Добірка наукової літератури з теми "Particles tracking"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Particles tracking".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Particles tracking"
Jones, Benjamin T., Andrew Solow, and Rubao Ji. "Resource Allocation for Lagrangian Tracking." Journal of Atmospheric and Oceanic Technology 33, no. 6 (June 2016): 1225–35. http://dx.doi.org/10.1175/jtech-d-15-0115.1.
Повний текст джерелаZhang, Lieping, Jinghua Nie, Shenglan Zhang, Yanlin Yu, Yong Liang, and Zuqiong Zhang. "Research on the Particle Filter Single-Station Target Tracking Algorithm Based on Particle Number Optimization." Journal of Electrical and Computer Engineering 2021 (September 4, 2021): 1–8. http://dx.doi.org/10.1155/2021/2838971.
Повний текст джерелаSiradjuddin, Indah Agustien, and Muhammad Rahmat Widyanto. "Particle Filter with Gaussian Weighting for Vehicle Tracking." Journal of Advanced Computational Intelligence and Intelligent Informatics 15, no. 6 (August 20, 2011): 681–86. http://dx.doi.org/10.20965/jaciii.2011.p0681.
Повний текст джерелаSun, Qi Yuan, Liu Sheng Li, and Zuo Liang Chao. "Target Tracking Based on Particle Filter with Multi-Path Particles." Applied Mechanics and Materials 130-134 (October 2011): 3306–10. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.3306.
Повний текст джерелаLi, Tao, and Qi Yuan Sun. "A Visual Tracking Based on Particle Filter of Multi-Algorithm Fusion." Applied Mechanics and Materials 513-517 (February 2014): 2893–96. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.2893.
Повний текст джерелаWang, Lian-Ping, and D. E. Stock. "Numerical Simulation of Heavy Particle Dispersion Time Step and Nonlinear Drag Considerations." Journal of Fluids Engineering 114, no. 1 (March 1, 1992): 100–106. http://dx.doi.org/10.1115/1.2909983.
Повний текст джерелаMüller, Dennis, Andreas Rausch, Olga Dolnik, and Thomas Schanze. "Comparing human and algorithmic tracking of subviral particles in fluorescence microscopic image sequences." Current Directions in Biomedical Engineering 3, no. 2 (September 7, 2017): 543–47. http://dx.doi.org/10.1515/cdbme-2017-0114.
Повний текст джерелаYao, Hai Tao, Hai Qiang Chen, and Tuan Fa Qin. "Niche PSO Particle Filter with Particles Fusion for Target Tracking." Applied Mechanics and Materials 239-240 (December 2012): 1368–72. http://dx.doi.org/10.4028/www.scientific.net/amm.239-240.1368.
Повний текст джерелаZhu, Hong Bo, Hai Zhao, Dan Liu, and Chun He Song. "Compressed Iterative Particle Filter for Target Tracking." Applied Mechanics and Materials 55-57 (May 2011): 91–94. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.91.
Повний текст джерелаChen, Zhimin, Mengchu Tian, Yuming Bo, and Xiaodong Ling. "Infrared small target detection and tracking algorithm based on new closed-loop control particle filter." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 4 (January 30, 2018): 1435–56. http://dx.doi.org/10.1177/0954410017753445.
Повний текст джерелаДисертації з теми "Particles tracking"
Hosack, Michael G. "Optimization of particle tracking for experiment E683 at Fermi National Laboratory." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941370.
Повний текст джерелаDepartment of Physics and Astronomy
Huck, Peter Dearborn. "Particle dynamics in turbulence : from the role of inhomogeneity and anisotropy to collective effects." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN073/document.
Повний текст джерелаTurbulence is well known for its ability to efficiently disperse matter, whether it be atmospheric pollutants or gasoline in combustion motors. Two considerations are fundamental when considering such situations. First, the underlying flow may have a strong influence of the behavior of the dispersed particles. Second, the local concentration of particles may enhance or impede the transport properties of turbulence. This dissertation addresses these points separately through the experimental study of two different turbulent flows. The first experimental device used is the so-called von K\'arm\'an flow which consists of an enclosed vessel filled with water that is forced by two counter rotating disks creating a strongly inhomogeneous and anisotropic turbulence. Two high-speed cameras permitted the creation a trajectory data base particles that were both isodense and heavier than water but were smaller than the smallest turbulent scales. The trajectories of this data base permitted a study of the turbulent kinetic energy budget which was shown to directly related to the transport properties of the turbulent flow. The heavy particles illustrate the role of flow anisotropy in the dispersive dynamics of particles dominated by effects related to their inertia. The second flow studied was a wind tunnel seeded with micrometer sized water droplets which was used to study the effects of local concentration of the settling velocities of these particles. A model based on theoretical multi-phase methods was developed in order to take into account the role of collective effects on sedimentation in a turbulent flow. The theoretical results emphasize the role of coupling between the underlying flow and the dispersed phase
Magnusson, Klas E. G. "Segmentation and tracking of cells and particles in time-lapse microscopy." Doctoral thesis, KTH, Signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196911.
Повний текст джерелаInom biologi används många olika typer av mikroskopi för att studera celler. Det finns många typer av genomlysningsmikroskopi, där ljus passerar genom cellerna, som kan användas utan färgning eller andra åtgärder som riskerar att skada cellerna. Det finns också fluorescensmikroskopi där fluorescerande proteiner eller färger förs in i cellerna eller i delar av cellerna, så att de emitterar ljus av en viss våglängd då de belyses med ljus av en annan våglängd. Många fluorescensmikroskop kan ta bilder på flera olika djup i ett prov och på så sätt bygga upp en tre-dimensionell bild av provet. Fluorescensmikroskopi kan även användas för att studera partiklar, som exempelvis virus, inuti celler. Moderna mikroskop har ofta digitala kameror eller liknande utrustning för att ta bilder och spela in bildsekvenser. När biologer gör experiment på celler spelar de ofta in bildsekvenser eller sekvenser av tre-dimensionella volymer för att se hur cellerna beter sig när de utsätts för olika läkemedel, odlingssubstrat, eller andra yttre faktorer. Tidigare har analysen av inspelad data ofta gjorts manuellt, men detta är mycket tidskrävande och resultaten blir ofta subjektiva och svåra att reproducera. Därför finns det ett stort behov av teknik för automatiserad analys av bildsekvenser med celler och partiklar inuti celler. Sådan teknik behövs framförallt inom biologisk forskning och utveckling av läkemedel. Men tekniken skulle också kunna användas kliniskt, exempelvis för att skräddarsy en cancerbehandling till en enskild patient genom att utvärdera olika behandlingar på celler från en biopsi. I denna avhandling presenteras algoritmer för att hitta celler och partiklar i bilder, och för att beräkna trajektorier som visar hur de har förflyttat sig under ett experiment. Vi har utvecklat ett komplett system som kan hitta och följa celler i alla vanligt förekommande typer av mikroskopi. Vi valde ut och vidareutvecklade ett antal existerande segmenteringsalgoritmer, och skapade på så sätt ett heltäckande verktyg för att hitta cellkonturer. För att länka ihop de segmenterade objekten till trajektorier utvecklade vi en ny länkningsalgoritm. Algoritmen lägger till trajektorier en och en med hjälp av dynamisk programmering, och har många fördelar jämfört med tidigare algoritmer. Bland annat är den snabb, den beräknar trajektorier som är optimala över hela bildsekvensen, och den kan hantera fall då flera celler felaktigt segmenterats som ett objekt. För att kunna använda information om objektens hastighet vid länkningen utvecklade vi en metod där objektens positioner förbehandlas med hjälp av ett filter innan länkningen utförs. Detta är betydelsefullt för följning av vissa partiklar inuti celler och för följning av cellkärnor i vissa embryon. Vi har utvecklat en mjukvara med öppen källkod, som innehåller alla verktyg som krävs för att analysera bildsekvenser med celler eller partiklar. Den har verktyg för segmentering och följning av objekt, optimering av inställningar, manuell korrektion, och analys av konturer och trajektorier. Vi utvecklade mjukvaran i samarbete med biologer som använde den i sin forskning. Mjukvaran har redan använts för dataanalys i ett antal biologiska publikationer. Vårt system har även uppnått enastående resultat i tre internationella objektiva jämförelser av system för följning av celler.
QC 20161125
Veerasamy, Saravanan. "Valdiation of BaBar tracking software using lambda hyperon." Thesis, University of Iowa, 2007. http://ir.uiowa.edu/etd/141.
Повний текст джерелаTrenkmann, Ines, Daniela Täuber, Michael Bauer, Jörg Schuster, Sangho Bok, Shubhra Gangopadhyay, and Christian von Borczyskowski. "Investigations of solid liquid interfaces in ultra-thin liquid films via single particle tracking of silica particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191734.
Повний текст джерелаTrenkmann, Ines, Jörg Schuster, Shubhra Gangopadhyay, and Christian von Borczyskowski. "Investigation of solid liquid interface in ultra-thin liquid films via single particle tracking of colloidal particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191812.
Повний текст джерелаTrenkmann, Ines, Daniela Täuber, Michael Bauer, Jörg Schuster, Sangho Bok, Shubhra Gangopadhyay, and Christian von Borczyskowski. "Investigations of solid liquid interfaces in ultra-thin liquid films via single particle tracking of silica particles." Diffusion fundamentals 11 (2009) 108, S. 1-12, 2009. https://ul.qucosa.de/id/qucosa%3A14082.
Повний текст джерелаTrenkmann, Ines, Jörg Schuster, Shubhra Gangopadhyay, and Christian von Borczyskowski. "Investigation of solid liquid interface in ultra-thin liquid films via single particle tracking of colloidal particles." Diffusion fundamentals 11 (2009) 115, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14089.
Повний текст джерелаHeidernätsch, Mario, Michael Bauer, Daniela Täuber, Günter Radons, and Christian von Borcyskowski. "An advanced method of tracking temporarily invisible particles in video imaging." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191774.
Повний текст джерелаHeidernätsch, Mario, Michael Bauer, Daniela Täuber, Günter Radons, and Christian von Borcyskowski. "An advanced method of tracking temporarily invisible particles in video imaging." Diffusion fundamentals 11 (2009) 111, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14085.
Повний текст джерелаКниги з теми "Particles tracking"
library, Wiley online, ed. Single particle tracking and single molecule energy transfer. Weinheim: Wiley-VCH, 2010.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Fuzzy logic particle tracking velocimetry. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Particle displacement tracking for PIV. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Знайти повний текст джерелаM, Bright Michelle, Skoch Gary J, and NASA Glenn Research Center, eds. An investigation of surge in a high-speed centrifugal compressor using digital PIV. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Particle displacement tracking applied to air flows. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Знайти повний текст джерелаIbrahim, Muhammad N. Application of tomographic techniques to particle tracking. Manchester: UMIST, 1997.
Знайти повний текст джерелаAdam, Marion A. Mixing simulations based on particle tracking data. Manchester: UMIST, 1996.
Знайти повний текст джерелаStone, Lawrence D., Roy L. Streit, and Stephen L. Anderson. Introduction to Bayesian Tracking and Particle Filters. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32242-6.
Повний текст джерелаFigari, Rodolfo, and Alessandro Teta. Quantum Dynamics of a Particle in a Tracking Chamber. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40916-5.
Повний текст джерелаFrühwirth, Rudolf, and Are Strandlie. Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65771-0.
Повний текст джерелаЧастини книг з теми "Particles tracking"
Metcalfe, Guy. "Tracking Particles in Tumbling Containers." In IUTAM Symposium on Mechanics of Granular and Porous Materials, 287–98. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5520-5_26.
Повний текст джерелаChen, Huiying, and Youfu Li. "Optimized Particles for 3-D Tracking." In Intelligent Robotics and Applications, 749–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16584-9_71.
Повний текст джерелаMartinez, Brais, Marc Vivet, and Xavier Binefa. "Compatible Particles for Part-Based Tracking." In Articulated Motion and Deformable Objects, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14061-7_1.
Повний текст джерелаFrühwirth, Rudolf, and Are Strandlie. "Secondary Vertex Reconstruction." In Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors, 159–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65771-0_9.
Повний текст джерелаSalmond, David, and Neil Gordon. "Particles and Mixtures for Tracking and Guidance." In Sequential Monte Carlo Methods in Practice, 517–32. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3437-9_25.
Повний текст джерелаGao, Tao, Zheng-guang Liu, and Jun Zhang. "Feature Particles Tracking for the Moving Object." In Studies in Computational Intelligence, 39–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92814-0_7.
Повний текст джерелаZhu, Zhiren, and Jianfeng Wang. "Tracking of Fragmented Particles with Neural Networks." In Springer Series in Geomechanics and Geoengineering, 59–67. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-76528-5_6.
Повний текст джерелаD’Ambrosio, C., P. Destruel, U. Gensch, H. Güsten, H. Leutz, D. Puertolas, S. Schlenstedt, et al. "Scintillating Fibres for Central Tracking of Charged Particles." In New Technologies for Supercolliders, 173–84. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-1360-1_13.
Повний текст джерелаBabai, Mohammad, Nasser Kalantar-Nayestanaki, Johan G. Messchendorp, and Michael H. F. Wilkinson. "Tracking Sub-atomic Particles Through the Attribute Space." In Lecture Notes in Computer Science, 86–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18720-4_8.
Повний текст джерелаBiryukov, V., A. Drees, R. P. Fliller, N. Malitsky, and D. Trbojevic. "Tracking Particles In Accelerator Optics With Crystal Elements." In Lecture Notes in Computer Science, 372–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47789-6_39.
Повний текст джерелаТези доповідей конференцій з теми "Particles tracking"
Grant, Patrick, Timo A. Nieminen, Alexander Stilgoe, and Halina Rubinsztein-Dunlop. "Tracking active matter particles with DeepTrack." In Emerging Topics in Artificial Intelligence (ETAI) 2024, edited by Giovanni Volpe, Joana B. Pereira, Daniel Brunner, and Aydogan Ozcan, 13. SPIE, 2024. http://dx.doi.org/10.1117/12.3027939.
Повний текст джерелаMousavisani, Seyedmohammad, Scott D. Kelly, Sajad Kafashi, and Stuart T. Smith. "Particle Tracking Velocimetry in Noisy Environment." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20401.
Повний текст джерелаGuasto, Jeffrey S., Peter Huang, and Kenneth S. Breuer. "Statistical Particle Tracking Velocimetry Using Molecular and Quantum Dot Tracer Particles." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80051.
Повний текст джерелаDrake, Joshua B., Andrea L. Kenney, Timothy B. Morgan, and Theodore J. Heindel. "Developing Tracer Particles for X-Ray Particle Tracking Velocimetry." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-11009.
Повний текст джерелаNazib, Abdullah, Chi-Min Oh, and Chil-Woo Lee. "Object tracking by supported particles." In 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2014. http://dx.doi.org/10.1109/urai.2014.7057484.
Повний текст джерелаLin, Jian-Hung, and Keh-Chin Chang. "A Cost-Effective Search of Collision Pairs in Lagrangian Particle Tracking Method." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-32577.
Повний текст джерелаZhong, Shengtong, and Fei Hao. "Hand Tracking by Particle Filtering with Elite Particles Mean Shift." In 2008 Japan-China Joint Workshop on Frontier of Computer Science and Technology (FCST). IEEE, 2008. http://dx.doi.org/10.1109/fcst.2008.9.
Повний текст джерелаSnoeyink, Craig A., Gordon Christopher, Sourav Barman, and Steve Wereley. "Sub-Diffraction Limit Three Dimensional Particle Tracking Velocimetry." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65522.
Повний текст джерелаLessard, Guillaume A., Peter M. Goodwin, and James H. Werner. "Three-dimensional tracking of fluorescent particles." In Biomedical Optics 2006, edited by Jörg Enderlein and Zygmunt K. Gryczynski. SPIE, 2006. http://dx.doi.org/10.1117/12.650191.
Повний текст джерелаYonggang Jin and F. Mokhtarian. "Towards robust head tracking by particles." In rnational Conference on Image Processing. IEEE, 2005. http://dx.doi.org/10.1109/icip.2005.1530529.
Повний текст джерелаЗвіти організацій з теми "Particles tracking"
Trahan, Corey, Jing-Ru Cheng, and Amanda Hines. ERDC-PT : a multidimensional particle tracking model. Engineer Research and Development Center (U.S.), January 2023. http://dx.doi.org/10.21079/11681/48057.
Повний текст джерелаsun, yipeng. A Linac Simulation Code for Macro-Particles Tracking and Steering Algorithm Implementation. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1039538.
Повний текст джерелаSun, Yipeng. A Linac Simulation Code for Macro-particles Tracking and Steering Algorithm Implementation. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1046379.
Повний текст джерелаZhelyeznyakov, Maksym. Lagrangian particle tracking applied to high-speed tomographic particle imaging velocimetry. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1464440.
Повний текст джерелаO'Brien, M. Material Interface Reconstruction for Monte Carlo Particle Tracking. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/895426.
Повний текст джерелаMestha, L. K. Particle tracking code of simulating global RF feedback. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5986588.
Повний текст джерелаB. Robinson. Particle Tracking Model and Abstraction of Transport Processes. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/837080.
Повний текст джерелаB. Robinson. Particle Tracking Model and Abstraction of Transport Processes. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/839526.
Повний текст джерелаLiu, Xinmin, Zongli Lin, and Scott Acton. A New Particle Filter Based Algorithm for Image Tracking. Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada501159.
Повний текст джерелаClaus, J. A Different Approach to Non-Linearities and Particle Tracking. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/1119268.
Повний текст джерела