Добірка наукової літератури з теми "Phonon angular momentum"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phonon angular momentum".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Phonon angular momentum"

1

Yu Hang, Xu Xi-Fang, Niu Qian, and Zhang Li-Fa. "Phonon angular momentum and chiral phonons." Acta Physica Sinica 67, no. 7 (2018): 076302. http://dx.doi.org/10.7498/aps.67.20172407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhu, Zhihan, Wei Gao, Chunyuan Mu, and Hongwei Li. "Reversible orbital angular momentum photon–phonon conversion." Optica 3, no. 2 (2016): 212. http://dx.doi.org/10.1364/optica.3.000212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Park, Sungjoon, and Bohm-Jung Yang. "Phonon Angular Momentum Hall Effect." Nano Letters 20, no. 10 (2020): 7694–99. http://dx.doi.org/10.1021/acs.nanolett.0c03220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Krstovska, Danica, Eun Sang Choi та Eden Steven. "Giant Angular Nernst Effect in the Organic Metal α-(BEDT-TTF)2KHg(SCN)4". Magnetochemistry 9, № 1 (2023): 27. http://dx.doi.org/10.3390/magnetochemistry9010027.

Повний текст джерела
Анотація:
We have detected a large Nernst effect in the charge density wave state of the multiband organic metal α-(BEDT-TTF)2KHg(SCN)4. We find that apart from the phonon drag effect, the energy relaxation processes that govern the electron–phonon interactions and the momentum relaxation processes that determine the mobility of the q1D charge carriers have a significant role in observing the large Nernst signal in the CDW state in this organic metal. The emphasised momentum relaxation dynamics in the low field CDW state (CDW0) is a clear indicator of the presence of a significant carrier mobility that
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Todorov, Tchavdar N., Daniel Dundas, Anthony T. Paxton, and Andrew P. Horsfield. "Nonconservative current-induced forces: A physical interpretation." Beilstein Journal of Nanotechnology 2 (October 27, 2011): 727–33. http://dx.doi.org/10.3762/bjnano.2.79.

Повний текст джерела
Анотація:
We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalen
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Leckron, Kai, Alexander Baral, and Hans Christian Schneider. "Exchange scattering on ultrafast timescales in a ferromagnetic two-sublattice system." Applied Physics Letters 120, no. 10 (2022): 102407. http://dx.doi.org/10.1063/5.0080379.

Повний текст джерела
Анотація:
We investigate ultrafast spin dynamics due to exchange, electron–phonon and Elliott–Yafet spin-flip scattering in a model with a simple band structure and ferromagnetically coupled electronic sublattices (or more generally, subsystems). We show that this incoherent model of electronic dynamics leads to sublattice magnetization changes in opposite directions after ultrashort-pulse excitation. This prominent feature on an ultrafast timescale is related to a transfer of energy and angular momentum between the subsystems due to exchange scattering. Our calculations illustrate a possible incoherent
Стилі APA, Harvard, Vancouver, ISO та ін.
7

KOTA, V. K. B. "EIKONAL SCATTERING IN THE sdg INTERACTING BOSON MODEL: ANALYTICAL RESULTS IN THE SUsdg(3) LIMIT AND THEIR GENERALIZATIONS." Modern Physics Letters A 08, no. 11 (1993): 987–96. http://dx.doi.org/10.1142/s0217732393002464.

Повний текст джерела
Анотація:
General expression for the representation matrix elements in the SU sdg(3) limit of the sdg interacting boson model (sdgIBM) is derived that determine the scattering amplitude in the eikonal approximation for medium energy proton-nucleus scattering when the target nucleus is deformed and it is described by the SU sdg(3) limit. The SU sdg(3) result is generalized to two important situations: (i) when the target nucleus ground band states are described as states arising out of angular momentum projection from a general single Kπ = 0+ intrinsic state in sdg space; (ii) for rotational bands built
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Zhanghui, and Lin-Wang Wang. "Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms." Science Advances 5, no. 6 (2019): eaau8000. http://dx.doi.org/10.1126/sciadv.aau8000.

Повний текст джерела
Анотація:
Despite more than 20 years of development, the underlying physics of the laser-induced demagnetization process is still debated. We present a fast, real-time time-dependent density functional theory (rt-TDDFT) algorithm together with the phenomenological atomic Landau-Lifshitz-Gilbert model to investigate this problem. Our Hamiltonian considers noncollinear magnetic moment, spin-orbit coupling (SOC), electron-electron, electron-phonon, and electron-light interactions. The algorithm for time evolution achieves hundreds of times of speedup enabling calculation of large systems. Our simulations y
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Zhanghui, Jun-Wei Luo, and Lin-Wang Wang. "Revealing angular momentum transfer channels and timescales in the ultrafast demagnetization process of ferromagnetic semiconductors." Proceedings of the National Academy of Sciences 116, no. 39 (2019): 19258–63. http://dx.doi.org/10.1073/pnas.1907246116.

Повний текст джерела
Анотація:
Ultrafast control of magnetic order by light provides a promising realization for spintronic devices beyond Moore’s Law and has stimulated intense research interest in recent years. Yet, despite 2 decades of debates, the key question of how the spin angular momentum flows on the femtosecond timescale remains open. The lack of direct first-principle methods and pictures for such process exacerbates the issue. Here, we unravel the laser-induced demagnetization mechanism of ferromagnetic semiconductor GaMnAs, using an efficient time-dependent density functional theory approach that enables the di
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Miedema, P. S., M. Beye, R. Könnecke, G. Schiwietz, and A. Föhlisch. "The angular- and crystal-momentum transfer through electron–phonon coupling in silicon and silicon-carbide: similarities and differences." New Journal of Physics 16, no. 9 (2014): 093056. http://dx.doi.org/10.1088/1367-2630/16/9/093056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Phonon angular momentum"

1

Bistoni, Oliviero. "Intrinsic vibrational angular momentum driven by non-adiabatic effects in non-collinear magnetic systems." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/328688.

Повний текст джерела
Анотація:
In absence of external fields, vibrational modes of periodic systems are usually considered as linearly polarized and, as such, they do not carry angular momentum. Our work proves that non-adiabatic effects due to the electron-phonon coupling are time-reversal symmetry breaking interactions for the vibrational field in systems with non-collinear magnetism and large spin-orbit coupling. Since in these systems the deformation potential matrix elements are necessarily complex, a nonzero synthetic gauge field (Berry curvature) arises in the dynamic equations of the ionic motion. As a result, phono
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Géneaux, Romain. "Le moment angulaire de la lumière en génération d'harmoniques d'ordre élevé." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS474/document.

Повний текст джерела
Анотація:
Le moment angulaire est une quantité essentielle pour l'étude d'objets en interaction. Tout comme la matière, un rayonnement porte du moment angulaire. Il se décompose en deux composantes, moment angulaire de spin (MAS) et moment angulaire orbital (MAO). Chacune de ces composantes a des propriétés spécifiques et ont donné lieu à de nombreuses applications en utilisant de la lumière dans le domaine visible et infrarouge. Dans cette thèse, nous nous proposons d'étudier le comportement des deux types de moment angulaire de la lumière dans un processus très non-linéaire appelé génération d'harmoni
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chang, Yuan-Pin. "Novel probes of angular momentum polarization." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d3880edf-436a-415e-8a74-6b1c0fd26e65.

Повний текст джерела
Анотація:
New dynamical applications of quantum beat spectroscopy (QBS) to molecular dynamics are employed to probe the angular momentum polarization effects in photodissociation and molecular collisions. The magnitude and the dynamical behaviour of angular momentum alignment and orientation, two types of polarization, can be measured via QBS technique on a shot-by-shot basis. The first part of this thesis describes the experimental studies of collisional angular momentum depolarization for the electronically excited state radicals in the presence of the collider partners. Depolarization accompanies bot
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Luo, Siwei. "Photon Angular Momentum in Semi-classical Physics and Wave Propagation in Moving Medium." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/theses/1257.

Повний текст джерела
Анотація:
Photon and atom interaction is considered as resonance between angular momentum and photon's magnetic field. With the similar approach in classical oscillator, the same mathematical method is used to model the process of photon absorption and emission. In addition, Michelson-Morley experiment, Fizeau experiment and Sagnac effect has implications for properties of wave propagation in moving medium. It is proposed for interferometric methods that capable of either measuring angular velocity or measuring velocity.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tkachenko, Georgiy. "Optical trapping and manipulation of chiral microspheres controlled by the photon helicity." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0102/document.

Повний текст джерела
Анотація:
Exploiter le degré de liberté angulaire de la lumière pour contrôler les forces optiques ouvre une nouvelle voie pour la manipulation optique de systèmes matériels. Dans ce contexte, notre travail porte sur l’interaction lumière-matière en présence de chiralité, qu’elle soit matérielle ou ondulatoire. Expérimentalement, nous avons utilisé des gouttes de cristaux liquides cholestériques interagissant avec un ou plusieurs champs lumineux polarisés circulairement et nous avons apporté une description quantitative de nos observations. Notre principal résultat correspond à la démonstration que la p
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maccalli, Stefania. "Development and testing of quasi-optical devices for Photon Orbital Angular Momentum manipulation at millimetre wavelengths." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/development-and-testing-of-quasioptical-devices-for-photon-orbital-angular-momentum-manipulation-at-millimetre-wavelengths(91ab3ac8-62c5-4d3a-b063-4d162d3b61a5).html.

Повний текст джерела
Анотація:
It is well known that light can carry two different kind of angular momentum that together form the total angular momentum of photons. These two forms are the spin orbital angular momentum, associated with the circular polarisation of light, and the orbital angular momentum of light associated with a wavefront tilted with respect to the propagation axis. Any tilted wavefront generates an orbital component of the angular momentum but there are some special cases in which this property becomes particularly interesting. It is the case of optical vortices which form when the waveform is continuous
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Djordjevic, Ivan B. "Integrated Optics Modules Based Proposal for Quantum Information Processing, Teleportation, QKD, and Quantum Error Correction Employing Photon Angular Momentum." IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/615122.

Повний текст джерела
Анотація:
To address key challenges for both quantum communication and quantum computing applications in a simultaneous manner, we propose to employ the photon angular momentum approach by invoking the well-known fact that photons carry both the spin angular momentum (SAM) and the orbital angular momentum (OAM). SAM is associated with polarization, while OAM is associated with azimuthal phase dependence of the complex electric field. Given that OAM eigenstates are mutually orthogonal, in principle, an arbitrary number of bits per single photon can be transmitted. The ability to generate/analyze states w
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chopinaud, Aurélien. "Atomes et vortex optiques : conversion de moments orbitaux de lumière en utilisant la transition à deux photons 5S-5D du rubidium." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS155/document.

Повний текст джерела
Анотація:
Le moment orbital angulaire (OAM) de la lumière est une grandeur quantifiée associée à la phase d’un vortex optique et est actuellement une des variables explorées pour les technologies quantiques.Dans ce contexte, cette thèse étudie expérimentalement la conversion de vortex optiques par une vapeur de rubidium, via la transition Raman stimulée à deux photons 5S₁/₂ − 5D₅/₂. Quand les atomes sont soumis à deux lasers respectivement à 780 nm et 776 nm, ils génèrent des rayonnements cohérents, infrarouge à 5,23 μm et bleu à 420 nm. On examine le rayonnement bleu lorsque l’un des lasers ou les deux
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dixon, Mark. "Studies of spin and charge momentum densities using Compton scattering." Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vitullo, Dashiell. "Propagation of Photons through Optical Fiber: Spin-Orbit Interaction and Nonlinear Phase Modulation." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20708.

Повний текст джерела
Анотація:
We investigate two medium-facilitated interactions between properties of light upon propagation through optical fiber. The first is interaction between the spin and intrinsic orbital angular momentum in a linear optical medium. This interaction gives rise to fine structure in the longitudinal momenta of fiber modes and manifests in rotational beating effects. We probe those beating effects experimentally in cutback experiments, where small segments are cut from the output of a fiber to probe the evolution of both output polarization and spatial orientation, and find agreement between theoretic
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Phonon angular momentum"

1

Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1935-, Allen L., Barnett S. M, and Padgett Miles J, eds. Optical angular momentum. Institute of Physics Pub., 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Twisted photons: Applications of light with orbital angular momentum. Wiley-VCH, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore Pte. Limited, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore Pte. Limited, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barnett, S. M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Barnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barnett, Stephen, Les Allen, and Miles Padgett. Optical Angular Momentum. Taylor & Francis Group, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Phonon angular momentum"

1

Hamada, Masato. "Phonon Thermal Edelstein Effect." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hamada, Masato. "Magnetoelectric Effect for Phonons." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hamada, Masato. "Background." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamada, Masato. "Introduction." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hamada, Masato. "Conclusion." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hamada, Masato. "Conversion Between Spins and Mechanical Rotations." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Keller, Ole. "Photon Angular Momentum." In Quantum Theory of Near-Field Electrodynamics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17410-0_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Loke, Vincent L. Y., Theodor Asavei, Simon Parkin, Norman R. Heckenberg, Halina Rubinsztein-Dunlop, and Timo A. Nieminen. "Driving Optical Micromachines with Orbital Angular Momentum." In Twisted Photons. Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Allen, Les, and Miles Padgett. "The Orbital Angular Momentum of Light: An Introduction." In Twisted Photons. Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fickler, Robert. "Entanglement of High Angular Momenta." In Quantum Entanglement of Complex Structures of Photons. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22231-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Phonon angular momentum"

1

Zhu, Zhihan, Liwen Sheng, Chunyuan Mu, and Wei Gao. "Orbital Angular Momentum in Photon-Phonon Coupling." In CLEO: QELS_Fundamental Science. OSA, 2016. http://dx.doi.org/10.1364/cleo_qels.2016.ftu3a.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nemirovsky-Levy, Liat, Uzi Pereg, and Mordechai Segev. "Increasing Communication Rates Using Photonic Hyperentangled States." In Frontiers in Optics. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jtu5a.41.

Повний текст джерела
Анотація:
We propose a mechanism for increasing transmission rate of quantum communication channels, by multiplexing spin and multiple orbital angular momentum states on a single photon, transmitting the photon, and demultiplexing them to different photons.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Djordjevic, Ivan B., and Yequn Zhang. "Photon angular momentum based multidimensional quantum key distribution." In 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014. http://dx.doi.org/10.1109/icton.2014.6876370.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tauchert, S. R., M. Volkov, D. Ehberger, et al. "Polarized Phonons Carry Angular Momentum in Ultrafast Demagnetization." In International Conference on Ultrafast Phenomena. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu2a.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Elias, Nicholas M. "Primum Non Torquere∗ - Photon Orbital Angular Momentum in Astronomy." In Propagation Through and Characterization of Distributed Volume Turbulence. OSA, 2013. http://dx.doi.org/10.1364/pcdvt.2013.ptu3f.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Franke-Arnold, Sonja. "Orbital angular momentum of photons, atoms, and electrons." In SPIE OPTO, edited by Jesper Glückstad, David L. Andrews, and Enrique J. Galvez. SPIE, 2013. http://dx.doi.org/10.1117/12.2002984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tang, Ruikai, Xiongjie Li, Wenjie Wu, Haifeng Pan, Heping Zeng, and E. Wu. "Quantum information interface for orbital angular momentum photons." In CLEO: Applications and Technology. OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jw2a.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Yongnan, Ling-Jun Kong, Zhi-Cheng Ren, Chenghou Tu, and Hui-Tian Wang. "Trajectory-based unveiling of angular momentum of photons." In Frontiers in Optics. OSA, 2014. http://dx.doi.org/10.1364/fio.2014.ftu1c.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Xiao, Dong Beom Kim, Virginia O. Lorenz, and Siddharth Ramachandran. "Shaping Biphoton Spectral Correlations with Orbital Angular Momentum Fiber Modes." In Quantum 2.0. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qth4b.1.

Повний текст джерела
Анотація:
We leverage large channel-count optical fibers supporting orbital angular momentum (OAM) modes to show that near-infrared to telecom photon pairs can be engineered to have arbitrary correlations by choice of mode combinations.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jha, A. K., B. Jack, E. Yao, et al. "Fourier Relationship Between Angular Position and Orbital Angular Momentum of Entangled Photons." In Laser Science. OSA, 2008. http://dx.doi.org/10.1364/ls.2008.lthe2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!