Добірка наукової літератури з теми "Partial Numerical solutions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Partial Numerical solutions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Partial Numerical solutions"

1

Zhang, Zhao. "Numerical Analysis and Comparison of Gridless Partial Differential Equations." International Journal of Circuits, Systems and Signal Processing 15 (August 31, 2021): 1223–31. http://dx.doi.org/10.46300/9106.2021.15.133.

Повний текст джерела
Анотація:
In the field of science and engineering, partial differential equations play an important role in the process of transforming physical phenomena into mathematical models. Therefore, it is very important to get a numerical solution with high accuracy. In solving linear partial differential equations, meshless solution is a very important method. Based on this, we propose the numerical solution analysis and comparison of meshless partial differential equations (PDEs). It is found that the interaction between the numerical solutions of gridless PDEs is better, and the absolute error and relative
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, G., Eric Wai Ming Lee, and Gao Li. "Numerical solutions of the reaction-diffusion equation." International Journal of Numerical Methods for Heat & Fluid Flow 25, no. 2 (March 2, 2015): 265–71. http://dx.doi.org/10.1108/hff-04-2014-0113.

Повний текст джерела
Анотація:
Purpose – The purpose of this paper is to introduce variational iteration method (VIM) to construct equivalent integral equations for initial-boundary value problems of nonlinear partial differential equations. The Lagrange multipliers become the integral kernels. Design/methodology/approach – Using the discrete numerical integral formula, the general way is given to solve the famous reaction-diffusion equation numerically. Findings – With the given explicit solution, the results show the conveniences of the general numerical schemes and numerical simulation of the reaction-diffusion is finall
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Zhigang, Xiaoting Liu, Lijun Su, and Baoyan Fang. "Numerical Solutions of Convective Diffusion Equations using Wavelet Collocation Method." Advances in Engineering Technology Research 1, no. 1 (May 17, 2022): 192. http://dx.doi.org/10.56028/aetr.1.1.192.

Повний текст джерела
Анотація:
Some partial differential equations appear in many application fields. Therefore, the discussion of numerical solutions of those partial differential equations using numerical methods becomes a valuable and important issue in numerical simulation. In numerical methods, the wavelet-collocation method has been frequently developed for solving PDEs, and the algorithm has yielded substantial results. However, theoretical research of the numerical solution has been rarely discussed yet. In this paper, the numerical solution of convective diffusion equations using the wavelet-collocation method is e
Стилі APA, Harvard, Vancouver, ISO та ін.
4

NAKAO, Mitsuhiro. "Numerical Verification of Solutions for Partial Differential Equations." IEICE ESS FUNDAMENTALS REVIEW 2, no. 3 (2009): 19–28. http://dx.doi.org/10.1587/essfr.2.3_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nakao, Mitsuhiro T. "Numerical verification for solutions to partial differential equations." Sugaku Expositions 30, no. 1 (March 17, 2017): 89–109. http://dx.doi.org/10.1090/suga/419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Higdon, Robert L. "Numerical modelling of ocean circulation." Acta Numerica 15 (May 2006): 385–470. http://dx.doi.org/10.1017/s0962492906250013.

Повний текст джерела
Анотація:
Computational simulations of ocean circulation rely on the numerical solution of partial differential equations of fluid dynamics, as applied to a relatively thin layer of stratified fluid on a rotating globe. This paper describes some of the physical and mathematical properties of the solutions being sought, some of the issues that are encountered when the governing equations are solved numerically, and some of the numerical methods that are being used in this area.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Seth, G. S., S. Sarkar, and R. Sharma. "Effects of Hall current on unsteady hydromagnetic free convection flow past an impulsively moving vertical plate with Newtonian heating." International Journal of Applied Mechanics and Engineering 21, no. 1 (February 1, 2016): 187–203. http://dx.doi.org/10.1515/ijame-2016-0012.

Повний текст джерела
Анотація:
Abstract An investigation of unsteady hydromagnetic free convection flow of a viscous, incompressible and electrically conducting fluid past an impulsively moving vertical plate with Newtonian surface heating embedded in a porous medium taking into account the effects of Hall current is carried out. The governing partial differential equations are first subjected to the Laplace transformation and then inverted numerically using INVLAP routine of Matlab. The governing partial differential equations are also solved numerically by the Crank-Nicolson implicit finite difference scheme and a compari
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Iqbal, Mazhar, M. T. Mustafa, and Azad A. Siddiqui. "A Method for Generating Approximate Similarity Solutions of Nonlinear Partial Differential Equations." Abstract and Applied Analysis 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/105414.

Повний текст джерела
Анотація:
Standard application of similarity method to find solutions of PDEs mostly results in reduction to ODEs which are not easily integrable in terms of elementary or tabulated functions. Such situations usually demand solving reduced ODEs numerically. However, there are no systematic procedures available to utilize these numerical solutions of reduced ODE to obtain the solution of original PDE. A practical and tractable approach is proposed to deal with such situations and is applied to obtain approximate similarity solutions to different cases of an initial-boundary value problem of unsteady gas
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zou, Guang-an. "Numerical solutions to time-fractional stochastic partial differential equations." Numerical Algorithms 82, no. 2 (November 5, 2018): 553–71. http://dx.doi.org/10.1007/s11075-018-0613-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ARLUKOWICZ, P., and W. CZERNOUS. "A numerical method of bicharacteristics For quasi-linear partial functional Differential equations." Computational Methods in Applied Mathematics 8, no. 1 (2008): 21–38. http://dx.doi.org/10.2478/cmam-2008-0002.

Повний текст джерела
Анотація:
Abstract Classical solutions of mixed problems for first order partial functional differential equations in several independent variables are approximated by solutions of an Euler-type difference problem. The mesh for the approximate solutions is obtained by the numerical solution of equations of bicharacteristics. The convergence of explicit difference schemes is proved by means of consistency and stability arguments. It is assumed that the given functions satisfy the nonlinear estimates of the Perron type. Differential systems with deviated variables and differential integral systems can be
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Partial Numerical solutions"

1

Bratsos, A. G. "Numerical solutions of nonlinear partial differential equations." Thesis, Brunel University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sundqvist, Per. "Numerical Computations with Fundamental Solutions." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kwok, Ting On. "Adaptive meshless methods for solving partial differential equations." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Postell, Floyd Vince. "High order finite difference methods." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/28876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Luo, Wuan Hou Thomas Y. "Wiener chaos expansion and numerical solutions of stochastic partial differential equations /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05182006-173710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Jiwei. "Local absorbing boundary conditions for some nonlinear PDEs on unbounded domains." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cheung, Ka Chun. "Meshless algorithm for partial differential equations on open and singular surfaces." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/278.

Повний текст джерела
Анотація:
Radial Basis function (RBF) method for solving partial differential equation (PDE) has a lot of applications in many areas. One of the advantages of RBF method is meshless. The cost of mesh generation can be reduced by playing with scattered data. It can also allow adaptivity to solve some problems with special feature. In this thesis, RBF method will be considered to solve several problems. Firstly, we solve the PDEs on surface with singularity (folded surface) by a localized method. The localized method is a generalization of finite difference method. A priori error estimate for the discreit
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Al-Muslimawi, Alaa Hasan A. "Numerical analysis of partial differential equations for viscoelastic and free surface flows." Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ROEHL, NITZI MESQUITA. "NUMERICAL SOLUTIONS FOR SHAPE OPTIMIZATION PROBLEMS ASSOCIATED WITH ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9277@1.

Повний текст джерела
Анотація:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>Essa dissertação visa à obtenção de soluções numéricas para problemas de otimização de formas geométricas associados a equações diferenciais parciais elípticas. A principal motivação é um problema termal, onde deseja-se determinar a fronteira ótima, para um volume de material isolante fixo, tal que a perda de calor de um corpo seja minimizada. Realiza-se a análise e implementação numérica de uma abordagem via método das penalidades dos problemas de minimização. O método de elementos finitos é utilizado para discretizar o
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zeng, Suxing. "Numerical solutions of boundary inverse problems for some elliptic partial differential equations." Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10345.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--West Virginia University, 2009.<br>Title from document title page. Document formatted into pages; contains v, 58 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 56-58).
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Partial Numerical solutions"

1

W, Thomas J. Numerical partial differential equations. New York: Springer, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

I, Hariharan S., and Moulden Trevor H, eds. Numerical methods for partial differential equations. Harlow, Essex, England: Longman Scientific & Technical, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Numerical analysis of partial differential equations. Hoboken, N.J: Wiley, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bertoluzza, Silvia, Giovanni Russo, Silvia Falletta, and Chi-Wang Shu. Numerical Solutions of Partial Differential Equations. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-7643-8940-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Manuel, Castellet, Shu Chi-Wang, Russo Giovanni, Falletta Silvia, and SpringerLink (Online service), eds. Numerical Solutions of Partial Differential Equations. Basel: Birkhäuser Basel, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

1931-, Mayers D. F., ed. Numerical solution of partial differential equations. 2nd ed. Cambridge: Cambridge Univeristy Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Morton, K. W. Numerical solution of partial differential equations. New York: Cambridge University Press, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lui, S. H. Numerical analysis of partial differential equations. Hoboken, N.J: Wiley, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1936-, Porsching Thomas A., ed. Numerical analysis of partial differential equations. Englewood Cliffs, N.J: Prentice Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Solutions of partial differential equations. Blue Ridge Summit, PA: Tab Professional and Reference Books, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Partial Numerical solutions"

1

Logan, J. David. "Numerical Computation of Solutions." In Applied Partial Differential Equations, 257–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12493-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bleecker, David, and George Csordas. "Numerical Solutions of PDEs — An Introduction." In Basic Partial Differential Equations, 503–58. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-1434-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Saha Ray, Santanu. "Numerical Solutions of Partial Differential Equations." In Numerical Analysis with Algorithms and Programming, 591–640. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315369174-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stroud, K. A., and Dexter Booth. "Numerical solutions of partial differential equations." In Advanced Engineering Mathematics, 593–641. London: Macmillan Education UK, 2011. http://dx.doi.org/10.1057/978-0-230-34474-7_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Leung, Anthony W. "Systems of Finite Difference Equations, Numerical Solutions." In Systems of Nonlinear Partial Differential Equations, 271–323. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-3937-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dong, Gang Nathan. "Numerical Solutions of Financial Partial Differential Equations." In Handbook of Quantitative Finance and Risk Management, 1209–21. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-77117-5_79.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Saha Ray, Santanu. "Numerical Solutions of Riesz Fractional Partial Differential Equations." In Nonlinear Differential Equations in Physics, 119–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1656-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rathish Kumar, B. V., and Gopal Priyadarshi. "Wavelet Galerkin Methods for Higher Order Partial Differential Equations." In Mathematical Modelling, Optimization, Analytic and Numerical Solutions, 231–53. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0928-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akilandeeswari, A., K. Balachandran, and N. Annapoorani. "On Fractional Partial Differential Equations of Diffusion Type with Integral Kernel." In Mathematical Modelling, Optimization, Analytic and Numerical Solutions, 333–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0928-5_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hou, Thomas Y. "Numerical Approximations to Multiscale Solutions in Partial Differential Equations." In Universitext, 241–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55692-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Partial Numerical solutions"

1

Siddique, Mohammad, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Symposium: Advances in the Numerical Solutions of Partial Differential Equations." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kudryashov, N. A., and A. K. Volkov. "Concatenons as the solutions for non-linear partial differential equations." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aleixo, Rafael, and Daniela Amazonas. "Noise Reduction on Numerical Solutions of Partial Differential Equations using Fuzzy Transform." In CNMAC 2017 - XXXVII Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2018. http://dx.doi.org/10.5540/03.2018.006.01.0402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Zhanjiang, Xiaoqing Jin, Leon M. Keer, and Qian Wang. "Numerical Modeling of Partial Slip Contact Involving Inhomogeneous Materials." In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61108.

Повний текст джерела
Анотація:
When solving the problems involving inhomogeneous materials, the influence of the inhomogeneity upon contact behavior should be properly considered. This research proposes a fast and novel method, based on the equivalent inclusion method where inhomogeneity is replaced by an inclusion with properly chosen eigenstrains, to simulate contact partial slip of the interface involving inhomogeneous materials. The total stress and displacement fields represent the superposition of homogeneous solutions and perturbed solutions due to the chosen eigenstrains. In the present numerical simulation, the hal
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ashyralyev, Allaberen, Evren Hincal, and Bilgen Kaymakamzade. "Numerical solutions of the system of partial differential equations for observing epidemic models." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5049044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McMasters, Robert L., Filippo de Monte, James V. Beck, and Donald E. Amos. "Transient Two-Dimensional Heat Conduction Problem With Partial Heating Near Corners." In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7103.

Повний текст джерела
Анотація:
This paper provides a solution for two-dimensional heating over a rectangular region on a homogeneous plate. It has application to verification of numerical conduction codes as well as direct application for heating and cooling of electronic equipment. Additionally, it can be applied as a direct solution for the inverse heat conduction problem, most notably used in thermal protection systems for re-entry vehicles. The solutions used in this work are generated using Green’s functions. Two approaches are used which provide solutions for either semi-infinite plates or finite plates with isotherma
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Surana, K. S., and M. A. Bona. "Computations of Higher Class Solutions of Partial Differential Equations." In ASME 2001 Engineering Technology Conference on Energy. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/etce2001-17142.

Повний текст джерела
Анотація:
Abstract This paper presents a new computational strategy, computational framework and mathematical framework for numerical computations of higher class solutions of differential and partial differential equations. The approach presented here utilizes ‘strong forms’ of the governing differential equations (GDE’s) and least squares approach in constructing the integral form. The conventional, or currently used, approaches seek the convergence of a solution in a fixed (order) space by h, p or hp-adaptive processes. The fundamental point of departure in the proposed approach is that we seek conve
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Prasanna, D., and K. Aung. "Numerical Solutions of Single and Multiple Laminar Jets." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77079.

Повний текст джерела
Анотація:
Modern power plants discharge approximately 1.5 to 2kWhr of waste heat for every kWhr of electrical energy produced. Modern power plants discharge approximately 1.5 to 2kWhr of waste heat for every kWhr of electrical energy produced. Usually this heat is discharged to an adjacent water body which increases the water temperature near the outfall. In order to assess the ecological consequences of waste heat discharge one must first know the physical changes (temperature, velocity, salinity) induced by these discharges. It is with this later aspect, prediction of physical properties, that the cur
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kasharin, Alexander V., and Jens O. M. Karlsson. "Diffusion-Limited Cell Dehydration: Analytical and Numerical Solutions for a Planar Model." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0600.

Повний текст джерела
Анотація:
Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability crit
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Armand, J., L. Salles, and C. W. Schwingshackl. "Numerical Simulation of Partial Slip Contact Using a Semi-Analytical Method." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46464.

Повний текст джерела
Анотація:
Almost all mechanical structures consist of an assembly of components that are linked together with joints. If such a structure experiences vibration during operation, micro-sliding can occur in the joint, resulting in fretting wear. Fretting wear affects the mechanical properties of the joints over their lifetime and as a result impacts the non-linear dynamic response of the system. For accurate prediction of the non-linear dynamic response over the lifetime of the structure, fretting wear should be considered in the analysis. Fretting wear studies require an accurate assessment of the stress
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Partial Numerical solutions"

1

Levine, Howard A. Numerical Solution of Ill Posed Problems in Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada189383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Levine, Howard A. Numerical Solution of I11 Posed Problems in Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada162378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Levine, Howard A. Numerical Solution of Ill Posed Problems in Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada166096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sharan, M., E. J. Kansa, and S. Gupta. Application of multiquadric method for numerical solution of elliptic partial differential equations. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10156506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dupont, Todd F. Some Investigations into Variable Meshes for Numerical Solution of Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada168977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Oliker, V. I., and P. Waltman. New Methods for Numerical Solution of One Class of Strongly Nonlinear Partial Differential Equations with Applications. Fort Belvoir, VA: Defense Technical Information Center, January 1986. http://dx.doi.org/10.21236/ada186166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Oliker, V. I., and P. Waltman. New Methods for Numerical Solution of One Class of Strongly Nonlinear Partial Differential Equations with Applications. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada189945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Trenchea, Catalin. Efficient Numerical Approximations of Tracking Statistical Quantities of Interest From the Solution of High-Dimensional Stochastic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada567709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Trenchea, Catalin. Efficient Numerical Approximations of Tracking Statistical Quantities of Interest From the Solution of High-Dimensional Stochastic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada577122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!