Добірка наукової літератури з теми "Phenolic phytochemicals"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phenolic phytochemicals".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Phenolic phytochemicals"
Taulavuori, Kari, Riitta Julkunen-Tiitto, Valtteri Hyöky, and Erja Taulavuori. "Blue Mood for Superfood." Natural Product Communications 8, no. 6 (June 2013): 1934578X1300800. http://dx.doi.org/10.1177/1934578x1300800627.
Повний текст джерелаMascarenhas, Maria Emilia, Cibani Ramesh Mandrekar, Pratiksha Bharat Marathe, and Luena Joey Morais. "PHYTOCHEMICAL SCREENING OF SELECTED SPECIES FROM CONVOLVULACEAE." International Journal of Current Pharmaceutical Research 9, no. 6 (November 14, 2017): 94. http://dx.doi.org/10.22159/ijcpr.2017v9i6.23438.
Повний текст джерелаSharma, Swati. "PHYTOCHEMICAL SCREENING AND QUANTITATIVE ESTIMATION OF TOTAL PHENOLIC CONTENT AND TOTAL FLAVONOID CONTENT OF GRAINS OF PASPALUM SCROBICULATUM." Asian Journal of Pharmaceutical and Clinical Research 9, no. 6 (November 1, 2016): 73. http://dx.doi.org/10.22159/ajpcr.2016.v9i6.13552.
Повний текст джерелаHabauzit, Véronique, and Marie-Noëlle Horcajada. "Phenolic phytochemicals and bone." Phytochemistry Reviews 7, no. 2 (November 21, 2007): 313–44. http://dx.doi.org/10.1007/s11101-007-9078-9.
Повний текст джерелаBolling, Bradley W., C. Y. Oliver Chen, Diane L. McKay, and Jeffrey B. Blumberg. "Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts." Nutrition Research Reviews 24, no. 2 (December 2011): 244–75. http://dx.doi.org/10.1017/s095442241100014x.
Повний текст джерелаFang, Haitian, Huiling Zhang, Xiaobo Wei, Xingqian Ye, and Jinhu Tian. "Phytochemicals and Antioxidant Capacities of Young Citrus Fruits Cultivated in China." Molecules 27, no. 16 (August 15, 2022): 5185. http://dx.doi.org/10.3390/molecules27165185.
Повний текст джерелаAmiot, Marie-Josèphe, Christian Latgé, Laurence Plumey, and Sylvie Raynal. "Intake Estimation of Phytochemicals in a French Well-Balanced Diet." Nutrients 13, no. 10 (October 16, 2021): 3628. http://dx.doi.org/10.3390/nu13103628.
Повний текст джерелаSrivastava, Neeharika, Aishwarya Singh Chauhan, and Bechan Sharma. "Isolation and Characterization of Some Phytochemicals from Indian Traditional Plants." Biotechnology Research International 2012 (December 11, 2012): 1–8. http://dx.doi.org/10.1155/2012/549850.
Повний текст джерелаPrasad, Nagendra, Bao Yang, Kin Weng Kong, Hock Eng Khoo, Jian Sun, Azrina Azlan, Amin Ismail, and Zulfiki Bin Romli. "Phytochemicals and Antioxidant Capacity fromNypa fruticansWurmb. Fruit." Evidence-Based Complementary and Alternative Medicine 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/154606.
Повний текст джерелаGebashe, Fikisiwe, Adeyemi O. Aremu, Jiri Gruz, Jeffrey F. Finnie, and Johannes Van Staden. "Phytochemical Profiles and Antioxidant Activity of Grasses Used in South African Traditional Medicine." Plants 9, no. 3 (March 17, 2020): 371. http://dx.doi.org/10.3390/plants9030371.
Повний текст джерелаДисертації з теми "Phenolic phytochemicals"
Vizzotto, Marcia. "Inhibition of invasive breast cancer cell growth by selected peach and plum phenolic antioxidants." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3284.
Повний текст джерелаGirlus, Elena Valeria. "Protective activity of phytochemicals from natural extracts." Master's thesis, Instituto de Tecnologia Química e Biológica António Xavier. Universidade Nova de Lisboa, 2016. http://hdl.handle.net/10362/43593.
Повний текст джерелаinfo:eu-repo/semantics/publishedVersion
Deakin, Sherine Jane. "Antioxidant effects of phytochemicals in conditions of oxidative stress : impact on endothelial cell survival and function." Thesis, University of Aberdeen, 2010. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=165549.
Повний текст джерелаHerrera-Calderon, Oscar, Jorge Arroyo-Acevedo, Juan Rojas-Armas, Victor Chumpitaz-Cerrate, Linder Figueroa-Salvador, Edwin Enciso-Roca, and Johnny Tinco-Jayo. "Phytochemical Screening, Total Phenolic Content, Antioxidant and Cytotoxic Activity of Chromolaena laevigata on Human Tumor Cell Lines." SCIENCEDOMAIN international, 2017. http://hdl.handle.net/10757/622501.
Повний текст джерелаMat, Ali Mohd Shukri. "Analysis of phenolics and other phytochemicals in selected Malaysian traditional vegetables and their activities in vitro." Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/158/.
Повний текст джерелаPh.D. thesis submitted to the Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Takaidza, Samkeliso. "Phytochemical analysis and biological activities of crude extracts from selected Tulbaghia species." Thesis, Vaal University of Technology, 2018. http://hdl.handle.net/10352/434.
Повний текст джерелаThe genus Tulbaghia has been used in traditional medicine to treat various ailments such as fever, earache, tuberculosis and esophageal cancer. However, there is limited scientific evidence to support its use. Therefore the objectives of this study were to perform phytochemical analysis, investigate the antioxidant, antimicrobial, anticancer, immunomodulatory activities and toxicity of crude acetone and water extracts from selected Tulbaghia species. Standard methods were used for preliminary phytochemical analysis. The total phenolic content of the plant extracts was determined using the folin ciocalteu method whereas the total flavonoids were determined by using the aluminium chloride colorimetric method. DPPH and ABTS assays were used to evaluate the antioxidant activity. The antimicrobial activity was assessed by agar well diffusion, microtiter dilution and time kill assays. For anticancer studies, the antiproliferative activity of the extracts was evaluated using the MTT assay on Hkesc-1 and KB cells. Morphological changes of the cancer cells treated with extracts were examined using light microscopy. Induction of apoptosis was assessed using fluorescence microscopy and acridine orange/ethidium bromide staining. Flow cytometry analysis was conducted to examine the multicaspase activity and cell cycle arrest. For immunomodulatory activity, the Greiss reagent and Luminex cytokine assays were used to determine the effect of the extracts on NO production and the concentration of the cytokines in the treated cells, respectively. Toxicity of selected Tulbaghia species was examined by investigating the effect of the extracts on the metabolic activity and cell membrane integrity on the treated RAW264.7 cells using the MTT and LDH assays, respectively. The zebrafish assay was used to evaluate the embryotoxicity and teratogenic effects of crude acetone and water extracts of T. violacea at 24 h intervals for 96 h post fertilisation (hpf). The percentage mortality, hatchability and heart rate were examined. Phytochemical screening of eight Tulbaghia species demonstrated the presence of flavonoids, glycosides, tannins, terpenoids, saponins and steroids. The amount of total phenol and flavonoid content varied in different plant extracts ranging from 4.50 to 11.10 milligrams gallic acid equivalent per gram (mg GAE/g) of fresh material and 3.04 to 9.65 milligrams quercetin equivalent per gram (mg QE/g) of fresh material respectively. The IC50 values based on DPPH and ABTS for T. alliacea (0.06 and 0.06 mg/mL) and T. violacea (0.08 and 0.03 mg/mL) were generally lower showing potential antioxidant activities. For antimicrobial activity, the acetone extracts of T. acutiloba, T. alliacea, T. leucantha, T. ludwigiana, T. natalensis and T. simmleri showed moderate antimicrobial activity against all test organisms while the water extracts showed moderate to no activity. One species, T. cernua, showed poor activity against all the tested microbes. The acetone and water extracts of T. violacea showed the greatest antibacterial and antifungal activity against all the tested microorganisms with minimum inhibitory concentration ranging from 0.1 mg/mL to 3.13 mg/mL. The acetone extracts of T. violacea also exhibited both bacteriostatic/fungistatic and bactericidal/fungicidal activity depending on the incubation time and concentration of the extract. The bactericidal/fungicidal activity was observed at x2 MIC. The results for anticancer activity showed that treatment of Hkesc-1 cells with acetone and water crude extracts had anti-proliferative activity with IC50 values of 0.4 mg/mL and 1.625 mg/mL, respectively while KB had 0.2 mg/mL and 1 mg/mL, respectively. Morphological changes such as blebbing, cell shrinkage and rounding were observed in the treated cells suggesting that apoptosis was taking place. AOEB staining showed that the level of apoptosis was dependent on the concentration of the extracts. The activation of multicaspase activity in both Hkesc-1 and KB treated cells was also concentration dependent leading to cell death by apoptosis and the induction of cell cycle arrest at the G2/M phase. Immunomodulatory activity results indicated that cell viability was above 80% when concentrations of 50 µg/mL or less of both acetone and water crude was used. Treatment with the acetone extract had no significant effect (p>0.05) on the LPS induced NO production in RAW264.7 cells except at 50 µg/mL where significant inhibition was observed. The water extract had no significant effect (p>0.05) on NO production at all the concentrations. Treatment of LPS–induced RAW264.7 cells with acetone extract stimulated the production of IL-1α, IL-6 and TNF-α, but had no significant effect (p > 0.05) on IL-1β. On the other hand, treatment with the water extracts stimulated the production of IL-1α, IL-6 but had no significant effect (p>0.05) on TNF-α and IL-1β. Treatment of LPS-induced RAW264.7 cells with the acetone extract had very little stimulatory effect on IL-4, IL-5 and IL-13 and no significant effect on IL-10 whereas for the water extract a significant stimulatory effect was only observed for IL-4 after 48 h of treatment. High concentrations (>10000 pg/mL) of MCP-1, MIP1-α, MIP1-β, MIP-2, GCSF, GM-CSF, RANTES and IP-10 were also observed in acetone and water extract treated RAW264.7 cells. For toxicity studies, acetone and aqueous crude leaf extracts from T. alliacea, T. simmleri, and T. violacea had a significant inhibitory (p<0.05) effect on the RAW264.7 cells after 48h treatment. Acetone extracts from T. alliacea, T. simmleri and T. violacea resulted in IC50 values of 0.48 mg/mL, 0.72 mg/mL and 0.1 mg/mL, respectively. Treatment with water extracts showed minimal toxic effect indicated by higher IC50 values of 0.95 mg/mL, 2.49 mg/mL and 0.3 mg/mL for T. alliacea, T. simmleri and T. violacea, respectively. The LDH release by macrophages after 24 h treatment with acetone extracts was observed to be concentration dependent while treatment with water extracts did not induce LDH release. The zebra fish assay showed a lethal dose (LD50) for the T. violacea acetone crude extract of 20 μg/mL whereas that for water extract was 85 μg/mL. The observed teratogenic effects included scoliosis, edema of the pericardial cavity, retarded yolk resorption, hook-like/bent tail and shorter body length. In conclusion, the results from this study indicate that the extracts from the eight Tulbaghia species examined contain phytochemicals that may have the antioxidant, antimicrobial, anticancer and immunomodulatory properties. Extracts from T. violacea were observed to be the most potent. This study thus supports the use of T. violacea in treating bacterial and fungal infections in traditional medicine. The results of this study also confirm the anticancer potential of T. violacea. The immunomodulatory activity of the acetone and water extracts from T. violacea indicated a dominantly pro-inflammatory activity. Traditional medicine prepared form T. violacea may be of benefit to individuals with weak immune systems. The toxicity of selected Tulbaghia species was observed to be concentration, extract and time dependent. Therefore, traditional medicine prepared from Tulbaghia extracts should be taken with caution preferably in small doses over a short period of time. Future studies will focus on the identification of the bioactive compound(s) responsible for the antimicrobial, anticancer and immunomodulatory activities.
Oh, Myungmin. "Plant adaptation and enhancement of phytochemicals in lettuce in response to environmental stresses." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/673.
Повний текст джерелаBumbliauskinė, Jankauskaitė Lina. "Study of Perilla L. species and varieties cultivation, phytochemical composition and biological effect." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110309_111240-41438.
Повний текст джерелаPerilla L. genties vienmečiai vaistiniai augalai yra augaliniai imunomoduliatoriai, pasižymintys daugeliu farmakologinių poveikių. Darbo tikslas: Ištirti Vidurio Lietuvoje auginamų Perilla L. rūšių ir varietetų augimo ir vystymosi dėsningumus, biologiškai aktyvių junginių sudėtį ir jų įvai¬ravimą vegetacijos metu bei ekstraktų biologinį poveikį; atrinkti perspek¬tyvius augalus auginimui Lietuvoje. Uždaviniai: Ištirti ir nustatyti Perilla L. augimo dinamiką vegetacijos metu ir įvertinti klimatinių veiksnių įtaką augalų vegetacijai. Įvertinti Perilla L. vaistinės augalinės žaliavos kiekio dinamiką vege¬tacijos metu ir palyginti Perilla L. rūšių ir varietetų produk¬tyvumą. Nustatyti Perilla L. rūšių ir varietetų eterinio aliejaus kiekį auga¬luose vegetacijos metu ir identifikuoti augalų chemotipus. Nustatyti Perilla L. rūšių ir varietetų fenolinių rūgščių kokybinę sudėtį ir jų kitimo dėsningumus vegetacijos metu. Nustatyti Perilla L. rūšių ir varietetų flavonų komplekso sudėtį ir kitimo dinamiką vegetacijos metu. Nustatyti Perilla L. rūšių ir varietetų antocianidinų sudėtį bei kitimo dinamiką vegetacijos metu. Įvertinti Perilla L. rūšių ir varietetų žaliavų ekstraktų antiradikalinį aktyvumą. Ištirti Perilla L. rūšių ir varietetų ekstraktų poveikį žiurkės širdies mitochondrijų oksidaciniam fosforilinimui. Tyrimų rezultatai ir poveikiu pasižyminčių junginių identifikavimas atveria perspektyvas ateities tyrimams, kurie reikalingi kuriant preparatus iš perilių augalinių žaliavų.
Talag, Agela Hussain Mohammed. "Phytochemical investigation and biological activities of Sanicula europaea and Teucrium davaeanum : isolation and identification of some constituents of Sanicula europaea and Teucrium davaeanum and evaluation of the antioxidant activity of ethanolic extracts of both plants and cytotoxic activity of some isolated compounds." Thesis, University of Bradford, 2016. http://hdl.handle.net/10454/14482.
Повний текст джерелаMerlin, Nathalie. "Isolamento bioguiado de compostos com atividade antioxidante das folhas de Moringa oleífera." Universidade Tecnológica Federal do Paraná, 2017. http://repositorio.utfpr.edu.br/jspui/handle/1/2284.
Повний текст джерелаA espécie Moringa oleifera (Moringaceae) é uma planta que possui ampla aplicação industrial, alto valor nutricional e que, além disso, também exibe diversas atividades biológicas. Utilizadas na medicina popular, as folhas de M. oleifera já demonstraram possuir grande variedade de moléculas bioativas, inclusive compostos fenólicos, os quais são, possivelmente, os responsáveis pelo potencial antioxidante desta parte da planta. Apesar do crescente interesse sobre a espécie e, especificamente, sobre o seu potencial fitoquímico, são escassos os trabalhos que relatam o isolamento e a identificação dos compostos bioativos presentes nas suas folhas, principalmente em exemplares cultivados no Brasil. Sendo assim, os objetivos deste trabalho foram comparar dois métodos de extração de compostos bioativos e, na sequência, isolar bioguiadamente compostos com atividade antioxidante das folhas de M. oleifera coletadas no município de Itajaí (Santa Catarina, Brasil). O monitoramento bioguiado foi realizado com ensaios in vitro de determinação da atividade antioxidante: capacidade de redução do reagente Folin-Ciocalteau, FRAP, sequestro dos radicais DPPH e ABTS, além do ORAC. A técnica de CLAE-DAD foi utilizada para a caracterização química e acompanhamento das etapas do isolamento. A principal diferença prática entre os métodos de extração avaliados foi o preparo de um extrato hidroalcoólico inicial, no processo de extração 1. A partir dos resultados de determinação da atividade antioxidante, interpretados com o auxílio de ferramentas estatísticas (teste de Tukey e teste t pareado), foi possível perceber que o potencial das folhas de M. oleifera sofreu variações em função da forma de extração e dos solventes utilizados. Em geral, as frações produzidas a partir do processo de extração 1 apresentaram maior atividade antioxidante e perfis cromatográficos com sinais mais intensos. Com base nestes resultados, a fração obtida com acetato de etila, no processo de extração 1, foi selecionada para dar sequência ao isolamento bioguiado. A purificação desta fração em coluna aberta preenchida com sílica gel gerou 61 subfrações, as quais, após análise de CCD, foram agrupadas em 18. A avaliação da atividade antioxidante das subfrações agrupadas mostrou que cinco apresentavam grande potencial. Contudo, em função do rendimento, apenas três puderam dar sequência ao isolamento. Nesta etapa, uma análise adicional foi realizada: a determinação da atividade antioxidante por CLAE on-line com o ABTS•+, que permitiu definir quais dos compostos presentes nas três subfrações possuíam maior potencial e, por isso, seriam isolados. Desta forma, cinco compostos foram isolados pela técnica de CLAE semipreparativa, sendo que dois foram testados frente ao ensaio de sequestro do DPPH•. Os valores de EC50 obtidos, 30,34 e 38,72 μg/mL, estão próximos aos encontrados na literatura para substâncias isoladas de outras matrizes naturais. A técnica de RMN permitiu identificar um flavonol glicosilado. Os resultados deste trabalho mostraram que as folhas de M. oleifera coletadas em Itajaí são fonte de compostos fenólicos com potencial antioxidante e, por isso, promissoras para aplicação nas indústrias de cosméticos, alimentos e farmacêutica.
Moringa oleifera (Moringaceae) is a plant that has wide industrial application, high nutritional value and, also, exhibits several biological activities. Used in folk medicine, M. oleifera leaves have already been shown to possess a wide variety of bioactive molecules, including phenolic componds, which are possibly responsible for the antioxidant potential of this part of the plant. Despite the growing interest in this species and, specifically, in its phytochemical potential, there are few studies about the isolation and identification of bioactive compounds present in M. oleifera leaves, especially in specimens grown in Brazil. Therefore, the aims of this work were to compare two methods for extracting bioactive componds and, than, to isolate compounds with antioxidant activity of M. oleifera leaves collected in Itajaí (Santa Catarina, Brazil) by a bioguided study. The bioguided monitoring was carried out with in vitro assays to determine the antioxidant activity: Folin-Ciocalteau reagent reduction capacity, FRAP assay, DPPH and ABTS radical scavenging methods and, also, the ORAC assay. HPLC-DAD technique was used for chemical characterization and monitoring of the isolation stages. The main practical difference between the evaluated extraction methods was the preparation of an initial hydroalcoholic extract, in the extraction process 1. From the results of the antioxidant activity determination, interpreted with the aid of statistical tools (Tukey’s test and paired t-test), it was possible to see that the potential of M. oleifera leaves varied depending on the extraction form and on the solvents used. In general, the fractions prepared from the extraction process 1 showed higher antioxidant activity and chromatographic profiles with more intense signals. Based on these results, the fraction obtained with ethyl acetate, in the extraction process 1, was selected for the bioguided isolation. The purification of this fraction on an open column of silica gel generated 61 subfractions, which, after TLC analysis, were grouped in 18. The evaluation of the antioxidant activity of grouped subfractions showed that five of them presented great potential. However, depending on the yield, only three could follow the isolation. In this step, an additional analysis was performed: the determination of the antioxidant activity by an on-line HPLC method with the ABTS•+. This technique allowed defining which of the compounds presented in each subfraction had higher potential and, therefore, would be isolated. In this way, five compounds were isolated by semipreparative HPLC, two of them were tested by the DPPH• scavenging assay. The obtained EC50 values, 30.34 and 38.72 μg/mL, are close to those found in literature for substances isolated from other natural matrices. The NMR technique allowed identifying a flavonol glucoside. The results of this work showed that M. oleifera leaves collected in Itajaí are source of phenolic compounds with antioxidant potential and, therefore, are promising for the application in cosmetics, food and pharmaceutical industries.
Книги з теми "Phenolic phytochemicals"
Hoda, Muddasarul, Shanmugam Hemaiswarya, and Mukesh Doble. Role of Phenolic Phytochemicals in Diabetes Management. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8997-9.
Повний текст джерелаG, Fraga Cesar, ed. Plant phenolics and human health: Biochemistry, nutrition, and pharmacology. Hoboken, N.J: Wiley, 2010.
Знайти повний текст джерелаDoble, Mukesh, Muddasarul Hoda, and Shanmugam Hemaiswarya. Role of Phenolic Phytochemicals in Diabetes Management: Phenolic Phytochemicals and Diabetes. Springer Singapore Pte. Limited, 2020.
Знайти повний текст джерелаDoble, Mukesh, Muddasarul Hoda, and Shanmugam Hemaiswarya. Role of Phenolic Phytochemicals in Diabetes Management: Phenolic Phytochemicals and Diabetes. Springer, 2019.
Знайти повний текст джерелаG, Fraga Cesar, ed. Phenolic compounds of plant origin and human health: Biochemistry behind their nutritional and pharmacological value. Hoboken, N.J: Wiley, 2009.
Знайти повний текст джерелаFraga, Cesar G. Plant Phenolics and Human Health. Wiley & Sons, Incorporated, John, 2009.
Знайти повний текст джерелаThe Biochemistry of Plant Phenolics (Proceedings of the Phytochemical Society of Europe). Oxford University Press, USA, 1986.
Знайти повний текст джерелаHandbook on Gallic Acid: Natural Occurrences, Antioxidant Properties and Health Implications. Nova Science Pub Inc, 2013.
Знайти повний текст джерелаЧастини книг з теми "Phenolic phytochemicals"
Sauceda, Ana Elena Quirós, Sonia Guadalupe Sáyago-Ayerdi, Jesús Fernando Ayala-Zavala, Abraham Wall-Medrano, Laura A. de la Rosa, Gustavo A. González-Aguilar, and Emilio Álvarez-Parrilla. "Biological Actions of Phenolic Compounds." In Fruit and Vegetable Phytochemicals, 125–38. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119158042.ch6.
Повний текст джерелаSaltveit, Mikal E. "Synthesis and Metabolism of Phenolic Compounds." In Fruit and Vegetable Phytochemicals, 115–24. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119158042.ch5.
Повний текст джерелаXu, Zhimin. "Analysis Methods of Phenolic Acids." In Analysis of Antioxidant-Rich Phytochemicals, 69–104. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118229378.ch3.
Повний текст джерелаZhao, Hefei, and Changmou Xu. "Natural Phenolic Compounds as Anti-obesity and Anti-cardiovascular Disease Agent." In Dietary Phytochemicals, 205–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72999-8_11.
Повний текст джерелаMuñoz-De la Cruz, Fabiola C., Frida R. Cornejo-García, Nadia M. Vázquez-Díaz, Miriam A. Anaya-Loyola, and Teresa García-Gasca. "Grape Bagasse: A Potential Source of Phenolic Compounds." In Fruit and Vegetable Phytochemicals, 1055–66. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119158042.ch52.
Повний текст джерелаVelderrain Rodríguez, Gustavo R., Francisco J. Blancas-Benítez, Abraham Wall-Medrano, Sonia Guadalupe Sáyago-Ayerdi, and Gustavo A. González-Aguilar. "Bioaccessibility and Bioavailability of Phenolic Compounds from Tropical Fruits." In Fruit and Vegetable Phytochemicals, 155–64. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119158042.ch8.
Повний текст джерелаLuthria, Devanand, Ronita Ghatak, and Haiqiu Huang. "Phenolic Phytochemicals from Rye (Secale Cereale L)." In Cereals and Pulses, 71–84. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118229415.ch6.
Повний текст джерелаHoda, Muddasarul, Shanmugam Hemaiswarya, and Mukesh Doble. "Food Sources of Antidiabetic Phenolic Compounds." In Role of Phenolic Phytochemicals in Diabetes Management, 45–82. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8997-9_3.
Повний текст джерелаHoda, Muddasarul, Shanmugam Hemaiswarya, and Mukesh Doble. "Phenolic Phytochemicals: Sources, Biosynthesis, Extraction, and Their Isolation." In Role of Phenolic Phytochemicals in Diabetes Management, 13–44. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8997-9_2.
Повний текст джерелаHoda, Muddasarul, Shanmugam Hemaiswarya, and Mukesh Doble. "Diabetes: Its Implications, Diagnosis, Treatment, and Management." In Role of Phenolic Phytochemicals in Diabetes Management, 1–12. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8997-9_1.
Повний текст джерелаТези доповідей конференцій з теми "Phenolic phytochemicals"
Sahoo, Debasish, Virendra Vaishnav, Tanushree Chatterjee, and Navita Gupta. "HERBAL DIETARY SUPPLEMENT – A MODERN APPROACH IN COMPLEMENTARY AND ALTERNATIVE MEDICINE (CAM) IN HEALTH CARE SCIENCE." In International Conference on Public Health and Medical Sciences. Goodwood Conferences, 2022. http://dx.doi.org/10.35912/icophmeds.v1i1.24.
Повний текст джерелаSarkar, Biswatrish, Amrita chatterjee, and Prashanta Deb. "Influence of solvents and techniques for extraction of phenolic phytochemicals linked with antioxidant and enzyme inhibition potential of <em>Ocimum tenuiflorum </em>Linn." In 7th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecmc2021-11461.
Повний текст джерелаSenga, Kento, Kaci Ho, Jon-Paul Bingham, and Marisa Wall. "Nutrient Content and Carotenoid Bioaccessibility of Underutilized Taro Varieties from Hawaii." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/xxpa8618.
Повний текст джерелаAlmughraby, E., M. I. Kalimullin, A. A. Mostyakova, and O. A. Timofeeva. "VARIETY SPECIFICITY OF PHYTOCHEMICAL COMPOSITION B. OLERACEA L. VAR. ACEPHALA." In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS. DSTU-PRINT, 2020. http://dx.doi.org/10.23947/interagro.2020.1.340-343.
Повний текст джерелаWinkler-Moser, Jill. "Variations in Phytochemicals in DDGS Oil from 30 Ethanol Plants." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/ncxd5442.
Повний текст джерелаArcus, Mariana. "COMPARATIVE PHYTOCHEMICAL STUDY REGARDING THE CONTENT OF PHENOLIC COMPOUNDS WITH HEPATOPROTECTIVE ACTION." In SGEM 2014 Scientific SubConference on PSYCHOLOGY AND PSYCHIATRY, SOCIOLOGY AND HEALTHCARE, EDUCATION. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgemsocial2014/b12/s2.021.
Повний текст джерелаNASER, Estabraq H., and Haifaa R. ALANSARI. "COMPARATIVE STUDY OF THREE SEQUENTIAL EXTRACTION PROCEDURES FOR SECONDARY METABOLITES IN SEEDS OF PORTULACA OLERACEA PLANT BY GC.MS TECHNIQUE." In IV.International Scientific Congress of Pure,Appliedand Technological Sciences. Rimar Academy, 2022. http://dx.doi.org/10.47832/minarcongress4-30.
Повний текст джерелаSundowo, Andini, Nina Artanti, M. Hanafi, Minarti, and Gian Primahana. "Phytochemical screening, total phenolic, total flavonoids contents and antioxidant activity of cinchona ledgeriana leaves ethanol extract." In PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.5011924.
Повний текст джерелаShufyani, Fahma, David Ginting, Jhon Patar Sinurat, Tika Afriani, Muhammad Mabrur, and Ritmah Syah Putri. "Phytochemical Screening of Phenolic Levels from Extracted Bitter Mustard Leaves (Brassica juncen L. Czern.) using UV-Visible Spectrophotometer." In International Conference on Health Informatics and Medical Application Technology. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0009973605070514.
Повний текст джерелаAJALA, Mary Adejoke, Ambali Saka ABDULKAREEM, Abdulsalami Sanni KOVO, Jimoh Oladejo TIJANI, and Ayomide Samuel ADEYEMI. "ADSORPTION STUDIES OF ZINC, COPPER, AND LEAD IONS FROM PHARMACEUTICAL WASTEWATER ONTO SILVER MODIFIED CLAY ADSORBENT." In SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 2021 INTERNATIONAL VIRTUAL CONFERENCE. DR. D. SCIENTIFIC CONSULTING, 2022. http://dx.doi.org/10.48141/sbjchem.21scon.10_abstract_ajala.pdf.
Повний текст джерела