Добірка наукової літератури з теми "Particle size distribution"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Particle size distribution".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Particle size distribution":

1
Burch, W. M., M. M. Boyd, D. E. Crellin, M. Lemb, T. H. Oei, H. Eifert, and B. G�nther. "Technegas: particle size and distribution." European Journal of Nuclear Medicine 21, no. 4 (April 1994): 365–67. http://dx.doi.org/10.1007/bf00947975.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Maxim, L. D., A. Klein, M. E. Meyer, and C. H. Kuist. "Particle size distribution by turbidimetry." Journal of Polymer Science Part C: Polymer Symposia 27, no. 1 (March 2007): 195–205. http://dx.doi.org/10.1002/polc.5070270115.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Hill, Priscilla J., and Ka M. Ng. "Particle size distribution by design." Chemical Engineering Science 57, no. 12 (June 2002): 2125–38. http://dx.doi.org/10.1016/s0009-2509(02)00106-9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Wilson, S. R., P. J. Ridler, and B. R. Jennings. "Magnetic birefringence particle size distribution." Journal of Physics D: Applied Physics 29, no. 3 (March 1996): 885–88. http://dx.doi.org/10.1088/0022-3727/29/3/056.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
IGUSHI, Tatsuo. "Particle Size Distribution Measurement Methods." Journal of the Japan Society of Colour Material 79, no. 9 (2006): 410–18. http://dx.doi.org/10.4011/shikizai1937.79.410.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Pandit, Ajinkya V., and Vivek V. Ranade. "Chord length distribution to particle size distribution." AIChE Journal 62, no. 12 (June 2016): 4215–28. http://dx.doi.org/10.1002/aic.15338.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Finder, Christiane, Michael Wohlgemuth, and Christian Mayer. "Analysis of Particle Size Distribution by Particle Tracking." Particle & Particle Systems Characterization 21, no. 5 (December 2004): 372–78. http://dx.doi.org/10.1002/ppsc.200400948.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Kanaoka, Chikao. "1. Particle Characteristics and Measurement 1. 2 Particle Size Distribution and Mean Particle Size." Journal of the Society of Powder Technology, Japan 51, no. 8 (2014): 591–94. http://dx.doi.org/10.4164/sptj.51.591.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Endoh, Shigehisa. "1. Particle Characteristics and Measurement 1. 2 Particle Size Distribution and Mean Particle Size." Journal of the Society of Powder Technology, Japan 51, no. 10 (2014): 699–704. http://dx.doi.org/10.4164/sptj.51.699.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Masuda, Hiroaki. "1. Particle Characteristics and Measurement 1. 2 Particle Size Distribution and Mean Particle Size." Journal of the Society of Powder Technology, Japan 51, no. 11 (2014): 778–84. http://dx.doi.org/10.4164/sptj.51.778.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Particle size distribution":

1
Patel, Ketan Shantilal. "Vibro-spring particle size distribution analyser." Electronic Thesis or Dissertation, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252097.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Darley, A. D. "Particle size distribution effects in chocolate processing." Electronic Thesis or Dissertation, University of Bradford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253973.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Jahanzad, Fatemeh. "Evolution of particle size distribution in suspension polymerisation reactions." Electronic Thesis or Dissertation, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/10300.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Suspension polymerisation processes are commercially important for the production of polymer beads having wide applications. Polymers produced by suspension polymerisation can be directly used for particular applications such as chromatographic separations and ion-exchange resins. Particle Size Distribution (PSD) may appreciably influence the performance of the final product. Therefore, the evolution of PSD is a major concern in the design of a suspension polymerisation process. In this research, methyl methacrylate (MMA) has been used as a model monomer. A comparative study of MMA suspension polymerisation and MMNwater dispersion was carried out, for the first time, to elaborate the evolution of mean particle size and distribution. Polyvinyl alcohol (PVA) and Lauroyl Peroxide (LPO) have been used as stabiliser and initiator, respectively. Polymerisation experiments were carried out using a 1-litre jacketed glass reactor equipped with a turbine impeller and a condenser. The stabiliser, initiator and chain transfer concentrations, inhibitor concentration and type, reaction temperature, impeller speed, and monomer hold up were used as variables. A mathematical model was developed to predict the kinetics of polymerisation as well as the evolution of PSD by population balance modelling. The experimental results were compared with the model predictions. From the comprehensive experimental results, the characteristic intervals of a typical suspension polymerisation were realised as: 1) Transition stage during which PSD narrows dramatically and drop size decreases exponentially due to higher rate of drop break up in comparison with drop coalescence . _ until a steady state is reached. The importance, and even the existence, of the transition stage have been totally ignored in the literature. The results indicate that increasing the impeller speed, and PV A concentration will lead to a shorter transition period. Also increasing the rate of reaction, via increasing initiator concentration, and reaction temperature will shorten this period. ABSTRACT 2) Quasi steady-state stage during which the rate of drop break up and drop coalescence are almost balanced leading to a steady-state drop size and distribution. The occurrence of this stage is conditional. Low impeller speed and PV A concentration may remove the quasi steady-state stage completely and drops may start growing considerably after a sharp decrease in size during the transition stage. 3) Growth stage during which the rate of drop break up considerably falls below the rate of drop coalescence due to the viscosity build up in drops leading to drop enlargement and PSD broadening. Results show that the onset of the growth stage may not be fixed and it depends on the balance of the forces acting on drops. The onset of the growth stage in terms of time was advanced with decreasing stirring speed and PV A concentration and increasing monomer hold up. Under a static steady state, which is formed when a high concentration of PV A is used, there is almost no growth. 4) Identification stage during which a solid-liquid suspension is attained and the PSD and mean particle size remain unchanged afterwards. The onset of this stage appears to be fairly constant for different formulations. The developed model could fairly predict the rate of polymerisation. It was also capable of predicting the evolution of particle size average and distribution qualitatively in the course of polymerisation. The results can be used as a guideline for the control of particle size and distribution in suspension polymerisation reactors. A more quantitative exploitation of the model has been left for a future research.
4
Ip, Trevor Tsz-Leung. "Influence of particle size distribution on fluidized bed hydrodynamics." Thesis/Dissertation, University of British Columbia, 1988. http://hdl.handle.net/2429/27891.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Past literature has shown that the production efficiency of a fluidized bed can be affected by changing the particle size distribution. The hydrodynamics of fine particle fluidization were studied with FCC and glass bead powders which have different surface-volume mean particle diameter (40-110 μM) and particle size distributions (narrow cut, wide cut and bimodal) under ambient conditions. Increasing the mean particle size increases the minimum fluidization velocity, minimum bubbling velocity and dense phase velocity (U[sub d]) while decreasing the voidages at minimum fluidization and minimum bubbling and the dense phase voidage (∈[sub d]) as well as the fractional bubble free bed expansion. Increasing the particle size spread increases U[sub d] and decreases ∈[sub d] for FCC, but no clear conclusion can be made for glass bead powders. Increasing the static bed height decreases U[sub d] and ∈[sub d] of FCC powders though it has no effect on minimum fluidization and bubbling properties. The magnitude of pressure fluctuations increases with increasing superficial gas velocity and as the size spread of the FCC powder becomes more narrow. However, the frequency of fluctuations is independent of each of these factors. Therefore, the quality and production efficiency of the fluidization process should improve with the use of a wide and continuous size distribution powder.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
5
Rekhibi, Soliman Abograra. "Condition monitoring of mining machinery using debris particle size distribution." Electronic Thesis or Dissertation, University of Nottingham, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335821.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Hildebrand, Erin N. "The effect of particle size distribution on spectral backscattering coefficient." Electronic thesis or dissertation, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0015/MQ57296.pdf.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Leng, Tianyang. "Cellulose Nanocrystals: Particle Size Distribution and Dispersion in Polymer Composites." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/34073.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes the characterization of the particle size distribution of cellulose nanocrystals (CNC), the synthesis and characterization of fluorescent CNCs, and the development of a fluorescence microscopy method to probe the distribution of fluorescent CNCs in polymer composites. In this thesis, several methods are used to characterize the size of CNC particles. Size distribution measurements by single particle counting methods (Transmission electron microscopy, Atomic force microscopy) are compared to an ensemble method, Dynamic lighting scattering (DLS) and differences between the various methods will be discussed. The effect of sonication on the CNC size distributions measured by AFM and DLS is examined. Furthermore, a reliable and reproducible method for re-dispersing dry CNC powder will be explored in this chapter since CNC is often stored in a dry environment due to its stability. Rhodamine B isothiocyanate (RBITC) and 5-(4,6-dichlorotriazinyl) amino fluorescein (DTAF) were selected for labelling CNCs. These dyes have the advantage of being cheap and readily available and compatible with relatively simple synthetic chemistry. The photophysical properties of all dye labeled CNCs were studied in more detail than in previous studies. The focus is on understanding the most appropriate labeling efficiency to maximize the ability to detect individual CNCs while minimizing the amount of dye used to avoid modifying the CNC properties. The characterization methods include ensemble methods such as UV-Vis absorption and scattering measurements, fluorescence spectroscopy and single molecule methods such as Total internal reflection fluorescence microscopy (TIRFM), Atomic force microscopy (AFM) and correlated TIRFM/AFM measurements. All of these methods have their advantages and disadvantages. After characterization, the most suitable dye labeled CNC sample was selected for development of a fluorescence microscopy method to characterize CNC distribution in CNC/polymer composites. The dye labeled CNC has been incorporated into polyvinyl alcohol (PVA) films and studied by fluorescence microscopy. These experiments demonstrated that the level of CNC agglomeration varies significantly for different film preparation methods, indicating that fluorescence microscopy is a useful and easily accessible method for optimizing film preparation. The self-quenching of the dye in the film was also measured and discussed and is an important consideration for choice of the dye loading and CNC content in the films.
8
Zhang, Shuo. "Relationship between particle size distribution and porosity in dump leaching." Thesis/Dissertation, University of British Columbia, 2010. http://hdl.handle.net/2429/63383.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fluid flow is a critical process involved in the valuable metals extraction from low grade ore in heap and dump leaching as well as the release of harmful substances from waste rock piles. The mechanisms by which fluids move through the porous media depend on the fluid properties and the intrinsic properties of the porous media, with permeability being one critical factor. Particle size distribution is a key factor that affects permeability by forming pores of different structure and size. The objective of this research was to assess the particle size distribution in heterogeneous packed ore/rock beds and quantify the effect of particle size distribution on porosity. In the studied mine site, the particle size distribution in the dump leach pad was determined by analyzing aerial images of multiple dump faces taken by a drone. Particles spanned a wide range in size from less than 2 cm in diameter to larger than 2 m in diameter, with a P80 to be 2 m. The spatial segregation of fine particles and coarse particles along the dump faces was observed, which may contribute to the formation of preferential flow. The effect of particle size distribution on porosity was quantified by two methods: the bulk density and CT-imaging techniques. Porosities under three particle sorting conditions were studied: narrow-sized particles, poorly sorted particles and well sorted particles. For narrow-sized particles, the porosity measured by the bulk density method decreased as the particle size was increased up to 0.151 mm after which the porosity remained constant in the range tested. The influence of the particle size on the porosity for the well sorted particles was similar to that of the narrow-sized particles from both of the methods. For poorly sorted particles, in both methods, porosity decreased as the fraction of the fine particles added was increased to a certain value, after which the porosity started to increase as the fraction of fine particles was further increased. The results have important implications for metal extraction from run of mine ores using dump leaching and release of contaminants from waste rock piles by influencing fluid flow properties.
Applied Science, Faculty of
Materials Engineering, Department of
Graduate
9
Tileti, Pramod Reddy. "Moldability of MIM feedstocks with varying particle size distribution and shape." Student thesis, KTH, Materialvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123691.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Ukeje, Michael Anayo. "Effect of particle size distribution on the rheology of dispersed systems." Electronic Thesis or Dissertation, Imperial College London, 2000. http://hdl.handle.net/10044/1/7492.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Particle size distribution":

1
Provder, Theodore, ed. Particle Size Distribution. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0332.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Provder, Theodore, ed. Particle Size Distribution II. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0472.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Provder, Theodore, ed. Particle Size Distribution III. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0693.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Rosbury, Keith D. Generalized particle size distribution for use in preparing size specific particulate emission inventories. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Allen, Terence. Particle size measurement. 4th ed. London: Chapman and Hall, 1990.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Allen, Terence. Particle size measurement. 5th ed. London: Chapman & Hall, 1997.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Bernhardt, Claus. Particle Size Analysis. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1238-3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Allen, Terence. Particle Size Measurement. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0417-0.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Stanley-Wood, N. G., and R. W. Lines, eds. Particle Size Analysis. Cambridge: Royal Society of Chemistry, 1992. http://dx.doi.org/10.1039/9781847551627.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Etkin, Bernard. Research on an aerodynamic particle separator (the EPS). Downsview, Ont: Institute for Aerospace Studies, 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Particle size distribution":

1
Blake, George R., and Gary C. Steinhardt. "Particle‐size distribution." In Encyclopedia of Soil Science, 505–10. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_407.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Picandet, Vincent. "Particle Size Distribution." In Bio-aggregates Based Building Materials, 91–110. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1031-0_4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Gooch, Jan W. "Particle Size Distribution." In Encyclopedic Dictionary of Polymers, 519. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8437.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Funk, James E., and Dennis R. Dinger. "Particle Size Distribution." In Predictive Process Control of Crowded Particulate Suspensions, 641–51. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-3118-0_41.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Beddow, J. K. "Size, Shape, and Texture Analysis." In Particle Size Distribution, 2–29. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0332.ch001.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Jang, B. Z., and Y. S. Chang. "Assessment of Particle Size Distribution and Spatial Dispersion of Rubbery Phase in a Toughened Plastic." In Particle Size Distribution, 30–45. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0332.ch002.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Weiner, B. B., and W. W. Tscharnuter. "Uses and Abuses of Photon Correlation Spectroscopy in Particle Sizing." In Particle Size Distribution, 48–61. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0332.ch003.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Vaidya, R. A., M. J. Mettille, and R. D. Hester. "A Comparison of Methods for Determining Macromolecular Polydispersity from Dynamic Laser Light Scattering Data." In Particle Size Distribution, 62–73. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0332.ch004.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Bott, S. E. "Submicrometer Particle Sizing by Photon Correlation Spectroscopy: Use of Multiple-Angle Detection." In Particle Size Distribution, 74–88. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0332.ch005.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Herb, C. A., E. J. Berger, K. Chang, I. D. Morrison, and E. F. Grabowski. "Using Quasi-Elastic Light Scattering To Study Particle Size Distributions in Submicrometer Emulsion Systems." In Particle Size Distribution, 89–104. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0332.ch006.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Particle size distribution":

1
Andrews, G. E., A. G. Clarke, N. Y. Rojas, T. Sale, and D. Gregory. "Diesel Particle Size Distribution: The Conversion Of Particle Number Size Distribution To Mass Distribution." In International Spring Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-1946.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Kuhlman, Michael R., Rachel E. Gooding, Vladimir G. Kogan, and Curtis Bridges. "Particle size distribution of cocaine hydrochloride." In Enabling Technologies for Law Enforcement and Security, edited by Pierre Pilon and Steve Burmeister. SPIE, 1997. http://dx.doi.org/10.1117/12.266779.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Lee, Hakyeul, Matthew Hudson, and Janz Rondon. "Particle Size Distribution Acid Soluble Cement." In Unconventional Resources Technology Conference. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/178683-ms.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
A.K.Jha and V. M. Puri. "Percolation Segregation for Broad Particle Size Distribution." In 2005 Tampa, FL July 17-20, 2005. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2005. http://dx.doi.org/10.13031/2013.19517.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Ventola, Andrea, and Roman D. Hryciw. "On-Site Particle Size Distribution by FieldSed." In Eighth International Conference on Case Histories in Geotechnical Engineering. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482131.015.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Swanepoel, F., D. M. Weber, and G. Metzner. "Particle size distribution determination using acoustic information." In 1999 IEEE Africon. 5th Africon Conference in Africa. IEEE, 1999. http://dx.doi.org/10.1109/afrcon.1999.820840.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Ma, Binjian, and Debjyoti Banerjee. "Predicting Particle Size Distribution in Nanofluid Synthesis." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-5048.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Wet chemistry approaches have been widely used to synthesize nanoparticle suspensions with different size and shape. Controlling particle size is crucial for tailoring the properties of the nanofluid. In this study, we simulated the particle size growth during a thermal-chemical nanofluid synthesis routine. The simulation was based on the population balance model for aggregation kinetics, which is coupled with thermal decomposition, nucleation and crystal growth kinetics. The simulation result revealed a typical burst nucleation mechanism towards self-assembly of supersaturated monomers in the nanoparticle formation process and the shift from monodispersed particles to polydispersed particles by the particle-particle coagulation.
8
Wang, Li, Xiaogang Sun, Kun Sun, and Feng Li. "Retrieval of particle size distribution in multispectral region." In International Conference on Optical Instruments and Technology (OIT2011). SPIE, 2011. http://dx.doi.org/10.1117/12.907225.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Mayer, A., H. Egli, H. Burtscher, J. Czerwinski, and D. Gehrig. "Particle Size Distribution Downstream Traps of Different Design." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950373.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Farmer, W. Michael, James D. Klett, and Robert W. Smith. "Particle size distribution measurements for transmission path applications." In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, edited by Wendell R. Watkins and Dieter Clement. SPIE, 1995. http://dx.doi.org/10.1117/12.210609.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Particle size distribution":

1
Okhuysen, W., and J. D. Gassaway. Particle size distribution instrument. Topical report 13. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/39146.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Shah, K. B. Particle size distribution of indoor aerosol sources. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6325100.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Patterson, Philip, and William Lum. Laser Scattering Particle Size Distribution Analyses of Pigments. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada353710.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Spriggs, G., and A. Ray-Maitra. Particle-Size-Distribution of Nevada Test Site Soils. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/922100.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Tresouthick, S. W. Energy conservation potential of Portland Cement particle size distribution control. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/6299351.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Tresouthick, S. W., and S. J. Weiss. Energy conservation potential of Portland cement particle size distribution control. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6047449.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Tresouthick, S. W., and S. J. Weiss. Energy conservation potential of Portland cement particle size distribution control. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6047458.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Tresouthick, S. W., and S. J. Weiss. Energy conservation potential of Portland Cement particle size distribution control. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/6047465.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Tresouthick, S. W., and S. J. Weiss. Energy conservation potential of Portland Cement particle size distribution control. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/6047480.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Tresouthick, S. W., and S. J. Weiss. Energy conservation potential of Portland Cement particle size distribution control. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6260545.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити