope with additional constraints and extended to solve the Bin-Packing problem as well. The Prospect Algorithm is then adapted to achieve perfect packing, yielding a new version, the Prospect+ Algorithm, that is a slight but consistent improvement. Next, a Markov Decision Process formulation is used to obtain an optimal Bin-Covering algorithm to compare with the Prospect Algorithm. Even though the optimal algorithm can only be applied to limited (small) cases, it gives useful insights that lead to another modification of the Prospect Algorithm. We also discuss two relaxations of the on-line constraint, and describe how algorithms that are based on solving the Subset-Sum problem are used to tackle these relaxed problems. Finally, several practical issues encountered when using the Prospect Algorithm in the real-world are analyzed, a computationally efficient way of doing the background calculations needed for the Prospect Algorithm is described, and the three versions of the Prospect Algorithm developed in this thesis are compared.
13

Surber, Wesley M. "Restricted and Unrestricted Coverings of Complete Bipartite Graphs with Hexagons." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etd/1136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A minimal covering of a graph G with isomorphic copies of graph H is a set {H1, H2, H3, ... , Hn} where Hi is isomorphic to H, the vertex set of Hi is a subset of G, the edge set of G is a subset of the union of Hi's, and the cardinality of the union of Hi's minus G is minimum. Some studies have been made of covering the complete graph in which case an added condition of the edge set of Hi is the subset of the edge set of G for all i which implies no additional restrictions. However, if G is not the complete graph, then this condition may have implications. We will give necessary and sufficient conditions for minimal coverings of complete bipartite graph with 6-cycles, which we call minimal unrestricted coverings. We also give necessary and sufficient conditions for minimal coverings of the complete bipartite graph with 6-cycles with the added condition the edge set of Hi is a subset of G for all i, and call these minimal restricted coverings.
14

Freitas, Lucas Ismaily Bezerra 1987. "A conjectura de Tuza sobre triângulos em grafos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orientador: Orlando Lee
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-25T17:05:58Z (GMT). No. of bitstreams: 1 Freitas_LucasIsmailyBezerra_M.pdf: 2067916 bytes, checksum: 77f11deab9d862fe9a10de2df94b447c (MD5) Previous issue date: 2014
Resumo: Neste trabalho estudamos a conjectura de Tuza, que relaciona cobertura mínima de triângulos por arestas com empacotamento máximo de triângulos aresta-disjuntos em grafos. Em 1981, Tuza conjecturou que para todo grafo, o número máximo de triângulos aresta-disjuntos é no máximo duas vezes o tamanho de uma cobertura mínima de triângulos por arestas. O caso geral da conjectura continua aberta. Contudo, diversas tentativas de prová-la surgiram na literatura, obtendo resultados para várias classes de grafos. Nesta dissertação, nós apresentamos os principais resultados obtidos da conjectura de Tuza. Atualmente, existem várias versões da conjectura. Contudo, ressaltamos que nosso foco está na conjectura aplicada a grafos simples. Apresentamos também uma conjectura que se verificada, implica na veracidade da conjectura de Tuza. Demonstramos ainda que se G é um contra-exemplo mínimo para a conjectura de Tuza, então G é 4-conexo. Deduzimos desse resultado que a conjectura de Tuza é válida para grafos sem minor do K_5
Abstract: In this thesis we study the conjecture of Tuza, which relates covering of triangles (by edges) with packing of edge-disjoint triangles in graphs. In 1981, Tuza conjectured that for any graph, the maximum number of edge-disjoint triangles is at most twice the size of a minimum cover of triangles by edges. The general case of the conjecture remains open. However, several attempts to prove it appeared in the literature, which contain results for several classes of graphs. In this thesis, we present the main known results for the conjecture of Tuza. Currently, there are several versions of Tuza's conjecture. Nevertheless, we emphasize that our focus is on conjecture applied to simple graphs. We also present a conjecture that, if verified, implies the validity of the conjecture of Tuza. We also show that if G is a mininum counterexample to the conjecture of Tuza, then G is 4-connected. We can deduce from this result that the conjecture of Tuza is valid for graphs with no K_5 minor
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
15

Sheppard, Nicholas Paul. "Self-Reduction for Combinatorial Optimisation." University of Sydney. Computer Science, 2001. http://hdl.handle.net/2123/797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis presents and develops a theory of self-reduction. This process is used to map instances of combinatorial optimisation problems onto smaller, more easily solvable instances in such a way that a solution of the former can be readily re-constructed, without loss of information or quality, from a solution of the latter. Self-reduction rules are surveyed for the Graph Colouring Problem, the Maximum Clique Problem, the Steiner Problem in Graphs, the Bin Packing Problem and the Set Covering Problem. This thesis introduces the problem of determining the maximum sequence of self-reductions on a given structure, and shows how the theory of confluence can be adapted from term re-writing to solve this problem by identifying rule sets for which all maximal reduction sequences are equivalent. Such confluence results are given for a number of reduction rules on problems on discrete systems. In contrast, NP-hardness results are also presented for some reduction rules. A probabilistic analysis of self-reductions on graphs is performed, showing that the expected number of self-reductions on a graph tends to zero as the order of the graph tends to infinity. An empirical study is performed comparing the performance of self-reduction, graph decomposition and direct methods of solving the Graph Colouring and Set Covering Problems. The results show that self-reduction is a potentially valuable, but sometimes erratic, method of finding exact solutions to combinatorial problems.
16

Xia, Yan. "Packings and Coverings of Complete Graphs with a Hole with the 4-Cycle with a Pendant Edge." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etd/1173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this thesis, we consider packings and coverings of various complete graphs with the 4-cycle with a pendant edge. We consider both restricted and unrestricted coverings. Necessary and sufficient conditions are given for such structures for (1) complete graphs Kv, (2) complete bipartite graphs Km,n, and (3) complete graphs with a hole K(v,w).
17

Wierz, Andreas [Verfasser], Britta [Akademischer Betreuer] Peis, Arie Marinus [Akademischer Betreuer] Koster, and Martin [Akademischer Betreuer] Skutella. "Algorithms and complexity results for packing and covering problems and robust dynamic network flows under primal-dual aspects / Andreas Wierz ; Britta Peis, Arie Marinus Koster, Martin Skutella." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1169314716/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Muller, Carole. "Minor-closed classes of graphs: Isometric embeddings, cut dominants and ball packings." Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/331629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Une classe de graphes est close par mineurs si, pour tout graphe dans la classe et tout mineur de ce graphe, le mineur est ́egalement dans la classe. Par un fameux th ́eor`eme de Robertson et Seymour, nous savons que car- act ́eriser une telle classe peut ˆetre fait `a l’aide d’un nombre fini de mineurs exclus minimaux. Ceux-ci sont des graphes qui n’appartiennent pas `a la classe et qui sont minimaux dans le sens des mineurs pour cette propri ́et ́e.Dans cette thèse, nous étudions trois problèmes à propos de classes de graphes closes par mineurs. Les deux premiers sont reliés à la caractérisation de certaines classes de graphes, alors que le troisième étudie une relation de “packing-covering” dans des graphes excluant un mineur.Pour le premier problème, nous étudions des plongements isométriques de graphes dont les arêtes sont pondérées dans des espaces métriques. Principalement, nous nous intêressons aux espaces ell_2 et ell_∞. E ́tant donné un graphe pondéré, un plongement isométrique associe à chaque sommet du graphe un vecteur dans l’autre espace de sorte que pour chaque arête du graphe le poids de celle-ci est égal à la distance entre les vecteurs correspondant à ses sommets. Nous disons qu’une fonction de poids sur les arêtes est une fonction de distances réalisable s’il existe un tel plongement. Le paramètre f_p(G) détermine la dimension k minimale d’un espace ell_p telle que toute fonction de distances réalisable de G peut être plongée dans ell_p^k. Ce paramètre est monotone dans le sens des mineurs. Nous caractérisons les graphes tels que f_p(G) a une grande valeur en termes de mineurs inévitables pour p = 2 et p = ∞. Une famille de graphes donne des mineurs inévitables pour un invariant monotone pour les mineurs, si ces graphes “expliquent” pourquoi l’invariant est grand.Le deuxième problème étudie les mineurs exclus minimaux pour la classe de graphes avec φ(G) borné par une constante k, où φ(G) est un paramètre lié au dominant des coupes d’un graphe G. Ce polyèdre contient tous les points qui, composante par composante, sont plus grands ou égaux à une combination convexe des vecteurs d’incidence de coupes dans G. Le paramètre φ(G) est égal au membre de droite maximum d’une description linéaire du dominant des coupes de G en forme entière minimale. Nous étudions les mineurs exclus minimaux pour la propriété φ(G) <= 4 et montrons une nouvelle borne sur φ(G) en termes du “vertex cover number”.Le dernier problème est d’un autre type. Nous étudions une relation de “packing-covering” dans les classes de graphes excluant un mineur. Étant donné un graphe G, une boule de centre v et de rayon r est l’ensemble de tous les sommets de G qui sont à distance au plus r de v. Pour un graphe G et une collection de boules donnés nous pouvons définir un hypergraphe H dont les sommets sont ceux de G et les arêtes correspondent aux boules de la collection. Il est bien connu que dans l’hypergraphe H, le “transversal number” τ(H) vaut au moins le “packing number” ν(H). Nous montrons une borne supérieure sur ν(H) qui est linéaire en τ(H), résolvant ainsi un problème ouvert de Chepoi, Estellon et Vaxès.
A class of graphs is closed under taking minors if for each graph in the class and each minor of this graph, the minor is also in the class. By a famous result of Robertson and Seymour, we know that characterizing such a class can be done by identifying a finite set of minimal excluded minors, that is, graphs which do not belong to the class and are minor-minimal for this property.In this thesis, we study three problems in minor-closed classes of graphs. The first two are related to the characterization of some graph classes, while the third one studies a packing-covering relation for graphs excluding a minor.In the first problem, we study isometric embeddings of edge-weighted graphs into metric spaces. In particular, we consider ell_2- and ell_∞-spaces. Given a weighted graph, an isometric embedding maps the vertices of this graph to vectors such that for each edge of the graph the weight of the edge equals the distance between the vectors representing its ends. We say that a weight function on the edges of the graph is a realizable distance function if such an embedding exists. The minor-monotone parameter f_p(G) determines the minimum dimension k of an ell_p-space such that any realizable distance function of G is realizable in ell_p^k. We characterize graphs with large f_p(G) value in terms of unavoidable minors for p = 2 and p = ∞. Roughly speaking, a family of graphs gives unavoidable minors for a minor-monotone parameter if these graphs “explain” why the parameter is high.The second problem studies the minimal excluded minors of the class of graphs such that φ(G) is bounded by some constant k, where φ(G) is a parameter related to the cut dominant of a graph G. This unbounded polyhedron contains all points that are componentwise larger than or equal to a convex combination of incidence vectors of cuts in G. The parameter φ(G) is equal to the maximum right-hand side of a facet-defining inequality of the cut dominant of G in minimum integer form. We study minimal excluded graphs for the property φ(G) <= 4 and provide also a new bound of φ(G) in terms of the vertex cover number.The last problem has a different flavor as it studies a packing-covering relation in classes of graphs excluding a minor. Given a graph G, a ball of center v and radius r is the set of all vertices in G that are at distance at most r from v. Given a graph and a collection of balls, we can define a hypergraph H such that its vertices are the vertices of G and its edges correspond to the balls in the collection. It is well-known that, in the hypergraph H, the transversal number τ(H) is at least the packing number ν(H). We show that we can bound τ(H) from above by a linear function of ν(H) for every graphs G and ball collections H if the graph G excludes a minor, solving an open problem by Chepoi, Estellon et Vaxès.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
19

Larchevêque, Hubert. "Agrégation de ressources avec contrainte de distance : applications aux plateformes de grande échelle." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00580962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Durant cette thèse, nous avons introduit les problèmes de Bin Covering avec Contrainte de Distance (BCCD) et de Bin Packing avec Contrainte de Distance (BPCD), qui trouvent leur application dans les réseaux de grande échelle, tel Internet. L'étude de ces problèmes que nous effectuons dans des espaces métriques quelconques montre qu'il est impossible de travailler dans un tel cadre sans avoir recours à de l'augmentation de ressources, un procédé qui permet d'élaborer des algorithmes construisant des solutions moins contraintes que la solution optimale à laquelle elles sont comparées. En plus de résultats d'approximation intéressants, nous prouvons la difficulté de ces problèmes si ce procédé n'est pas utilisé. Par ailleurs, de nombreux outils ont pour objectif de plonger les grands réseaux qui nous intéressent dans des espaces métriques bien décrits. Nous avons alors étudié nos problèmes dans les espaces métriques générés par certains de ces outils, comme Vivaldi et Sequoia.
20

Rodrigues, Marcos Okamura. "Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062015-111716/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
O problema de empacotamento em faixas de peças irregulares consiste em cortar um conjunto de peças bidimensionais a partir de um objeto de largura fixa utilizando o menor comprimento possível. Apesar de sua importância econômica para diversos setores industriais, há poucos trabalhos que abordam o problema de forma exata devido a sua dificuldade de resolução. Recentemente, Toledo et al. (2013) propuseram um modelo inteiro misto para este problema, no qual as peças são posicionadas em uma malha de pontos. Este modelo obteve bons resultados, provando a otimalidade para instâncias com até 21 peças. No entanto, o modelo possui um grande número de restrições de não-sobreposição, que cresce rapidamente de acordo com a discretização utilizada e a quantidade de peças distintas que devem ser alocadas. Neste trabalho, são propostas novas formulações matemáticas baseadas neste modelo, com o objetivo de reduzir o número de restrições. Na primeira abordagem, são propostos dois modelos reduzidos que mostraram ser eficientes para instâncias com poucas repetições de peças. Na segunda abordagem, foi proposto um modelo de cobertura por cliques para o problema. Este modelo obteve desempenho igual ou superior ao modelo da literatura para todas as instâncias avaliadas, obtendo uma solução ótima para instâncias com até 28 peças.
The irregular strip packing problem consists of cutting a set of two-dimensional pieces from an object of fixed width using the smallest possible length. Despite its economic importance for many industrial sectors, few exact studies have been made on this problem due to its difficulty of resolution. Recently, Toledo et al. (2013) proposed a mixed-integer model to this problem in which the pieces are placed on a grid. This model has worked successfully proving the optimality for instances up to 21 pieces. However, the model has a large number of non-overlapping constraints, which grows quickly in accordance with the discretization resolution and number of distinct pieces. In this work, we propose new mathematical formulations based on this model in order to reduce the number of constraints. In the first approach, we present two reduced models that have shown to be effective for instances with few repetitions of pieces. In the second approach, it was proposed a clique covering model for the problem. This model achieved a greater or equal performance than the literature for all instances, getting an optimal solution for instances up to 28 pieces.
21

Tsai, Yen-Shing, and 蔡彥興. "Bin Packing and Bin Covering of Subsets." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/76209328907620997913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
博士
國立交通大學
資訊管理研究所
104
Bin packing and bin covering are two of the most commonly arising computational tasks in resource allocation. Both problems aim to partition a set of items abiding by some constraints to achieve specific objectives. This work provides a unifying framework to deal with bin packing and bin covering for various constraints and objectives. Mostly, we focus on the study of the coverage of subsets, which is one of the most commonly addressed submodular functions. The thesis identifies several related problems of interests and proposes approximations with perfomance guarantees.
22

Fang, Yuan-Ling, та 方瑗蔆. "Optimal Packing and Covering of λKv, with Quadruples". Thesis, 1998. http://ndltd.ncl.edu.tw/handle/34081363964246914843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立交通大學
應用數學研究所
86
In this thesis, we study the optimal packing and covering of Kv with quadruples (K4). Mainly, minimum leave and minimum padding are utilized to describe a maximum packing and a minimum covering respectively. Other than the general optimal packing and covering, we also consider the optimal packing and covering in which their leave and padding are restricted to be simple respectively.
23

Chen, Guan-Fan, and 陳冠帆. "A study of t-packing and t-covering." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/50732350341796590718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立交通大學
應用數學系
91
A t-packing of a graph G is a collection of t edge-disjoint isomorphic subgraphs of G such that each subgraph is of size [|E(G)|/t]. A t-covering of a graph G is a collection of t edge-disjoint isomorphic graphs H1,H2,...,Ht such that all edges of G contians in all union of edges of H's. In this thesis, we study the remainder graph (respectively, surplus graph) of each t-packing (respectively, t-covering) of the complete graph. For t is small than six, we determine all possible remainder graphs and respectively surplus graphs.
24

Chen, Wei-Lin, and 陳薇琳. "Packing And Covering The Complete Multigraphs With Short Paths." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/44275201122977376775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
嶺東科技大學
資訊科技應用研究所
100
Graph packing and covering, graph decomposition included, has been and continues to be a popular topic of research in graph theory since many mathematical structures are linked to it and its results can be applied in coding theory, synchronous optical networks (SONET), multicomputer networks, experimental design, DNA library screening, scheduling and other fields. A k-path is a path of length k. In this thesis we completely solve the problem of finding maximum packings and minimum coverings of complete multigraphs with k-paths for k =3,4,5.
25

Datta, Krupa R. "Generalization of Hitting, Covering and Packing Problems on Intervals." Thesis, 2017. http://etd.iisc.ernet.in/2005/3628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Interval graphs are well studied structures. Intervals can represent resources like jobs to be sched-uled. Finding maximum independent set in interval graphs would correspond to scheduling maximum number of non-conflicting jobs on the computer. Most optimization problems on interval graphs like independent set, vertex cover, dominating set, maximum clique, etc can be solved efficiently using combinatorial algorithms in polynomial time. Hitting, Covering and Packing problems have been ex-tensively studied in the last few decades and have applications in diverse areas. While they are NP-hard for most settings, they are polynomial solvable for intervals. In this thesis, we consider the generaliza-tions of hitting, covering and packing problems for intervals. We model these problems as min-cost flow problems using non-trivial reduction and solve it using standard flow algorithms. Demand-hitting problem which is a generalization of hitting problem is defined as follows: Given N intervals, a positive integer demand for every interval, M points, a real weight for every point, select a subset of points H, such that every interval contains at least as many points in H as its demand and sum of weight of the points in H is minimized. Note that if the demand is one for all intervals, we get the standard hitting set problem. In this case, we give a dynamic programming based O(M + N) time algorithm assuming that intervals and points are sorted. A special case of the demand-hitting set is the K-hitting set problem where the demand of all the intervals is K. For the K-hitting set problem, we give a O(M2N) time flow based algorithm. For the demand-hitting problem, we make an assumption that no interval is contained in another interval. Under this assumption, we give a O(M2N) time flow based algorithm. Demand-covering problem which is a generalization of covering problem is defined as follows: Given N intervals, a real weight for every interval, M points, a positive integer demand for every point, select a subset of intervals C, such that every point is contained in at least as many intervals in C as its demand and sum of weight of the intervals in C is minimized. Note that if the demand of points are one, we get the standard covering set problem. In this case, we give a dynamic programming based O(M + N log N) time algorithm assuming that points are sorted. A special case of the demand-covering set is the K-covering set problem where the demand of all the points is K. For the K-covering set problem, we give a O(MN2) time flow based algorithm. For the demand-covering problem, we give a O(MN2) time flow based algorithm. K-pack points problem which is a generalization of packing problem is defined as follows: Given N intervals, an integer K, M points, a real weight for every point, select a subset of points Y , such that every interval contains at most K points from Y and sum of weight of the points in Y is maximized. Note that if K is one, we get the standard pack points problem. In this case, we give a dynamic pro-gramming based O(M + N) time algorithm assuming that points and intervals are sorted. For K-pack points problem, we give O(M2 log M) time flow based algorithm assuming that intervals and points are sorted.
26

Francetic, Nevena. "Covering Arrays with Row Limit." Thesis, 2012. http://hdl.handle.net/1807/34006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Covering arrays with row limit, CARLs, are a new family of combinatorial objects which we introduce as a generalization of group divisible designs and covering arrays. In the same manner as their predecessors, CARLs have a natural application as combinatorial models for interaction test suites. A CARL(N;t,k,v:w), is an N×k array with some empty cells. A component, which is represented by a column, takes values from a v-set called the alphabet. In each row, there are exactly w non-empty cells, that is the corresponding components have an assigned value from the alphabet. The parameter w is called the row limit. Moreover, any N×t subarray contains every of v^t distinct t-tuples of alphabet symbols at least once. This thesis is concerned with the bounds on the size and with the construction of CARLs when the row limit w(k) is a positive integer valued function of the number of columns, k. Here we give a lower bound, and probabilistic and algorithmic upper bounds for any CARL. Further, we find improvements on the upper bounds when w(k)ln(w(k)) = o(k) and when w(k) is a constant function. We also determine the asymptotic size of CARLs when w(k) = Θ(k) and when w(k) is constant. Next, we study constructions of CARLs. We provide two combinatorial constructions of CARLs, which we apply to construct families of CARLs with w(k)=ck, where c<1. Also, we construct optimal CARLs when t=2 and w=4, and prove that there exists a constant δ, such that for any v and k≥4, an optimal CARL(2,k,v:4) differs from the lower bound by at most δ rows, with some possible exceptions. Finally, we define a packing array with row limit, PARL(N;t,k,v:w), in the same way as a CARL(N;t,k,v:w) with the difference that any t-tuple is contained at most once in any N×t subarray. We find that when w(k) is a constant function, the results on the asymptotic size of CARLs imply the results on the asymptotic size of PARLs. Also, when t=2, we consider a transformation of optimal CARLs with row limit w=3 to optimal PARLs with w=3.
27

"From a multi-skilled staff-scheduling problem to the mixed set covering, packing and partitioning polytope." 2013. http://library.cuhk.edu.hk/record=b5549742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
本文分為個部分:多技能員工調問題,和集合覆蓋、裝運和劃分混合問題多面體研究,其中第一部分問題啟發我們第二部分的探。
首先,我們研究在一個大型機場的國際客運站中客戶服務人員的調問題。員工有同的技能和技能水平。技能定義是二維的,包括操作技能和語言能。在學模型中,我們也考慮用餐和休息時間的調和多處工作地點。我們證明該問題是NP-hard 的。我們推導出有效等式,以方計算過程。我們的學模型能夠幫助規劃者做出決策,及可計算同型的活性對業務的影響。我們的模型也可以幫助決策者計劃長遠工作調和培訓。
多技能人員調問題啟發我們這篇文的第二部分:集合覆蓋、裝運和劃分混合問題多面體研究。我們首先證明如覆蓋(或裝運)的等式被删去,該多面體是相當於一個放寬的裝運(或覆蓋)多面體的投影。然後我們考慮混合奇穴多面體(即是一個由覆蓋和裝運等式組成的多面體),並採用圖方法研究,通過考慮同型的等式的互動,推導出混合奇穴等式和完全描繪多面體的特徵。我們再推導出集合覆蓋和裝運混合問題的混合奇穴等式。計算結果顯示,混合奇穴等式有助於減少計算時間。我們還提供子明如何用等式幫助決策。
This thesis is divided into two parts: Multi-Skilled Staff-Scheduling Problem and a polyhedral study on the Mixed Set Covering, Packing and Partitioning Problem, where the first part is a motivating example of the latter.
In the multi-skilled staff-scheduling problem, we study the problem of scheduling customer service agents at an international terminal of a large airport. The staff members are heterogeneous with different skills and skill levels. The skill specification is two-dimensional, defined by operational skills and language proficiency. In the mathematical model, we also consider the scheduling of meal and rest breaks, and multiple locations. The problem is shown to be NP-hard. We derive valid inequalities to speed up the computational procedure. With our mathematical model, we are able to help schedule planners make decisions and examine the impacts of different types of flexibility on the level of service provided. Our model can also help decision makers with long-term work-schedule planning.
Motivated by the staff-scheduling problem, the second part of this thesis studies the polyhedral structure of the mixed set covering, packing and partitioning problem, i.e., a problem that contains set covering, set packing and set partitioning constraints. We first study the mixed odd hole polytope, which is the polytope associated with a mixed odd hole consisting of covering and packing "edges". Adopting a graphical approach and considering the "interactions" between the different types of inequalities, we derive the mixed odd hole inequality, thereby completely characterizing the mixed odd hole polytope. We then generalize the mixed odd hole inequality for the general mixed covering and packing polytope. Computational results show that the mixed odd hole inequalities are helpful in reducing solution time. We also provide examples of problem settings in which the inequalities can be used to help decision making.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Kuo, Yong Hong.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2013.
Includes bibliographical references (leaves 119-129).
Abstracts also in Chinese.
Abstract --- p.i
Acknowledgement --- p.iii
Chapter I --- Scheduling of Multi-skilled Staff Across Multiple Locations --- p.1
Chapter 1 --- Introduction --- p.2
Chapter 2 --- Literature Review --- p.8
Chapter 3 --- Mathematical Model --- p.14
Chapter 3.1 --- Problem Formulation --- p.14
Chapter 3.2 --- Valid Inequalities --- p.20
Chapter 3.3 --- Shift Scheduling and Longer-Term Work-Schedule Planning --- p.21
Chapter 4 --- Computational Studies --- p.24
Chapter 4.1 --- Dataset and Input Parameters --- p.24
Chapter 4.1.1 --- Staffing Requirements and Shortage Penalties --- p.24
Chapter 4.2 --- Computational Study: Managerial Insights --- p.26
Chapter 4.2.1 --- Effect of Three Types of Flexibility --- p.26
Chapter 4.2.2 --- Impact of Different Types of Flexibility --- p.28
Chapter 4.3 --- Computational Study: Benefits Compared with Benchmarks --- p.33
Chapter 4.3.1 --- Heuristic H1: CSA Assignment by Time Period --- p.35
Chapter 4.3.2 --- Heuristic H2: CSA Assignment by Criticality --- p.35
Chapter 4.3.3 --- Comparison with Benchmarks --- p.37
Chapter 4.4 --- Computational Study: Computational Efficiency --- p.40
Chapter 5 --- Conclusions --- p.44
Chapter II --- On the Polyhedral Structure of the Mixed Set Covering, Packing and Partitioning Polytope --- p.47
Chapter 6 --- Introduction --- p.48
Chapter 7 --- Preliminaries --- p.51
Chapter 8 --- Overview of Packing, Covering and Partitioning Polyhedra --- p.58
Chapter 8.1 --- Set Packing Polytope --- p.58
Chapter 8.1.1 --- Intersection Graph --- p.59
Chapter 8.1.2 --- Lifting Procedures --- p.63
Chapter 8.1.3 --- Facet-Producing Subgraphs --- p.66
Chapter 8.2 --- Set Covering Polytope --- p.71
Chapter 8.2.1 --- Polyhedral Structure and the Associated Graphs --- p.71
Chapter 8.3 --- Set Partitioning Polytope --- p.76
Chapter 8.4 --- Blocking and Anti-Blocking Pairs --- p.78
Chapter 8.4.1 --- Blocking polyhedra --- p.78
Chapter 8.4.2 --- Anti-blocking polyhedra --- p.80
Chapter 8.5 --- Perfect, Ideal and Balanced Matrices --- p.81
Chapter 8.5.1 --- Perfect Matrices --- p.81
Chapter 8.5.2 --- Ideal Matrices --- p.83
Chapter 8.5.3 --- Balanced Matrices --- p.84
Chapter 9 --- Mixed Set Covering, Packing and Partitioning Polytope --- p.87
Chapter 9.1 --- Mixed Set Partitioning and Covering/Packing Polytope --- p.87
Chapter 9.2 --- Mixed Set Covering and Packing Polytope --- p.88
Chapter 9.2.1 --- Mixed odd hole --- p.90
Chapter 9.2.2 --- General Mixed Covering and Packing Polytope --- p.97
Chapter 9.3 --- Computational Experiments --- p.108
Chapter 9.4 --- Applications of the Mixed Odd Hole Inequality --- p.112
Chapter 9.4.1 --- Railway Time-Tabling --- p.112
Chapter 9.4.2 --- Team Formation --- p.113
Chapter 9.4.3 --- Course Registration --- p.114
Chapter 10 --- Conclusions --- p.117
Bibliography --- p.119
28

Adams, Patrick Guy. "A numerical approach to Tamme's problem in euclidean n-space." Thesis, 1997. http://hdl.handle.net/1957/33911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Lafreniere, Benjamin J. "Packing Unit Disks." Thesis, 2008. http://hdl.handle.net/10012/3907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Given a set of unit disks in the plane with union area A, what fraction of A can be covered by selecting a pairwise disjoint subset of the disks? Richard Rado conjectured 1/4 and proved 1/4.41. In this thesis, we consider a variant of this problem where the disjointness constraint is relaxed: selected disks must be k-colourable with disks of the same colour pairwise-disjoint. Rado's problem is then the case where k = 1, and we focus our investigations on what can be proven for k > 1. Motivated by the problem of channel-assignment for Wi-Fi wireless access points, in which the use of 3 or fewer channels is a standard practice, we show that for k = 3 we can cover at least 1/2.09 and for k = 2 we can cover at least 1/2.82. We present a randomized algorithm to select and colour a subset of n disks to achieve these bounds in O(n) expected time. To achieve the weaker bounds of 1/2.77 for k = 3 and 1/3.37 for k = 2 we present a deterministic O(n^2) time algorithm. We also look at what bounds can be proven for arbitrary k, presenting two different methods of deriving bounds for any given k and comparing their performance. One of our methods is an extension of the method used to prove bounds for k = 2 and k = 3 above, while the other method takes a novel approach. Rado's proof is constructive, and uses a regular lattice positioned over the given set of disks to guide disk selection. Our proofs are also constructive and extend this idea: we use a k-coloured regular lattice to guide both disk selection and colouring. The complexity of implementing many of the constructions used in our proofs is dominated by a lattice positioning step. As such, we discuss the algorithmic issues involved in positioning lattices as required by each of our proofs. In particular, we show that a required lattice positioning step used in the deterministic O(n^2) algorithm mentioned above is 3SUM-hard, providing evidence that this algorithm is optimal among algorithms employing such a lattice positioning approach. We also present evidence that a similar lattice positioning step used in the constructions for our better bounds for k = 2 and k = 3 may not have an efficient exact implementation.
30

Γεωργαντζίνος, Στυλιανός. "Χρήση της περιβάλλουσας ανάλυσης δεδομένων για την αποδοτική κάλυψη ή σύμπτηξη ενός συνόλου". Thesis, 2009. http://nemertes.lis.upatras.gr/jspui/handle/10889/2500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Στην παρούσα μεταπτυχιακή εργασία περιγράφεται η διαδικασία συνδυασμού προβλημάτων Επιχειρησιακής Έρευνας με την μεθοδολογία εύρεσης συγκριτικής αποδοτικότητας (DEA). Αρχικά, παρουσιάζεται μια γενική περιγραφή της μεθόδου DEA και μια συνοπτική επισκόπηση της σχετικής βιβλιογραφίας. Παρουσιάζεται ο τρόπος συνδυασμού της μεθόδου DEA και δύο κλασσικών μοντέλων χωροθέτησης εγκαταστάσεων, του μοντέλου με περιορισμό και του αντίστοιχου μοντέλου χωρίς περιορισμό στην χωρητικότητα. Για την επίτευξη αυτού του στόχου γίνονται οι απαραίτητοι χειρισμοί στην μέθοδο DEA ούτως ώστε να μπορεί να υπολογίζεται η αποδοτικότητα για όλες τις μονάδες λήψης απόφασης ταυτόχρονα – μέθοδος ταυτόχρονης DEA (Simultaneous DEA), εφόσον το κλασσικό μοντέλο βρίσκει την αποδοτικότητα μιας μονάδας λύνοντας μια φορά το γραμμικό πρόβλημα με τους συντελεστές βαρύτητας αυτής της μονάδας. Η λύση του πολυκριτήριου προβλήματος αναδεικνύει την αλληλεπίδραση μεταξύ κόστους και αποδοτικότητας, για τη λήψη απόφασης ανάλογα με τις ανάγκες που μπορεί ενυπάρχουν σε ένα αντίστοιχο πραγματικό πρόβλημα. Στην συνέχεια αναπτύσσεται για πρώτη φορά στη διεθνή βιβλιογραφία μια μεθοδολογία για το συνδυασμό δύο άλλων βασικών προβλημάτων, της κάλυψης και της σύμπτυξης συνόλου, αντίστοιχα, με την μεθοδολογία DEA. Στόχος είναι να μορφοποιηθεί ένα μοντέλο γραμμικού προγραμματισμού έτσι ώστε εκτός από το μέτρο απόφασης του κόστους για την κάλυψη ή σύμπτυξη ενός συνόλου-στόχου, από διαθέσιμα υποσύνολα να ληφθεί υπόψη και η αποδοτικότητα του εκάστοτε υποσυνόλου, η οποία εν τέλει θα επηρεάσει και την συνολική αποδοτικότητα του συνόλου-στόχου. Γίνεται ο συνδυασμός των μεθοδολογιών και αναπτύσσονται μεθοδολογίες πολυκριτήριας ανάλυσης που μπορούν να χρησιμοποιηθούν για την λήψη αποφάσεων που αφορούν την αποδοτική και οικονομική κάλυψη ή σύμπτυξη ενός συνόλου. Για την πιστοποίηση και τη διαπίστωση της λειτουργικότητας των προτεινόμενων μεθοδολογιών αναπτύσσονται παραδείγματα προβλημάτων, τα οποία και επιλύονται επιτυχώς.
In the present thesis, the combination of Operation Research Problems with the Data Envelopment Analysis (DEA) is performed in order to make optimal and efficient decisions. Firstly, a general description of DEA and a breath literature review is presented. Then, we show and test location modeling formulations that utilize data envelopment analysis (DEA) efficiency measures to find optimal and efficient facility location/allocation patterns. In addition, to the authors’ best knowledge, the combinations of DEA with the Set Covering Problem as well as Set Packing Problem are formulated as multiobjective problems, for first time in the literature. The main aim of the proposed models is to make cost-effective and efficient decisions regarding the Set Covering and Packing Problem, respectively. Numerical examples are developed in order to validate and test the novel models. The numerical results of multiobjective analysis demonstrate that the proposed methods are able to successfully find optimal and efficient solutions for real set covering, packing and partitioning problems.

До бібліографії