Зміст
Добірка наукової літератури з теми "Pertes instationnaires"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pertes instationnaires".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Pertes instationnaires"
Wilhelm, Sylvia. "Étude des pertes de charge dans un aspirateur de turbine bulbe par simulations numériques instationnaires." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI020/document.
Повний текст джерелаThe draft tube of a hydraulic turbine is the turbine element located downstream of the runner. It has a divergent shape in order to convert the residual kinetic energy leaving the runner into pressure and thus increase the effective head of the turbine. The performances of low head bulb turbines are highly influenced by the head losses in the draft tube. The prediction of these head losses in a design process is thereby a major issue. The numerical prediction of the head losses in the draft tube is a real challenge because the flow in the draft tube is dynamically complex with high Reynolds numbers, a swirl and an adverse pressure gradient. These characteristics render conventional industrial approaches not appropriate. The objective of this work is twofold: (i) to improve the numerical prediction of the turbulent flow in the draft tube by using URANS and LES unsteady approaches and paying special attention to the description of the inlet boundary conditions of the draft tube and (ii) to conduct a detailed analysis of the energy transfers in the draft tube in order to better understand the origin of the head losses. An unsteady inlet boundary condition for the simulations reproducing the flow field at the runner outlet is developed. Numerical results are compared to experimental measurements in order to evaluate the predictive capacity of each turbulence modelling approach (URANS and LES). This validation step highlights the importance of defining properly the three velocity components at the draft tube inlet. The influence on the numerical results of boundary conditions of the calculation domain, such as wall roughness and the outlet boundary condition, is evaluated, in particular in case of LES. Thanks to a detailed analysis of the mean kinetic energy balance in the draft tube, the hydrodynamic phenomena responsible for head losses are identified. The head losses prediction differences between URANS and LES are thus analyzed in detail and possible improvements for the head losses prediction are identified. Finally, this analysis enables to understand the head losses evolution observed between several operating points of the turbine
Firrito, Alessio. "Caractérisation de la turbulence et du mélange dans le canal inter-turbine." Thesis, Toulouse, ISAE, 2022. http://www.theses.fr/2022ESAE0004.
Повний текст джерелаReducing fuel consumption in aeronautics is one of the main areas of research, in order to reduce the environmental footprint of aviation, but also to reduce aircraft operational cost. In addition to studying disruptive technologies, engine manufacturers are also working on the incremental optimisation of turbomachinery to increase efficiency, reduce weight and facilitate integration.Turbines are both the heaviest engine components and those whose efficiency has the greatest impact on specific fuel consumption. The link between the high-pressure and the low-pressure turbine is provided by the inter-turbine duct, studied in this thesis.During the last twenty years, academics and companies have been trying to optimise this component, in order to make it shorter and more aerodynamically efficient. This optimisation process is constrained by two main difficulties. Firstly, the lack of knowledge of the high-pressure turbine outlet flow, which prevent accuracy on non-homogeneities (distortion) of the inlet flow quantification. Secondly, divergent shape of the walls amplifies these inlet distortions, increasing the mixing losses.The studies carried out aim at error quantification on the prediction of the inter-turbine duct performances by numerical simulations, induced by an improper modelling of mixing losses.In a first step, an industrial configuration of a test bench is analysed, in order to demonstrate the impact of an incorrect description of the flow distortions on the performances of the inter-turbine duct. Several steady and unsteady RANS numerical simulations have been performed to answer this question, and compared to experiments. The calculated mixing losses show a strong dependence of the different mechanisms on the distortion itself, and on the inlet turbulence. Thus, a more complete understanding of the interaction mechanism between distortion and turbulence is necessary for the proper design of the component. However, these are two flow characteristics that are poorly known at high-pressure turbine outlet, due to measuring difficulties in such environments.Once the main mechanism has been identified, two simplifications of the geometry will be proposed, in order to study separately the effects of the divergence of the external walls (diffusion) and of the deflection of the blade, on the mixing losses.Concerning diffusion, the evolution of a wake in a divergent has been studied on an academic case to better understand and quantify the mixing in such environments. The simulations highlight the link between losses and inlet turbulence. A LES simulation allows a better understanding of this interaction phenomenon, and to verify the validity of the two-equation models used in RANS approach, for which anisotropic turbulence behaviour is not modelled.Concerning the influence of the deviation, the evolution of the mixing losses, which decrease or increase with the deviation, has been an open debate since the 1950s in turbine environments. Until now, the scientific community has tried to answer this question through complex and time-resolved analyses of conventional turbines. The originality and simplicity of the approach proposed in this work is based on a comparison of two co- and contra-rotating turbine geometries, studing the wake in its own generation frame, without using complex post-processing.Finally, the results and knowledge gained from the simplified configurations will be applied to the industrial geometry, and will result in recommendations for the sizing of the inter-turbine channel
Boust, Bastien. "Étude expérimentale et modélisation des pertes thermiques pariétales lors de l'interaction flamme–paroi instationnaire." Phd thesis, Université de Poitiers, 2006. http://tel.archives-ouvertes.fr/tel-00116773.
Повний текст джерелаPortier, Eric. "Etude de l'écoulement au travers de diffuseurs équipés de vannes de guidage ; analyse des performances et application au contrôle actif des débits pulsés." Poitiers, 2000. http://www.theses.fr/2000POIT2269.
Повний текст джерелаSais, Hassiba. "Étude de l'effet du débit pulsé en microfiltration et ultrafiltration sur membranes organiques à fibres creuses." Compiègne, 1995. http://www.theses.fr/1995COMPD858.
Повний текст джерелаRenault, Stéphane. "Application de l'automatique au contrôle actif d'écoulements pulsés." Poitiers, 1998. http://www.theses.fr/1998POIT2257.
Повний текст джерелаBouhara, Ammar. "Etude theorique et experimentale de la mesure par thermocouples de la temperature dans un flux gazeux instationnaire : application aux gaz d'echappement d'un moteur." Paris 6, 1987. http://www.theses.fr/1987PA066149.
Повний текст джерелаShuai, Xiaoshan. "Transfert thermique convectif en régime laminaire pour des fluides visqueux à forte dépendance thermorhéologique : cas des écoulements stationnaires et pulsés." Compiègne, 1987. http://www.theses.fr/1987COMPD073.
Повний текст джерела