Добірка наукової літератури з теми "Paddle propulsion"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Paddle propulsion".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Paddle propulsion"
Granzier-Nakajima, Shawtaroh, Robert D. Guy, and Calvin Zhang-Molina. "A Numerical Study of Metachronal Propulsion at Low to Intermediate Reynolds Numbers." Fluids 5, no. 2 (May 31, 2020): 86. http://dx.doi.org/10.3390/fluids5020086.
Повний текст джерелаWang, Hai-Long, Xing-Ya Yan, Gang Wang, Qi-Feng Zhang, Qi-Yan Tian, and Yun-Long Fan. "Experimental research and floating gait planning of crablike robot." Advances in Mechanical Engineering 12, no. 2 (February 2020): 168781402090485. http://dx.doi.org/10.1177/1687814020904853.
Повний текст джерелаXin, Longqing, Peng Liu, Siqi Wang, Heng Zhuo, and Zhaopeng Zhang. "Study on propulsion performance of a tandem paddle propulsor." Ocean Engineering 264 (November 2022): 112510. http://dx.doi.org/10.1016/j.oceaneng.2022.112510.
Повний текст джерелаHAMADA, Shousuke, and Geunho LEE. "Paddle-typed propulsion mechanism based on shrimp’s swimming method." Proceedings of the Dynamics & Design Conference 2019 (2019): 542. http://dx.doi.org/10.1299/jsmedmc.2019.542.
Повний текст джерелаPrétot, Charlie, Rémi Carmigniani, Loup Hasbroucq, Romain Labbé, Jean-Philippe Boucher, and Christophe Clanet. "On the Physics of Kayaking." Applied Sciences 12, no. 18 (September 6, 2022): 8925. http://dx.doi.org/10.3390/app12188925.
Повний текст джерелаBonaiuto, Vincenzo, Giorgio Gatta, Cristian Romagnoli, Paolo Boatto, Nunzio Lanotte, and Giuseppe Annino. "A New Measurement System for Performance Analysis in Flatwater Sprint Kayaking." Proceedings 49, no. 1 (June 15, 2020): 39. http://dx.doi.org/10.3390/proceedings2020049039.
Повний текст джерелаHAMADA, Shousuke, Geunho LEE, Syu TAKAIRA, and Masaki SHIRAISHI. "Research on paddle propulsion mechanism to be used in underwater." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2018 (2018): 2P2—D10. http://dx.doi.org/10.1299/jsmermd.2018.2p2-d10.
Повний текст джерелаZAMMIT, MARIA, BENJAMIN P. KEAR, and RACHEL M. NORRIS. "Locomotory capabilities in the Early Cretaceous ichthyosaur Platypterygius australis based on osteological comparisons with extant marine mammals." Geological Magazine 151, no. 1 (November 1, 2013): 87–99. http://dx.doi.org/10.1017/s0016756813000782.
Повний текст джерелаFish, Frank E., Natalia Rybczynski, George V. Lauder, and Christina M. Duff. "The Role of the Tail or Lack Thereof in the Evolution of Tetrapod Aquatic Propulsion." Integrative and Comparative Biology 61, no. 2 (May 9, 2021): 398–413. http://dx.doi.org/10.1093/icb/icab021.
Повний текст джерелаCerpinska, M., M. Irbe, A. Pupurs, and K. Burbeckis. "Modelling of Drag Force Reduction for a Waterjet Propulsion System." Latvian Journal of Physics and Technical Sciences 58, no. 5 (October 1, 2021): 3–14. http://dx.doi.org/10.2478/lpts-2021-0035.
Повний текст джерелаДисертації з теми "Paddle propulsion"
Barbosa, Augusto Carvalho. "Respostas agudas de parâmetros biomecânicos à utilização de diferentes tamanhos de palmar no nado crawl." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/274741.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Educação Física
Made available in DSpace on 2018-08-16T18:10:16Z (GMT). No. of bitstreams: 1 Barbosa_AugustoCarvalho_D.pdf: 7576445 bytes, checksum: 04d87ab5c33f1dc5ca635490134e7f67 (MD5) Previous issue date: 2010
Resumo: O objetivo do presente estudo foi analisar as respostas agudas de parâmetros biomecânicos à utilização de diferentes tamanhos de palmar no nado crawl. Foram selecionados 14 nadadores homens (idade: 20.0 ± 3.7 anos, altura: 1.84 ± 0.08 m, massa corporal: 76.3 ± 8.6 kg, melhor tempo nos 100 m livre: 53.70 ± 0.87 s) competitivos em nível nacional. Para avaliação da força propulsora foram realizados 02 esforços máximos de 10 s no nado completamente atado. Em cada um foram analisadas 08 braçadas consecutivas, de onde se extraiu os valores médios de força pico (Fpico), força média (Fméd), taxa de desenvolvimento de força (TDF), impulso (ImpF), duração da braçada (DUR), tempo para atingir a força pico (TFpico) e força mínima (Fmín). Os nadadores também realizaram 02 esforços máximos na distância de 25m para obtenção da velocidade média em 15m (VM15m) (foram desprezados os 07 primeiros e 03 últimos metros), da frequência (FB15m) e do comprimento de braçadas (CB15m). Ambos os protocolos foram repetidos em 05 situações, a saber: livre de material (LVR), com palmar pequeno (PP, 280 cm²), médio (PM, 352 cm²), grande (PG, 462 cm²) e extragrande (PGG, 552 cm²). A ANOVA one way e o teste de Kruskal-Wallis foram adotados para comparar as situações. Quando detectado um efeito significante, recorreu-se ao teste de post-hoc de Scheffé (dados paramétricos) ou ao teste de Mann-Whitney com ajuste de Bonferroni (dados não-paramétricos) para localização das diferenças. Foi adotado um nível de significância de 5%. O aumento artificial da área da mão possibilitou o deslocamento de uma maior massa de água ocasionando um incremento significante na Fpico nas comparações LVR x PG, LVR x PGG e PP x PGG. Com isso, houve uma diminuição da velocidade da mão, que repercutiu em um aumento da DUR nessas mesmas comparações. Fméd e/ou TDF não apresentaram modificações significantes devido às alterações concomitantes das variáveis cinéticas e temporais que as influenciam. Esse resultado da TDF, aliado ao aumento do ImpF (principal variável associada à velocidade) nas comparações LVR x PG, LVR x PGG e PP x PGG, pode indicar que PG e PGG propiciam o desenvolvimento da propulsão sem ocasionar prejuízos aparentes na capacidade explosiva dos nadadores. O TFpico aumentou de LVR para PGG e PP para PGG devido ao aumento da Fpico e da diminuição da Fmín. A Fmín diminuiu significantemente apenas de LVR para PGG, apontando para uma possível alteração da relação entre o início e término da propulsão de ambos os braços. A ausência de alterações significantes na VM15m pode estar associada ao aumento do arrasto de onda. A FB15m diminuiu significantemente de LVR para PGG e de PP para PGG, enquanto o CB15m apresentou um comportamento exatamente inverso nas mesmas comparações. Conclui-se que, de forma aguda, o tamanho do palmar influencia principalmente a magnitude da força propulsora gerada e o seu comportamento ao longo do tempo
Abstract: The aim of this study was to analyze the acute responses of biomechanical parameters to different sizes of paddles in front-crawl stroke. Fourteen national competitive male swimmers (Age: 20.0 ± 3.7 years, height: 1.84 ± 0.08 m, body mass: 76.3 ± 8.6 kg, 100- m best time: 53.70 ± 0.87 s) volunteered for this investigation. For the propulsive force evaluation, 02 maximum efforts of 10 s were accomplished in the fully tethered swimming. In each effort, 08 consecutive strokes were analyzed to extract the average value of peak force (Fpeak), mean force (Fmean), explosive force (TDF), impulse (ImpF), stroke duration (DUR), time to peak force (TFpeak) and minimum force (Fmin). Additionally, swimmers accomplished two 25-m maximal swimming in order to measure the average velocity in 15 m (VM15m) (first 07 and last 03m were discarded), the stroke rate (SR15m) and the stroke length (SL15m). Both testing protocols were repeated in 05 conditions: conventional swimming (LVR), wearing small (PP, 280 cm²), medium (PM, 352 cm²), large (PG, 462 cm²) and extra-large paddles (PGG, 552 cm²). The one way ANOVA or the Kruskal-Wallis test were adopted for intersituations comparisons. Possible significant differences were detected by Scheffé post-hoc test (for parametric data) or Mann-Whitney test with Bonferroni adjustment (for non-parametric data). The significance level was set at 5%. The artificial enlargement of the hands allowed the swimmers to push off against a bigger mass of water and provided a significant increase of the Fpeak in the comparisons LVR x PG, LVR x PGG and PP x PGG. Because of this, there was also a hand's velocity reduction, which repercuted in a greater DUR in these same comparisons. The Fmean and/or the TDF did not change significantly due to the concomitant modifications of the kinetic and temporal variables that influence them. This result of the TDF, associated to the increase of the ImpF (the main variable related to swimming velocity) in the comparisons LVR x PG, LVR x PGG and PP x PGG, might indicate that PG and PGG propitiate the development of propulsion without any apparent damage in the swimmer's explosiveness. The TFpeak increased from LVR to PGG and from PP to PGG due to the increase of the Fpeak and the decrease of Fmin. The Fmin decrease significantly only from LVR to PGG, pointing to a possible modification in the relation between the beginning and the end of propulsion of both arms. The absence of significant changes in the VM15m might be related to the wave drag increase. The SR15m decrease significantly from LVR to PGG, while the SL15m presented exactly the inverse behavior. It can be concluded that, acutely, the different sizes of hand paddles influence mainly the magnitude of the propulsive force generated and its behavior throughout the time
Doutorado
Ciencia do Desporto
Doutor em Educação Física
Sturm, Dennis. "Wireless Multi-Sensor Feedback Systems for SportsPerformance Monitoring : Design and Development." Doctoral thesis, KTH, Medicinska sensorer, signaler och system (MSSS), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101159.
Повний текст джерелаQC 20120827
Gomory, Joseph. "The Biomechanics of Dragon Boat Paddling." Thesis, 2018. https://vuir.vu.edu.au/39512/.
Повний текст джерелаТези доповідей конференцій з теми "Paddle propulsion"
Maheshwar, Chilukuri. "Improving Propulsion Efficiency of Ships using Retractable Bridge." In SNAME Maritime Convention. SNAME, 2012. http://dx.doi.org/10.5957/smc-2012-p47.
Повний текст джерелаCarr, Matthew A. "The Impact of Steam Innovations on Ship Design: An Abbreviated History of Marine Engineering." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43767.
Повний текст джерелаGarcia, Martin, Ciaphus Rouse, Benjamin Estrada, Coskun Tekes, Amir Ali Amiri Moghadam, and Ayse Tekes. "Towards Development of 3D Printed Swimming Robot Using Soft Electromagnetic Actuation." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70151.
Повний текст джерелаLou, Zhipeng, Adrian Herrera-Amaya, Margaret L. Byron, and Chengyu Li. "Hydrodynamics of Metachronal Motion: Effects of Spatial Asymmetry on the Flow Interaction Between Adjacent Appendages." In ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-86967.
Повний текст джерелаPlamondon, Nicolas, and Meyer Nahon. "Control of an Underwater Biomimetic Vehicle Using Floquet Theory." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28867.
Повний текст джерелаBraun, M. Jack, F. K. Choy, and H. M. Pierson. "Structural and Dynamic Considerations Towards the Design of Padded Finger Seals." In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4698.
Повний текст джерела