Добірка наукової літератури з теми "Peroxidy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Peroxidy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Peroxidy":

1

Lubeigt, X., F. Flies, M. J. Bourgeois, E. Montaudon, and B. Maillard. "Déplacements homolytiques intramoléculaires. 19. Stéréochimie de la décomposition induite de peroxydes insaturés conduisant à la formation d'hétérocycles à trois et quatre chaînons." Canadian Journal of Chemistry 69, no. 8 (August 1, 1991): 1320–25. http://dx.doi.org/10.1139/v91-196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Homolytic decomposition induced by addition of dichloromethyl radicals to β- and γ-unsaturated peroxides having a substituent on the chain linking the unsaturation and the peroxide function was studied. The stereochemistry of the heterocycles produced was determined by I3C NMR and the stereoselectivity of intramolecular homolytic substitution on the peroxidic bond discussed. Key words: unsaturated peroxides, homolytic intramolecular substitutions, radical additions, oxygenated heterocycles.
2

Kopecky, Karl R., and José Molina. "Bis(dimethoxymethyl) peroxide and bis(1,1-dimethoxyethyl) peroxide." Canadian Journal of Chemistry 65, no. 10 (October 1, 1987): 2350–55. http://dx.doi.org/10.1139/v87-392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The title compounds 1 and 2, the first examples of peroxides polysubstituted at the α and α′ positions by alkoxy groups, are formed by benzophenone sensitized photooxygenation of trimethoxymethane and 1,1,1-trimethoxyethane, respectively. No peroxide was formed from tetramethoxymethane. Allowing 98% hydrogen peroxide and trimethoxymethane to stand results in an 80% yield of 1, so that 1 and 2 are probably formed by such a disproportionation reaction during photooxygenation. Compound 1 is converted quantitatively to methanol, methyl formate, and dimethyl carbonate in pyridine solution at 60 °C. In acidic methanol both 1 and 2 undergo solvolysis rapidly with exclusive cleavage of the carbon – peroxy oxygen bond. Signals for the ether and peroxy oxygens of 1 appear at 34 and 263 ppm and those of 2 appear at 40 and 264 ppm in the 17O nuclear magnetic resonance spectrum. Luminescence results when 1 and 2 are heated to 150 °C.
3

Ferradino, Anthony G. "Antioxidant Selection for Peroxide Cure Elastomer Applications." Rubber Chemistry and Technology 76, no. 3 (July 1, 2003): 694–718. http://dx.doi.org/10.5254/1.3547763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract For applications demanding the best high temperature aging performance with lowest compression set, polymers are crosslinked with peroxides. The carbon-carbon bonds that are formed are more thermally stable than crosslinks containing sulfur atoms generated by conventional vulcanization by sulfur- and sulfur based cure systems. However, peroxide crosslinking requires special attention to the selection of compounding ingredients. Materials such as plasticizers, oils, and acidic materials such as silicas and air-floated clays detract from crosslinking efficiency by competing with the polymer for the free radicals produced by peroxides. Antioxidants, as a class, are free-radical scavengers and inhibit peroxide crosslinking. This paper discusses selecting the best antioxidant systems for peroxide cured elastomers by comparing various classes of antidegradants: peroxy and alkoxy radical traps (amines and hindered phenols), hydroperoxide decomposers, and synergists. Among the most effective include: 1) a quinoline polymerized 1,2-dihydro-2,2,4-trimethylquinoline 2) an amine, p-dicumyl-diphenylamine, 3) a hindered phenol, tetrakis (metylene (3,5-di-t-butyl-4-hydroxy-hydrocinnamate)) methane, and 4) a dithiocarbamate, nickel dimethyl-dithiocarbamate. For optimum performance, these are used in combination with the synergist, zinc-2-mercaptotoluimidazole. Also presented is an antioxidant system optimization study using a statistically designed experiment.
4

Naskar, Kinsuk, and Jacques W. M. Noordermeer. "Dynamically Vulcanized PP/EPDM Blends: Multifunctional Peroxides as Crosslinking Agents — Part I." Rubber Chemistry and Technology 77, no. 5 (November 1, 2004): 955–71. http://dx.doi.org/10.5254/1.3547862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Thermoplastic vulcanizates (TPVs) or dynamic vulcanizates are a special class of thermoplastic elastomers, produced by mixing and crosslinking of a rubber and a thermoplastic polymer simultaneously. In a previous study, it was demonstrated that the use of dicumyl peroxide in combination with triallyl cyanurate as crosslinking agents provides a good overall balance of physical properties of PP/EPDM TPVs. Commonly used peroxides like dicumyl peroxide generally produce volatile decomposition products, which sometimes provide a typical smell or show a blooming effect. In this paper multifunctional peroxides are described, which reduce the above-mentioned problems. They consist of a peroxide and co-agent-functionality combined in a single molecule. The multifunctional peroxides provide properties of TPVs, which are comparable with commonly employed co-agent assisted peroxides. The solubility and kinetic aspects of the various peroxides are highlighted, as well as the decomposition products of the multifunctional peroxides with respect to the avoidance of smelly by-products. Particularly, 2,4-diallyoxy-6-tert-butylperoxy-1,3,5-triazine turns out to be a very good alternative to the dicumyl peroxide/triallyl cyanurate combination.
5

Jacob, Peter, Bernhard Wehling, Wieland Hill, and Dieter Klockow. "Feasibility Study of Raman Spectroscopy as a Tool to Investigate the Liquid-Phase Chemistry of Aliphatic Organic Peroxides." Applied Spectroscopy 51, no. 1 (January 1997): 74–80. http://dx.doi.org/10.1366/0003702971938795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The described investigations are focused on peroxides occurring as products in atmospheric chemical processes, namely, hydrogen peroxide, methylhydroperoxide, hydroxymethylhydroperoxide, bis-(hydroxymethyl)peroxide, 1-hydroxyethylhydroperoxide, bis-(hydroxyethyl)peroxide, and hydroxymethylmethylperoxide. The compounds are identified and determined through the position and intensity of their characteristic O–O stretching bands in the range between 767 and 878 cm−1. Time-resolved Raman spectroscopy of peroxide solutions permits the in situ investigation of pathways and kinetics of reactions between peroxides and aldehydes.
6

Mertes, P., L. Pfaffenberger, J. Dommen, M. Kalberer, and U. Baltensperger. "Development of a sensitive long path absorption photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP)." Atmospheric Measurement Techniques 5, no. 10 (October 2, 2012): 2339–48. http://dx.doi.org/10.5194/amt-5-2339-2012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A new off-line instrument to quantify peroxides in aerosol particles using iodometry in long path absorption spectroscopy has been developed and is called peroxide long path absorption photometer (Peroxide-LOPAP). The new analytical setup features important technical innovations compared to hitherto published iodometric peroxide measurements. Firstly, the extraction, chemical conversion and measurement of the aerosol samples are performed in a closed oxygen-free (~ 1 ppb) environment. Secondly, a 50-cm optical detection cell is used for an increased photometric sensitivity. The limit of detection was 0.1 μM peroxide in solution or 0.25 nmol m−3 with respect to an aerosol sample volume of 1 m3. The test reaction was done at a constant elevated temperature of 40 °C and the reaction time was 60 min. Calibration experiments showed that the test reaction with all reactive peroxides, i.e. hydrogen peroxide (H2O2), peracids and peroxides with vicinal carbonyl groups (e.g. lauroyl peroxide) goes to completion and their sensitivity (slope of calibration curve) varies by only ±5%. However, very inert peroxides have a lower sensitivity. For example, tert-butyl hydroperoxide shows only 37% sensitivity compared to H2O2 after 1 h. A kinetic study revealed that even after 5 h only 85% of this inert compound had reacted. The time trends of the peroxide content in secondary organic aerosol (SOA) from the ozonolysis and photo-oxidation of α-pinene in smog chamber experiments were measured. The highest mass fraction of peroxides with 34% (assuming a molecular weight of 300 g mol−1) was found in freshly generated SOA from α-pinene ozonolysis. Mass fractions decreased with increasing NO levels in the photo-oxidation experiments. A decrease of the peroxide content was also observed with aging of the aerosol, indicating a decomposition of peroxides in the particles.
7

Mertes, P., L. Pfaffenberger, J. Dommen, M. Kalberer, and U. Baltensperger. "Development of a sensitive long pathlength absorbance photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP)." Atmospheric Measurement Techniques Discussions 5, no. 1 (February 13, 2012): 1431–57. http://dx.doi.org/10.5194/amtd-5-1431-2012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A new off-line instrument to quantify peroxides in aerosol particles using iodometry in long pathlength absorption spectroscopy has been developed and is called peroxide long pathlength absorbance photometer (Peroxide-LOPAP). The new analytical setup features important technical innovations compared to hitherto published iodometric peroxide measurements. Firstly, the extraction, chemical conversion and measurement of the aerosol samples are performed in a closed oxygen-free (∼1 ppb) environment. Secondly, a 50-cm optical detection cell is used for an increased photometric sensitivity. The limit of detection was 0.1 μM peroxide in solution or 0.25 nmol m−3 with respect to an aerosol sample volume of 1000 l. The test reaction was done at a constant elevated temperature of 40 °C and the reaction time was 60 min. Calibration experiments showed that the test reaction with all reactive peroxides, i.e. hydrogen peroxide (H2O2), peracids and peroxides with vicinal carbonyl groups (e.g. lauroyl peroxide) goes to completion and their sensitivity (slope of calibration curve) varies by only ±5%. However, very stable peroxides have a lower sensitivity. For example tert-butyl hydroperoxide shows only 37% sensitivity compared to H2O2 after 1h. A kinetic study revealed that even after 5 h only 85% of this stable compound had reacted. The time trends of the peroxide content in secondary organic aerosol (SOA) from the ozonolysis and photo-oxidation of α-pinene in smog chamber experiments were measured. The highest amount of peroxides with 34% (assuming a MW of 300 g mol−1) was found in freshly generated SOA from α-pinene ozonolysis. Contents decreased with increasing NO levels in the photo-oxidation experiments. A decrease of the peroxide content was observed with aging of the aerosol indicating a decomposition of peroxides in the particles.
8

Stauff, Joachim, and Gerhard Stärk. "Chemilumineszenz von Photoprodukten polyzyklischer aromatischer Kohlenwasserstoffe und deren Carbonylverbindungen / Chemiluminescence of Photoproducts of Polycyclic Aromatic Hydrocarbons and their Carbonyl Compounds." Zeitschrift für Naturforschung B 41, no. 1 (January 1, 1986): 113–21. http://dx.doi.org/10.1515/znb-1986-0124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
During photooxidation of polycyclic aromatic hydrocarbons (PAH) products can be formed which develop chemiluminescence on treatment with bases. Flash photolysis experiments show that this is the case only after previous formation of cation radicals, e.g. in the presence of CCl4 as solvent or of e-acceptors in aprotic solvents. These radicals react with oxygen to peroxy-radicals which can combine to several kinds of peroxides. Primary and secondary peroxides are the sources of chemiluminescent activity.Chemiluminescent peroxides can also be obtained by irradiation of PA H carbonyl com pounds in protic solvents under nitrogen. It is assumed that two excited CO groups combine exceptionally with their O-atom s thus creating a peroxide bond. 24 aromatic aldehydes, ketones, dicarboxylic acid anhydrides and coumarines develop chemiluminescence after illumination with wavelengths ≥ 320 nm with intensities varying 4 magnitudes of order.The sensitivity of the photochemiluminescent method is sufficient to detect amounts of PA H and their CO derivatives in the ppb to ppm range.
9

Class, J. B., and R. P. Grasso. "The Efficiency of Peroxides for Curing Silicone Elastomers." Rubber Chemistry and Technology 66, no. 4 (September 1, 1993): 605–22. http://dx.doi.org/10.5254/1.3538333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Peroxides are preferred for heat curing vinylmethylsilicone (VMQ) elastomers because the free-radical-initiated crosslink does not reduce the inherent stability of the polymer. The objectives of this work were (1) to obtain information on the relationship between peroxide concentration and the physical properties of heat-cured silicone elastomers, and (2) to explain the suspected difference in efficiency of two peroxides, α,α′-di(tert-butylperoxy)-m/p-diisopropylbenzene (DBPIB) and 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (DBPH). VMQ bases and gums were cured with DBPIB and DBPH over a range of peroxide concentrations. Higher tensile modulus and higher delta torque (oscillating disk rheometer data) were observed when curing with DBPIB over the entire concentration range. This indicates that DBPIB produces a higher crosslink density than DBPH at equivalent molar concentrations. A series of calculations were performed, using computational chemistry techniques, to gain insight into the reason for the observed difference in crosslinking efficiency between DBPIB and DBPH. These calculations show that DBPIB is not more efficient than DBPH in abstracting hydrogen from the methyl groups of sihcone elastomers. The predominant cause for the difference in efficiency is related to the stability of the DBPH free radical. This radical is formed from hydrogen abstraction at the central ethylene moiety of DBPH by neighboring peroxy fragments. Therefore, DBPH is more susceptible to hydrogen abstraction, which consumes radicals in nonproductive (noncrosslinking) pathways This difference in peroxide efficiency may apply to other polymers.
10

Clark, Donald E. "Peroxides and peroxide-forming compounds." Chemical Health and Safety 8, no. 5 (September 2001): 12–22. http://dx.doi.org/10.1016/s1074-9098(01)00247-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Peroxidy":

1

Hampapa, Břetislav. "Reakce HDPE v tavenině iniciované peroxidy." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2011. http://www.nusl.cz/ntk/nusl-216682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thesis deals with HDPE modification by crosslinking. In the theoretical part, data available in the literature were reviewed. Modifications of the selected HDPE copolymer grade were carried out in a kneading device Brabender using 25 ml chamber size. After having optimized process conditions, there were performed a series of experiments in dependence on concentration of the initiator. Reological properties of polymer samples were investigated by melt flow indexes measured under different conditions. Changes in crystallinity and melting temperatures were evaluated from DSC heat flow measurements. The samples meeting characteristics supposed were selected for measuring complex viscosity on the Rheometer AR-G2 TA and for testing some mechanical properties on the device Zwick.
2

Červený, Ladislav. "Reaktivní extruze polymerů s využitím peroxidů." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Diploma thesis deals with processing of two types of PP, HDPE, LDPE, PET, PA, PS, PMMA and ABS by reactive extrusion in presence of peroxides. The theoretical part summarizes existing knowledge about processing of used polymers. Reactive extrusion was carried out with a single screw extruder at 260 °C, 30 rpm and 60 rpm depending on peroxide used. One type of PP was processed in presence of Luperox 101, hydrogen peroxide, dicumyl peroxide and potassium persulfate. Luperox 101 and hydrogen peroxide were chosen for reactive extrusion of other polymers. The efficiency of selected peroxides on radical modifications of individual polymers during processing was evaluated by methods of rheological (MFI), structural (FTIR) and thermal (DSC) analysis.
3

Klímová, Edita. "Elektrické výboje ve vodných a organických roztocích." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2013. http://www.nusl.cz/ntk/nusl-216930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work is focused on study of electrical discharges in liquids, especially in water solutions. Generation of the discharge in water solutions leads to simultaneous effect of UV radiation, shock waves, electrical field and most importantly, chemically reactive species. This can be utilized in many applications such as sterilization, degradation of organic waste products, lithotripsy or other medical applications. The experimental part is concentrated on a diaphragm arrangement of the reaction system. This means that the reactor is divided into two electrode reservoirs connected only through a small orifice in a dielectric barrier. This barrier is made of Macor® non-porous ceramics with thickness of 1 mm, with the diameter of the orifice 0.6 mm, in the first part of work. In the second part, ShapalTM-M ceramics of thickness 1.0 mm and orifice diameter 0.6 mm was used. The experimental part is divided into two sections. For both, NaCl is chosen as an electrolyte to set the initial conductivity of the tested solutions to the value of 400 S/cm. Supplied direct voltage is regulated to attain power of 100 W in the system. In the first part, effect of addition of chosen alcohols (ethanol, isopropylalcohol and glycerol) on the efficiency of the discharge in their water solutions is studied. For this purpose, a special glass reactor was designed and constructed. The efficiency of the discharge is measured by a spectroscopic determination of concentration of complex formed by a titanium reagent and hydrogen peroxide, which is generated during the discharge. The results show no positive effect of addition of extra OH group to the reaction through the alcohols. The use of isopropylalcohol causes even a significant decrease in the amount of hydrogen peroxide generated. The subject of the second part is a comparison of effect of different electrode materials on the discharge. The efficiency is measured by the same method as in the first part. Materials chosen were stainless steel, platinum, aluminium, copper and carbon. Each material shows different hydrogen peroxide production rate under the same parameters. The most perspective material seems to be carbon, as an inert material, that can be expected not to initiate any decomposition of hydrogen peroxide. The least favourable appears to be copper. When used, no production of hydrogen peroxide was observed in one of the electrode parts of the reactor.
4

Das, Satyajit. "Production de celluloses pures à partir de pâte à papier par un procédé propre au peroxyde d'hydrogène catalysé." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00876881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objectif de ce travail est donc de développer un procédé industriel, propre, de production de cellulose pure à partir de pâte kraft non blanchie, basé sur la catalyse du peroxyde d'hydrogène et utilisant si nécessaire des traitements complémentaires sans chlore. A cet effet, deux approches sont adoptées : (i) délignification de pâte kraft avec du peroxyde d'hydrogène et (ii) purification de la pâte à la soude et ozone. La réaction du système cuivre-phénanthroline / peroxyde d'hydrogène avec un composé modèle de lignine non phénolique, l'alcool vératrylique a été étudié. L'effet du catalyseur sur la délignification et sur la dégradation des hydrates de carbone a été examiné. La purification des pâtes ainsi obtenues par une extraction alcaline à froid ainsi qu'un stade de blanchiment final à l'ozone. Enfin, il a été montré que les moléculaires des celluloses (DMM) des celluloses produites étaient comparables à celles des pâtes au bisulfite acide où pré-hydrolyse krafts utilisés pour les applications viscose.
5

Gatin-Fraudet, Blaise. "Synthèse et évaluation de nouvelles sondes pour l’imagerie cellulaire du peroxyde d’hydrogène." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASF023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les formes réactives de l’oxygène (FRO : le peroxyde d’hydrogène, les radicaux superoxyde ou hydroxyle) sont des sous-produits formés lors d’une mauvaise régulation de la respiration cellulaire. Parmi ces espèces, le peroxyde d’hydrogène (H2O2) joue un rôle particulier dans de nombreux processus physiologiques. Néanmoins, lorsque nos cellules subissent des conditions dites de stress oxydant, la surproduction des FRO est responsable directement ou indirectement, de nombreux dommages oxydatifs au niveau moléculaire (acides nucléiques, protéines, lipides…), pouvant affecter les mécanismes cellulaires. Le développement d’outils sensibles permettant de détecter sélectivement le peroxyde d’hydrogène en milieu biologique représente enjeu important pour élucider son rôle et son degré d’implication dans les processus physiologiques et pathologiques.Actuellement, les sondes fluorogéniques basées sur une amorce boronate se sont révélées particulièrement efficaces pour détecter le H2O2 in cellula. Cependant, ce type d’amorce souffre d’un manque de réactivité, qui n’est pas totalement satisfaisant pour des études biologiques.Le but de ce projet de thèse a été d’améliorer la réactivité de l’amorce réagissant avec H2O2. Pour cela, l’utilisation d’une nouvelle amorce basée sur un motif borinique a été envisagée. Une première sonde fluorogénique basée sur un motif coumarine a été synthétisée puis étudiée par 1H RMN, par spectroscopie de fluorescence in vitro et in cellula.Dans un second temps, la régiosélectivité de la réaction a été améliorée et de nouvelles sondes fluorogéniques comportant ou non un espaceur auto-immolable ont été étudiées
Reactive oxygen species (ROS: hydrogen peroxide, hydroxyl and superoxide radicals) are by-products of aerobic metabolism. Among them, hydrogen peroxide (H2O2) plays a crucial role in a wide range of physiological processes in human. However, when our cells are subjected to oxidative stress conditions, its overproduction is directly or indirectly responsible for numerous damages at the molecular level, which can affect cellular mechanisms. The development of selective and sensitive tools allowing H2O2 detection in a biological context represents a great challenge for a better understanding of H2O2-mediated signalling in physiological and pathological processesTo date, several “off-on” small fluorescent probes triggered by H2O2 have been developed for its detection. Among them, probes based on the boronate oxidation are amongst the most effective for the detection of H2O2 in cellula. But these probes also suffer from lack of reactivity, which is not fully satisfactory for biological applications.The aim of this thesis project was to improve the reactivity of the trigger toward H2O2. To address this issue, the use of borinic acids as new trigger was envisioned. A new fluorogenic probe based on coumarin scaffold was synthetized and studied by 1H RMN, and by in vitro and in cellula fluorescence spectroscopy. In the second part of the project, the regioselectivity of the reaction was improved and new fluorogenic probes with or not an immolative spacer were studied
6

Loew, Noya. "Meerrettich Peroxidase : Modifikationen und Anwendungen in Biosensoren." Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2008/1843/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Biosensoren werden oft für die Messung einzelner Substanzen in komplexen Medien verwendet, wie z.B. bei der Blutzuckerbestimmung. Sie bestehen aus einem physikochemischen Sensor, dem Transduktionselement, und einer darauf immobilisierten biologischen Komponente, dem Erkennungselement. In dieser Arbeit wurde als Transduktionselement eine Elektrode und als Biokomponente das Enzym „Meerrettich Peroxidase“ (engl. horseradish peroxidase, HRP) verwendet. Solche HRP-Elektroden werden für die Messung von Wasserstoffperoxid (H2O2) eingesetzt. H2O2 wird im Körper von weißen Blutkörperchen produziert, um Bakterien abzutöten, wird teilweise ausgeatmet und kann in kondensierter Atemluft nachgewiesen werden. Da viele weiße Blutkörperchen bei einer Chemotherapie abgetötet und dadurch die Patienten anfälliger für Infektionen werden, muss ihre Anzahl regelmäßig überwacht werden. Dazu wird zurzeit Blut abgenommen. Im ersten Teil dieser Arbeit wurde untersucht, ob eine Überwachung der Anzahl an weißen Blutkörperchen ohne Blutabnahme durch eine H2O2-Messung erfolgen kann. Ein direkter Zusammenhang zwischen der ausgeatmeten H2O2-Menge und der Zahl der weißen Blutkörperchen konnte dabei nicht festgestellt werden. Für empfindliche H2O2-Messungen mit einer HRP-Elektrode ist ein schneller Austausch von Elektronen zwischen der Elektrode und dem Enzym notwendig. Eine Vorraussetzung dafür ist eine kurze Distanz zwischen dem aktiven Zentrum des Enzyms und der Elektrodenoberfläche. Um einen kurzen Abstand zu erreichen wurden im zweiten Teil dieser Arbeit verschiedene poröse graphitähnliche Materialien aus pyrolysierten Kobalt-Porphyrinen für die Elektrodenherstellung verwendet. Dabei stellte sich heraus, dass eines der untersuchten Materialien, welches Poren von etwa der Größe eines Enzyms hat, Elektronen etwa 200mal schneller mit dem Enzym austauscht als festes Graphit. Die HRP selbst enthält in seinem aktiven Zentrum ein Eisen-Protoporphyrin, also ein aus vier Ringen bestehendes flaches Molekül mit einem Eisenatom im Zentrum. Reagiert die HRP mit H2O2, so entzieht es dem Peroxid zwei Elektronen. Eines dieser Elektronen wird am Eisen, das andere im Ringsystem zwischengespeichert, bevor sie an ein anderes Molekül oder an die Elektrode weitergegeben werden. Im letzten Teil dieser Arbeit wurde das Eisen durch Osmium ausgetauscht. Das so veränderte Enzym entzieht Peroxiden nur noch ein Elektron. Dadurch reagiert es zwar langsamer mit Wasserstoffperoxid, dafür aber schneller mit tert-Butylhydroperoxid, einem organischen Vertreter der Peroxid-Familie.
Biosensors are often used for the measurement of specific substances in complex media, e.g. glucose in blood. They consist of a physicochemical sensor, the transducer, onto which a biological component, the recognition element, is immobilised. In this work, an electrode was used as transducer and the enzyme “horseradish peroxidase” (HRP) as biological component. Such HRP electrodes are used for the measurement of hydrogen peroxide (H2O2). H2O2 is produced in the body by white blood cells to destroy bacteria, is partially exhaled and can be measured in breath condensate. Since a lot of white blood cells are destroyed during chemotherapy and patients get more prone to infections, their amount must be checked regularly. Currently blood samples are taken for this purpose. In the first part of this work it was investigated, if the amount of white blood cells can be checked without taking blood by measuring H2O2. A correlation between the amount of exhaled H2O2 and the number of white blood cells could not be found. For a sensitive H2O2 measurement with an HRP electrode a quick exchange of electrons between electrode and enzyme is needed. One condition for this is a short distance between the active centre of the enzyme and the electrode surface. In order to achieve a short distance, several porous graphite-like materials made of pyrolysed cobalt porphyrins where used in the second part of this work for the electrode production. It turned out that one of the tested materials, which had pores about the same size as the enzyme, did exchange electrons with the enzyme about 200 times faster than solid graphite. HRP itself contains an iron protoporphyrin, i.e. a planar molecule consisting of four rings with an iron atom in the middle, its active centre. When HRP reacts with H2O2, it takes two electrons from the peroxide. One of these electrons is stored at the iron, the other in the ring system, until they are passed on to another molecule or the electrode. In the last part of this work, the iron was exchanged with osmium. The modified enzyme takes only one electron from peroxides. Thus it reacts slower with hydrogen peroxide, but faster with tert-butylhydroperoxide, an organic member of the peroxide family.
7

Němcová, Lucie. "Studium vlivu elektrolytů na stabilitu a efektivitu diafragmového výboje." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2008. http://www.nusl.cz/ntk/nusl-216391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis is focused on so-called diaphragm discharge, which is one kind of electric discharges in liquid, which belongs among so-called AOP´s techniques, still more used for water cleaning in the present. One of effectiveness and stability indicators of diaphragm discharge is generation of hydrogen peroxide. In theoretical part, detail principle description of electric discharge in liquid is situated. Further, properties of electrolyte are introduced and general spectrophotometric method of obtained sample determination is described. In experimental part, a full procedure of experiment is introduced. Next part containing results and discussions introduces particular results of individual measurements and their reasons. Final chapter is the end, which forms total summary and evaluation of all results. By the application of all chosen electrolytes in solution at diaphragm discharge formation of hydrogen peroxide has appeared. Inorganic and organic electrolytes were used. As inorganic electrolytes following salts were selected – solutions of halogenides, next sodium nitrate as a representative of nitrates, potassium dihydrogenphosphate as a representative of phosphates, etc. Representative of organic electrolytes was citric acid. The value of initial conductivity of electrolytes had the main influence on hydrogen peroxide formation. Electrolytes potassium dihydrogenphosphate and sodium sulphate the great influence on effectiveness and stability of the diaphragm discharge. Their rate constants reached maximum value by the application of solution with initial conductivity of approximately 400 mikrosiemens, particularly 0.0492 mmol/l.min and 0.048 mmol/l.min. On the contrary, low values of rate constant were achieved in electrolyte ammonium chloride at around the same initial conductivity – 0.0269 mmol/l.min. During experiments stainless steel and platinum electrodes were used. It was found that kind of electrode material hadn’t influence on generation of hydrogen peroxide. Hydrogen peroxide was formed only in the cathode space.
8

Qiu, Zhiping. "Improvement in hydrogen peroxide bleaching by decreasing manganese-induced peroxide decomposition." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0034/MQ65515.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ottenwelter, Roxane. "Sondes pour la détection de formes actives de l'oxygène in vivo." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les formes réactives de l’oxygène (peroxyde d’hydrogène, radicaux superoxydes et hydroxyles) sont produites lorsque la régulation du métabolisme de l’oxygène est perturbée. Ces espèces sont responsables, directement ou indirectement, de nombreux dommages oxydatifs au niveau moléculaire (acides nucléiques, protéines, lipides…) pouvant affecter les mécanismes cellulaires. Toutefois le peroxyde d’hydrogène pourrait également se comporter comme un messager secondaire dans différentes voies de signalisation et être à l’origine de processus physiologiques. Ainsi sa double fonction a suscité l’intérêt de nombreux laboratoires qui tentent à présent d’élucider son rôle et son degré d’implication dans les processus physiologiques et pathologiques. Pour la détection du peroxyde d’hydrogène, de nombreuses pro-sondes ont été élaborées sur la base d’une amorce boronate. La plupart de ces pro-sondes ont permis de détecter un stress oxydant in cellulo mais souffrent cependant d’un manque de réactivité. Le but du mon projet de thèse a alors été d’améliorer la réactivité de l’amorce en élaborant des pro-sondes à amorce borinate. Malgré des difficultés de synthèse, nous avons obtenu une telle pro-sonde à amorce borinate, dissymétrique, portant à la fois un phényle et la coumarine, choisie comme chromophore. Des études cinétiques ont montré que la réactivité de notre pro-sonde borinate est 100 fois plus élevée que celle des pro-sondes à amorce boronate actuelles, en conditions physiologiques. Un mécanisme réactionnel a été proposé. Enfin notre pro-sonde a pu être validée in cellulo sur des macrophages, activés au PMA pour la détection endogène du peroxyde d’hydrogène. Encouragés par ces résultats, nous synthetisons actuellement d’autres pro-sondes à amorce borinate présentant d’autres chromophores
Reactive oxygen species (hydrogen peroxide, hydroxyl and superoxide radicals) are produced when the regulation of oxygen metabolism is disrupted. These species are directly or indirectly responsible for numerous oxidative damage at the molecular level (nucleic acids, proteins, lipids, etc.) which can affect cellular mechanisms. However, hydrogen peroxide could also behave as a secondary messenger in various signaling pathways and be the source of physiological processes. Thus its dual function has aroused the interest of many laboratories which are now trying to elucidate its role and its degree of involvement in physiological and pathological processes. In order to detect hydrogen peroxide, many pro-probes have been developed, based on a boronate trigger. Most of these probes proved able to detect an oxidative stress in cellulo but suffer from lack of reactivity. The goal of my thesis project was to improve the reactivity of the trigger by developing pro-probes with a borinate trigger. In spite of difficulties of synthesis, we obtained such a pro-probe with a borinate trigger, dissymmetrical, and bearing both a phenyl and a coumarin substituent, chosen as chromophore. Kinetic studies have shown that the reactivity of our borinate pro-probe is 100 times higher than that of the current boronate-based trigger pro-probe, under physiological conditions. A reaction mechanism has been proposed. Finally, our pro-probe has been validated in cellulo on macrophages, activated with PMA for the endogenous detection of hydrogen peroxide. Encouraged by these results, we are currently synthesizing other pro-probes with borinate trigger presenting other chromophores
10

Marek, Anne. "Peroxide und andere Inhaltsstoffe aus Heterothalamus-Arten und malariawirksame Abwandlungsprodukte der Peroxide /." [S.l. : s.n.], 1994. http://www.gbv.de/dms/bs/toc/181706342.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Peroxidy":

1

Donsbach, Kurt W. Oxygen, oxygen, oxygen: Hydrogen peroxide, magnesium peroxide, chlorine peroxide. [Tulsa, Okla.]: Rockland Corp., 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Malekos, Matthew. Peroxide homicide. Leicester: Ulverscroft, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Douglass, William Campbell. Medical miracle: Hydrogen peroxide. Atlanta, GA: Second Opinion Publishing, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Boulerice, Simon. Peroxyde: Théâtre. Montréal, Québec: Leméac, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

J, Watts Richard. Catalyzed peroxide soil pilot study. [Olympia, Wash: Washington State Dept. of Transportation, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jones, Craig W. Applications of hydrogen peroxide and derivatives. Cambridge, UK: Royal Society of Chemistry, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zawadiak, Jan. Dwuetapowa technologia otrzymywania nadtlenku dikumylowego z wodoronadtlenku kumenu i kumenu. Gliwice: Wydawn. Politechniki Śląskiej, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Patai, Saul, ed. Hydroxyl, Ether and Peroxide Groups (1993). Chichester, UK: John Wiley & Sons, Inc., 1993. http://dx.doi.org/10.1002/9780470772515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liebman, Joel F., and Alexander Greer. The chemistry of peroxides. Chichester, West Sussex: John Wiley & Sons Inc., 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rappoport, Zvi, ed. The Chemistry of Peroxides. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470862769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Peroxidy":

1

Pope, M. T. "From Hydrogen Peroxide and Organic Peroxides." In Inorganic Reactions and Methods, 6–7. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145203.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gooch, Jan W. "Peroxide." In Encyclopedic Dictionary of Polymers, 527–28. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8594.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gooch, Jan W. "Hydrogen Peroxide." In Encyclopedic Dictionary of Polymers, 375. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bährle-Rapp, Marina. "Strontium Peroxide." In Springer Lexikon Kosmetik und Körperpflege, 535. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lopez-Lazaro, Miguel. "Hydrogen Peroxide." In Encyclopedia of Cancer, 1775–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_2887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bährle-Rapp, Marina. "Hydrogen Peroxide." In Springer Lexikon Kosmetik und Körperpflege, 267. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_4952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gooch, Jan W. "Dicumyl Peroxide." In Encyclopedic Dictionary of Polymers, 210. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gooch, Jan W. "Crotonyl Peroxide." In Encyclopedic Dictionary of Polymers, 183–84. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gooch, Jan W. "Diacetyl Peroxide." In Encyclopedic Dictionary of Polymers, 203. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ukuku, Dike O., Latiful Bari, and Shinichi Kawamoto. "Hydrogen Peroxide." In Decontamination of Fresh and Minimally Processed Produce, 197–214. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118229187.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Peroxidy":

1

Heikes, Brian G., William L. Miller, and Meehye Lee. "Hydrogen peroxide and organic peroxides in the marine environment." In Optics, Electro-Optics, and Laser Applications in Science and Engineering, edited by Harold I. Schiff. SPIE, 1991. http://dx.doi.org/10.1117/12.46169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bordet, J. C., M. Guichardant, and M. Lagarde. "PEROXIDE STIMULATION OF PGI3 AND DIHOMO-PGI2 IN ENDOTHELIUM." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Human umbilical endothelial cell (EC) monolayers incubated with eicosapentaenoic acid (EPA) produce small amounts of prostaglandin E3 (PGI3). We have previously shown that this metabolite is markedly enhanced in EC supernatant by co-incubating EPA with arachidonic acid (AA) (BBRC 135, 403, 1986). Moreover we found that PGF3a and PGE3 were similarly enhanced, and we concluded that such a stimulation occured at the cyclooxygenase rather than at the prostacyclin synthase level. It is generally assumed that cyclooxygenase is a peroxide-dependent enzyme and the present study shows that the potentiating effect of AA on EPA cyclooxygenation may be due to its hydroperoxy derivative, 15-HPETE. This has been established by measuring prostanoids of the trienoic series from (14-C)EPA and by detection of their metoxy-pentafluorobenzyl-trimethyl silyl derivatives from unlabelled EPA by gas chromatography-mass spectrometry. The potentiating effect of n-6 hydroperoxy derivative of linoleic acid (13-HPODE) was even higher than that of 15-HPETE. In addition, the cyclooxygenation of docosatetraenoic acid (DTA) or adrenic acid, was found to be also potentiated by 15-HPETE and 13-HPODE, but higher concentrations were required for the efficient synthesis of dihomo-PGI2. Concentrations of peroxides required for such potentiations were however far lower (−2μM) than those inhibiting prostacyclin synthase (≥100μM under our conditions). EPA and DTA, as competitive inhibitors of AA cyclooxygenation, appeared to need a higher peroxide tone than AA for their own metabolism. The biological relevance of DTA is not proved at this day, and dihomo-PGI2 has been found less active than PGI2. In contrast, PGI3 has been assumed to exhibit similar antiaggregatory effect than PGI2. EPA may then beneficially enhance the prostacyclin potential of vascular endothelium especially in conditions where a high peroxide tone is suspected like ageing or diabetes
3

Naegeli, David W. "The Role of Sulfur in the Thermal Stability of Jet Fuel." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The autoxidation of Jet A, dodecane, and a dodecane-15%-cumene blend doped with sulfur compounds were studied at 433 K. Oxygen, hydro peroxide and soluble gum were monitored during the autoxidation. Dodecane, cumene, and the dodecane-15%-cumene blend autoxidized rapidly, while Jet A had an induction period followed by a relatively slow post autoxidation. The results suggest that an inhibitor formed early in the post autoxidation of Jet A. Gum formed in the autoxidation of Jet A, whereas none was detected in dodecane, cumene, or dodecane-15% cumene. However, gum was detected in dodecane and dodecane-15% cumene doped with thiols and disulfides. Alkyl thiols and disulfides reduced the rate of autoxidation of dodecane, and there was an induction period in the formation of gum. Traces of sulfur (≈4 ppm) inhibited the autoxidation of dodecane-15% cumene in a way that resembled the post autoxidation of Jet A. Adding an organic base increased the rate of post autoxidation in Jet A and prevented formation of the oxidation inhibitor. An inhibition mechanism is proposed in which phenois are formed via acid-catalyzed decomposition of benzylic hydro peroxides.
4

Ando, Yuji, and Tadayoshi Tanaka. "Proposal of Simultaneous Production Method of Hydrogen and Hydrogen Peroxide From Water Using Solar Photo-Electrochemistry." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Authors have proposed a new hydrogen production system that simultaneously synthesizes hydrogen and hydrogen peroxide from water by electrochemical reaction. Experimental apparatus of this system is composed of a hydrogen electrode with platinum mesh, a hydrogen peroxide electrode with carbon material and an electrolyte with Nafion®. In this paper, the superiority of this system is outlined. In addition, the experimental results of electrolytic synthesis of hydrogen and hydrogen peroxide from water are reported. Furthermore, the possibility of the system that synthesizes hydrogen and hydrogen peroxide from water by the photochemical reaction using solar radiation is also discussed.
5

Ali, S., T. Starbuck, and W. Anderson. "Hydrogen Peroxide Stability Margin." In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ventura, Mark, and D. Durant. "Field Handling of Hydrogen Peroxide." In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-4146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tao, Shiquan, Joseph C. Fanguy, Xuemei Hu, and Qiangu Yan. "Fiber Optic Sensors for In Situ Real-Time Monitoring PEM Fuel Cell Operation." In ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fiber optic sensors for monitoring moisture, temperature and trace hydrogen peroxide have been developed in DIAL/MSU. The moisture sensor responds to moisture changes from RH = 4% to RH < 95% in the tested range. The temperature sensor can sense temperature from room temperature 22 °C to 90 °C in the tested range. The hydrogen peroxide sensor can detect/monitor hydrogen peroxide in an aqueous solution down to 10 ppb. Techniques have been developed for deploying the fiber optic sensors to the gas channels and the Nafion membrane of a PEM fuel, cell. These sensors will be tested for in situ, real-time monitoring of the operation of a PEM fuel cell with a fuel cell test system developed by CAVS/MSU. The principle of the sensors and test results of the sensors will be presented.
8

Öztürk, Burcu, Aslı Zungur-Bastıoğlu, Meltem Serdaroğlu, and Berker Nacak. "Quality changes of sucuks produced with turkey meat and olive oil during fermentation and ripening." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, it was aimed to determine the effects of partial replacement of beef fat with olive oil on quality changes of fermented turkey sausages (sucuk) during processing. Three formulations were prepared by using the lipid phase as 100% beef fat (control), 85% beef fat+15% olive oil and 70% beef fat+30% olive oil. Total moisture, pH, acidity, water activity (aw) and peroxide values were analyzed in sausage dough, at the end of the fermentation and at the end of ripening. The production steps significantly affected moisture decrease in samples, pH and aw values were decreased and acidity was increased in all samples during production. Peroxide value of the samples increased during processing steps and the samples with olive oil had higher peroxide values compared to control. The results showed that during processing steps of fermented turkey sausages, considerable changes could occur depending on lipid type. Keywords: sucuk, fermented sausage, dry fermentation, fat replacement, olive oil, turkey meat
9

Perchonok, M. H., and S. J. French. "Hydrogen Peroxide Treatment of Vegetable Crops." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cervone, Angelo, Lucio Torre, Luca d'Agostino, Antony J. Musker, Graham T. Roberts, Cristina Bramanti, and Giorgio Saccoccia. "Development of Hydrogen Peroxide Monopropellant Rockets." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-5239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Peroxidy":

1

Weinstein-Lloyd, Judith. Atmospheric peroxy radicals and peroxides. Final report. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/761097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stromer, Bobbi, Anthony Bednar, Milo Janjic, Scott Becker, Tamara Kylloe, John Allen, Matt Trapani, John Hargrove, and James Hargrove. Trace explosives detection by cavity ring-down spectroscopy (CRDS). Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We built three successive versions of a thermal decomposition cavity ring-down spectrometer and tested their response to explosives. These explosive compound analyzers successfully detected nitroglycerine, 2,4,6-trinitrotoluene (TNT), pentaerythryl tetranitrate, hexahydro-1,3,5-trinitro-s-triazine and triacetone triperoxide (TATP). We determined the pathlength and limits of detection for each, with the best limit of detection being 13 parts per trillion (ppt) of TNT. For most of the explosive tests, the peak height was higher than the expected value, meaning that peroxy radical chain propagation was occurring with each of the explosives and not just the peroxide TATP.
3

Conner, W. V. Hydrogen peroxide safety issues. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10158827.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sears, Jeremiah, Timothy Boyle, and Christopher Dean. Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1089980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Melof, Brian Matthew, David L. Keese, Brian V. Ingram, Mark Charles Grubelich, Judith Alison Ruffner, and William Rusty Escapule. Hydrogen peroxide-based propulsion and power systems. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/903157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Walsh, Raymond F., and Alan M. Sutton. Pressure Effects on Hydrogen Peroxide Decomposition Temperature. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada405753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hurst, D. H., K. G. Robinson, and R. L. Siegrist. Hydrogen peroxide treatment of TCE contaminated soil. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10182572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

HALGREN DL. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/935398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Phillips, Jason. 80% Hydrogen Peroxide Mixtures with Various Fuels. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1762362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tkac, Peter, George Vandegrift, Stephen D. Nunn, and James Harvey. Processing of Sintered Mo Disks Using Hydrogen Peroxide. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1136271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії