Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Phosphatidyl-myo-Inositol Mannosides.

Статті в журналах з теми "Phosphatidyl-myo-Inositol Mannosides"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-20 статей у журналах для дослідження на тему "Phosphatidyl-myo-Inositol Mannosides".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Scherman, Hataichanok, Devinder Kaur, Ha Pham, Henrieta Škovierová, Mary Jackson, and Patrick J. Brennan. "Identification of a Polyprenylphosphomannosyl Synthase Involved in the Synthesis of Mycobacterial Mannosides." Journal of Bacteriology 191, no. 21 (August 28, 2009): 6769–72. http://dx.doi.org/10.1128/jb.00431-09.

Повний текст джерела
Анотація:
ABSTRACT We report on the identification of a glycosyltransferase (GT) from Mycobacterium tuberculosis H37Rv, Rv3779, of the membranous GT-C superfamily responsible for the direct synthesis of polyprenyl-phospho-mannopyranose and thus indirectly for lipoarabinomannan, lipomannan, and the higher-order phosphatidyl-myo-inositol mannosides.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sancho-Vaello, Enea, David Albesa-Jové, Ane Rodrigo-Unzueta, and Marcelo E. Guerin. "Structural basis of phosphatidyl-myo-inositol mannosides biosynthesis in mycobacteria." Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1862, no. 11 (November 2017): 1355–67. http://dx.doi.org/10.1016/j.bbalip.2016.11.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gilleron, Martine, Buko Lindner, and Germain Puzo. "MS/MS Approach for Characterization of the Fatty Acid Distribution on Mycobacterial Phosphatidyl-myo-inositol Mannosides." Analytical Chemistry 78, no. 24 (December 2006): 8543–48. http://dx.doi.org/10.1021/ac061574a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Front, Sophie, Nathalie Court, Marie-Laure Bourigault, Stéphanie Rose, Bernhard Ryffel, François Erard, Valérie F. J. Quesniaux, and Olivier R. Martin. "Phosphatidyl myo-Inositol Mannosides Mimics Built on an Acyclic or Heterocyclic Core: Synthesis and Anti-inflammatory Properties." ChemMedChem 6, no. 11 (September 7, 2011): 2081–93. http://dx.doi.org/10.1002/cmdc.201100291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Omahdi, Zakaria, Yuto Horikawa, Masamichi Nagae, Kenji Toyonaga, Akihiro Imamura, Koichi Takato, Takamasa Teramoto, Hideharu Ishida, Yoshimitsu Kakuta, and Sho Yamasaki. "Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR." Journal of Biological Chemistry 295, no. 17 (March 5, 2020): 5807–17. http://dx.doi.org/10.1074/jbc.ra120.012491.

Повний текст джерела
Анотація:
The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8–2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168–170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schami, Alyssa, Wei Ke, Anna Allué-Guardia, Angélica M. Olmo-Fontánez, John Chan, and Jordi B. Torrelles. "The Rv2623-Rv1747 interaction influences phosphatidyl-myo-inositol levels on the cell envelope of Mycobacterium tuberculosis." Journal of Immunology 208, no. 1_Supplement (May 1, 2022): 58.19. http://dx.doi.org/10.4049/jimmunol.208.supp.58.19.

Повний текст джерела
Анотація:
Abstract Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), has a complex cell envelope that provides a barrier of protection to various environments. Peripheral lipids on the M.tb cell envelope act as virulent factors influencing the host immune response to infection. Of these, some phosphatidyl-myo-inositol mannosides (PIMs) and their associated lipoglycans (lipomannan; mannose-capped lipoarabinomannan) influence M.tb-host interactions by increasing phagocytosis, blocking the maturation of M.tb-containing phagosomes, and increasing the anti-inflammatory response of infected macrophages. However, there is limited knowledge regarding how M.tb regulates PIMs levels, and how this regulation influences infection outcomes. In our previous studies, we hypothesized that Rv2623 and Rv1747 work together to regulate PIMs on the M.tb cell surface. Indeed, deleting the universal stress protein Rv2623 increases PIMs levels, growth, and virulence in vivo; while deleting the ABC transporter Rv1747 decreases PIMs levels. Here we investigate the mechanistic regulation of M.tb PIMs levels and its impact on growth and pathogenesis in vitro by assessing multiple M.tb strains with Rv2623 or Rv1747 mutated at different amino acids. Depending on the mutation, Rv2623 interacts with Rv1747 to modulate M.tb cell envelope PIMs levels at different degrees. Mutants with increased PIMs levels have increased growth in macrophages, and PIMs levels on the M.tb cell envelope may also correlate to resistance to certain anti-TB drugs. Overall, our data indicate that Rv2623 negatively regulates Rv1747 to modulate PIMs levels on the M.tb cell envelope, ultimately influencing growth and M.tb-host interactions in vitro and in vivo. Supported by grants from NIH/NIAID (1R01AI146340-01A1)
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Torrelles, Jordi B., Abul K. Azad, and Larry S. Schlesinger. "Fine Discrimination in the Recognition of Individual Species of Phosphatidyl-myo-Inositol Mannosides fromMycobacterium tuberculosisby C-Type Lectin Pattern Recognition Receptors." Journal of Immunology 177, no. 3 (July 18, 2006): 1805–16. http://dx.doi.org/10.4049/jimmunol.177.3.1805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cala-De Paepe, Diane, Emilie Layre, Gaëlle Giacometti, Luis F. Garcia-Alles, Lucia Mori, Daniel Hanau, Gennaro de Libero, Henri de la Salle, Germain Puzo, and Martine Gilleron. "Deciphering the Role of CD1e Protein in Mycobacterial Phosphatidyl-myo-inositol Mannosides (PIM) Processing for Presentation by CD1b to T Lymphocytes." Journal of Biological Chemistry 287, no. 37 (July 10, 2012): 31494–502. http://dx.doi.org/10.1074/jbc.m112.386300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rhoades, Elizabeth R., Angela S. Archambault, Rebecca Greendyke, Fong-Fu Hsu, Cassandra Streeter та Thomas F. Byrd. "Mycobacterium abscessusGlycopeptidolipids Mask Underlying Cell Wall Phosphatidyl-myo-Inositol Mannosides Blocking Induction of Human Macrophage TNF-α by Preventing Interaction with TLR2". Journal of Immunology 183, № 3 (13 липня 2009): 1997–2007. http://dx.doi.org/10.4049/jimmunol.0802181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Patel, Onisha, Rajini Brammananth, Weiwen Dai, Santosh Panjikar, Ross L. Coppel, Isabelle S. Lucet, and Paul K. Crellin. "Crystal structure of the putative cell-wall lipoglycan biosynthesis protein LmcA from Mycobacterium smegmatis." Acta Crystallographica Section D Structural Biology 78, no. 4 (March 11, 2022): 494–508. http://dx.doi.org/10.1107/s2059798322001772.

Повний текст джерела
Анотація:
The bacterial genus Mycobacterium includes important pathogens, most notably M. tuberculosis, which infects one-quarter of the entire human population, resulting in around 1.4 million deaths from tuberculosis each year. Mycobacteria, and the closely related corynebacteria, synthesize a class of abundant glycolipids, the phosphatidyl-myo-inositol mannosides (PIMs). PIMs serve as membrane anchors for hyperglycosylated species, lipomannan (LM) and lipoarabinomannan (LAM), which are surface-exposed and modulate the host immune response. Previously, in studies using the model species Corynebacterium glutamicum, NCgl2760 was identified as a novel membrane protein that is required for the synthesis of full-length LM and LAM. Here, the first crystal structure of its ortholog in Mycobacterium smegmatis, MSMEG_0317, is reported at 1.8 Å resolution. The structure revealed an elongated β-barrel fold enclosing two distinct cavities and one α-helix extending away from the β-barrel core, resembling a `cone with a flake' arrangement. Through xenon derivatization and structural comparison with AlphaFold2-derived predictions of the M. tuberculosis homolog Rv0227c, structural elements were identified that may undergo conformational changes to switch from `closed' to `open' conformations, allowing cavity access. An AlphaFold2-derived NCgl2760 model predicted a smaller β-barrel core with an enclosed central cavity, suggesting that all three proteins, which were collectively termed LmcA, may have a common mechanism of ligand binding through these cavities. These findings provide new structural insights into the biosynthetic pathway for a family of surface lipoglycans with important roles in mycobacterial pathogenesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

KREMER, Laurent, Sudagar S. GURCHA, Pablo BIFANI, Paul G. HITCHEN, Alain BAULARD, Howard R. MORRIS, Anne DELL, Patrick J. BRENNAN та Gurdyal S. BESRA. "Characterization of a putative α-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis". Biochemical Journal 363, № 3 (24 квітня 2002): 437–47. http://dx.doi.org/10.1042/bj3630437.

Повний текст джерела
Анотація:
Phosphatidyl-myo-inositol mannosides (PIMs), lipomannan (LM) and lipoarabinomannan (LAM) are an important class of bacterial factors termed modulins that are found in tuberculosis and leprosy. Although their structures are well established, little is known with respect to the molecular aspects of the biosynthetic machinery involved in the synthesis of these glycolipids. On the basis of sequence similarity to other glycosyltransferases and our previous studies defining an α-mannosyltransferase from Mycobacterium tuberculosis, named PimB [Schaeffer, Khoo, Besra, Chatterjee, Brennan, Belisle and Inamine (1999) J. Biol. Chem. 274, 31625–31631], which catalysed the formation of triacyl (Ac3)-PIM2 (i.e. the dimannoside), we have identified a related gene from M. tuberculosis CDC1551, now designated pimC. The use of a cell-free assay containing GDP-[14C]mannose, amphomycin and membranes from Myobacterium smegmatis overexpressing PimC led to the synthesis of a new alkali-labile PIM product. Fast-atom-bombardment MS established the identity of the new enzymically synthesized product as Ac3PIM3 (i.e. the trimannoside). The results indicate that pimC encodes an α-mannosyltransferase involved in Ac3PIM3 biosynthesis. However, inactivation of pimC in Myobacterium bovis Bacille Calmette—Guérin (BCG) did not affect the production of higher PIMs, LM and LAM when compared with wild-type M. bovis BCG, suggesting the existence of redundant gene(s) or an alternate pathway that may compensate for this PimC deficiency. Further analyses, which compared the distribution of pimC in a panel of M. tuberculosis strains, revealed that pimC was present in only 22% of the clinical isolates examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hsu, Fong-Fu, John Turk, Róisín M. Owens, Elizabeth R. Rhoades, and David G. Russell. "Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus calmette guérin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and lyso-PIMs." Journal of the American Society for Mass Spectrometry 18, no. 3 (March 2007): 466–78. http://dx.doi.org/10.1016/j.jasms.2006.10.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hsu, Fong-Fu, John Turk, Róisín M. Owens, Elizabeth R. Rhoades, and David G. Russell. "Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus calmette gúerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and diacyl-PIMs." Journal of the American Society for Mass Spectrometry 18, no. 3 (March 2007): 479–92. http://dx.doi.org/10.1016/j.jasms.2006.10.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Batt, Sarah M., Talat Jabeen, Arun K. Mishra, Natacha Veerapen, Karin Krumbach, Lothar Eggeling, Gurdyal S. Besra, and Klaus Fütterer. "Acceptor Substrate Discrimination in Phosphatidyl-myo-inositol Mannoside Synthesis." Journal of Biological Chemistry 285, no. 48 (September 15, 2010): 37741–52. http://dx.doi.org/10.1074/jbc.m110.165407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Guerin, Marcelo E., Jana Korduláková, Pedro M. Alzari, Patrick J. Brennan, and Mary Jackson. "Molecular Basis of Phosphatidyl-myo-inositol Mannoside Biosynthesis and Regulation in Mycobacteria." Journal of Biological Chemistry 285, no. 44 (August 27, 2010): 33577–83. http://dx.doi.org/10.1074/jbc.r110.168328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Angala, Shiva kumar, Wei Li, Zuzana Palčeková, Lu Zou, Todd L. Lowary, Michael R. McNeil та Mary Jackson. "Cloning and Partial Characterization of an Endo-α-(1→6)-d-Mannanase Gene from Bacillus circulans". International Journal of Molecular Sciences 20, № 24 (11 грудня 2019): 6244. http://dx.doi.org/10.3390/ijms20246244.

Повний текст джерела
Анотація:
Mycobacteria produce two major lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), whose broad array of biological activities are tightly related to the fine details of their structure. However, the heterogeneity of these molecules in terms of internal and terminal covalent modifications and complex internal branching patterns represent significant obstacles to their structural characterization. Previously, an endo-α-(1→6)-D-mannanase from Bacillus circulans proved useful in cleaving the mannan backbone of LM and LAM, allowing the reducing end of these molecules to be identified as Manp-(1→6) [Manp-(1→2)]-Ino. Although first reported 45 years ago, no easily accessible form of this enzyme was available to the research community, a fact that may in part be explained by a lack of knowledge of its complete gene sequence. Here, we report on the successful cloning of the complete endo-α-(1→6)-D-mannanase gene from Bacillus circulans TN-31, herein referred to as emn. We further report on the successful production and purification of the glycosyl hydrolase domain of this enzyme and its use to gain further insight into its substrate specificity using synthetic mannoside acceptors as well as LM and phosphatidyl-myo-inositol mannoside precursors purified from mycobacteria.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Tatituri, Raju V. V., Petr A. Illarionov, Lynn G. Dover, Jerome Nigou, Martine Gilleron, Paul Hitchen, Karin Krumbach, et al. "Inactivation of Corynebacterium glutamicum NCgl0452 and the Role of MgtA in the Biosynthesis of a Novel Mannosylated Glycolipid Involved in Lipomannan Biosynthesis." Journal of Biological Chemistry 282, no. 7 (December 19, 2006): 4561–72. http://dx.doi.org/10.1074/jbc.m608695200.

Повний текст джерела
Анотація:
Mycobacterium tuberculosis PimB has been demonstrated to catalyze the addition of a mannose residue from GDP-mannose to a monoacylated phosphatidyl-myo-inositol mannoside (Ac1PIM1) to generate Ac1PIM2. Herein, we describe the disruption of its probable orthologue Cg-pimB and the chemical analysis of glycolipids and lipoglycans isolated from wild type Corynebacterium glutamicum and the C. glutamicum::pimB mutant. Following a careful analysis, two related glycolipids, Gl-A and Gl-X, were found in the parent strain, but Gl-X was absent from the mutant. The biosynthesis of Gl-X was restored in the mutant by complementation with either Cg-pimB or Mt-pimB. Subsequent chemical analyses established Gl-X as 1,2-di-O-C16/C18:1-(α-d-mannopyranosyl)-(1→4)-(α-d-glucopyranosyluronic acid)-(1→3)-glycerol (ManGlcAGroAc2) and Gl-A as the precursor, GlcAGroAc2. In addition, C. glutamicum::pimB was still able to produce Ac1PIM2, suggesting that Cg-PimB catalyzes the synthesis of ManGlcAGroAc2 from GlcAGroAc2. Isolation of lipoglycans from C. glutamicum led to the identification of two related lipoglycans. The larger lipoglycan possessed a lipoarabinomannan-like structure, whereas the smaller lipoglycan was similar to lipomannan (LM). The absence of ManGlcA-GroAc2 in C. glutamicum::pimB led to a severe reduction in LM. These results suggested that ManGlcAGroAc2 was further extended to an LM-like molecule. Complementation of C. glutamicum::pimB with Cg-pimB and Mt-pimB led to the restoration of LM biosynthesis. As a result, Cg-PimB, which we have assigned as MgtA, is now clearly defined as a GDP-mannose-dependent α-mannosyltransferase from our in vitro analyses and is involved in the biosynthesis of ManGlcAGroAc2.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Liu, Yaqi, Chelsea M. Brown, Nuno Borges, Rodrigo N. Nobre, Satchal Erramilli, Meagan Belcher Dufrisne, Brian Kloss, et al. "Mechanistic studies of mycobacterial glycolipid biosynthesis by the mannosyltransferase PimE." Nature Communications 16, no. 1 (April 29, 2025). https://doi.org/10.1038/s41467-025-57843-1.

Повний текст джерела
Анотація:
Abstract Tuberculosis (TB), a leading cause of death among infectious diseases globally, is caused by Mycobacterium tuberculosis (Mtb). The pathogenicity of Mtb is largely attributed to its complex cell envelope, which includes a class of glycolipids called phosphatidyl-myo-inositol mannosides (PIMs). These glycolipids maintain the integrity of the cell envelope, regulate permeability, and mediate host-pathogen interactions. PIMs comprise a phosphatidyl-myo-inositol core decorated with one to six mannose residues and up to four acyl chains. The mannosyltransferase PimE catalyzes the transfer of the fifth PIM mannose residue from a polyprenyl phosphate-mannose (PPM) donor. This step contributes to the proper assembly and function of the mycobacterial cell envelope; however, the structural basis for substrate recognition and the catalytic mechanism of PimE remain poorly understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of PimE from Mycobacterium abscessus in its apo and product-bound form. The structures reveal a distinctive binding cavity that accommodates both donor and acceptor substrates/products. Key residues involved in substrate coordination and catalysis were identified and validated via in vitro assays and in vivo complementation, while molecular dynamics simulations delineated access pathways and binding dynamics. Our integrated approach provides comprehensive insights into PimE function and informs potential strategies for anti-TB therapeutics.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bhattacharje, Gourab, Amit Ghosh, and Amit Kumar Das. "Deciphering the mannose transfer mechanism of mycobacterial PimE by molecular dynamics simulations." Glycobiology, December 1, 2023. http://dx.doi.org/10.1093/glycob/cwad096.

Повний текст джерела
Анотація:
Abstract Phosphatidyl-myo-inositol mannosides (PIMs), Lipomannan (LM), and Lipoarabinomannan (LAM) are essential components of the cell envelopes of mycobacteria. At the beginning of the biosynthesis of these compounds, phosphatidylinositol (PI) is mannosylated and acylated by various enzymes to produce Ac 1/2PIM4, which is used to synthesize either Ac1/2PIM6 or LM/LAM. The protein PimE, a membrane-bound glycosyltransferase (GT-C), catalyzes the addition of a mannose group to Ac1PIM4 to produce Ac1PIM5, using polyprenolphosphate mannose (PPM) as the mannose donor. PimE-deleted Mycobacterium smegmatis (Msmeg) showed structural deformity and increased antibiotic and copper sensitivity. Despite knowing that the mutation D58A caused inactivity in Msmeg, how PimE catalyzes the transfer of mannose from PPM to Ac1/2PIM4 remains unknown. In this study, analyzing the AlphaFold structure of PimE revealed the presence of a tunnel through the D58 residue with two differently charged gates. Molecular docking suggested PPM binds to the hydrophobic tunnel gate, whereas Ac1PIM4 binds to the positively charged tunnel gate. Molecular dynamics (MD) simulations further demonstrated the critical roles of the residues N55, F87, L89, Y163, Q165, K197, L198, R251, F277, W324, H326, and I375 in binding PPM and Ac1PIM4. The mutation D58A caused a faster release of PPM from the catalytic tunnel, explaining the loss of PimE activity. Along with a hypothetical mechanism of mannose transfer by PimE, we also observe the presence of tunnels through a negatively charged aspartate or glutamate with two differently-charged gates among most GT-C enzymes. Common hydrophobic gates of GT-C enzymes probably harbour sugar donors, whereas, differently-charged tunnel gates accommodate various sugar-acceptors.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Franklin, Aaron, Vivian C. Salgueiro, Abigail J. Layton, Rudi Sullivan, Todd Mize, Lucía Vázquez-Iniesta, Samuel T. Benedict, et al. "The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth." Nature Communications 15, no. 1 (July 9, 2024). http://dx.doi.org/10.1038/s41467-024-50051-3.

Повний текст джерела
Анотація:
AbstractMycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are trafficked from the bacterium to the host via unknown mechanisms. Arabinomannan is thought to be a capsular derivative of these molecules, lacking a lipid anchor. However, the mechanism by which this material is generated has yet to be elucidated. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH (Rv0365c in Mycobacterium tuberculosis) which specifically cleaves α−1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures, potentially implicating arabinomannan as a signal for growth phase transition. Finally, we demonstrate that LamH is important for M. tuberculosis survival in macrophages.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії