Статті в журналах з теми "Photoanode hybride"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Photoanode hybride.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Photoanode hybride".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

An, Pengda, Baopeng Yang, Ning Zhang, Hongmei Li, and Min Liu. "Hybrid TaON/LaTiO2N photoelectrode for water oxidation." Transportation Safety and Environment 1, no. 3 (December 12, 2019): 212–19. http://dx.doi.org/10.1093/tse/tdz020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Efficient and stable photoelectrodes for water oxidation are highly desirable in the field of photoelectrochemical (PEC) water splitting. However, photoelectrodes with low externally applied bias usually exhibit weak photocurrent and vice versa. Herein, novel and efficient CoOx-TaON/LTON composite photoanodes have been successfully prepared by a microwave assisted method followed with a particle transfer procedure. The obtained photoanode generated an anodic photocurrent of ~7.2 mA cm−2 at 1.2 VRHE and initiated the anodic photourrent at ~0.5 VRHE. The HC-STH of the composite photoelectrode reached 1.0% at 1.2 VRHE. Further, stoichiometric oxygen and hydrogen are stably produced on the photoanode and the counter electrode with a Faraday efficiency of unity for 2 h.
2

TAHIR, MUHAMMAD BILAL, HASNAIN JAVAD, KHALID NADEEM, and A. MAJID. "ZnO THIN FILMS: RECENT DEVELOPMENT, FUTURE PERSPECTIVES AND APPLICATIONS FOR DYE SENSITIZED SOLAR CELL." Surface Review and Letters 25, no. 07 (October 2018): 1930001. http://dx.doi.org/10.1142/s0218625x19300016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dye sensitized solar cells (DSSCs) provide promisingly, organic–inorganic, clean hybrid, cost effective and efficient molecular solar cell devices. Due to their distinct and multifunctional qualities, zinc oxide (ZnO) nanostructures are promising materials used to create photoanodes for DSSCs due to the availability of larger surface area than bulk sheet substance, effectual light-dispersing centers, and when mixed with titanium dioxide they produce a core–shell formation that diminishes the coalition rate and provide direct charge. Moreover, ZnO thin sheets have been broadly observed due of its potential application in various fields i.e. piezoelectric, photovoltaic, pyroelectric and optoelectronic utilization. This review studies the recent advances in the fabrication of zinc oxide-based photovoltaics; synthesis of ZnO nanostructures with variable morphologies including thin sheets, nanotubes, nanorods, nanoflowers, nanofibers and factors that control the growth and morphologies of these nanospecies and part of crystallographic planes for the fabrication of various zinc oxide nanoshapes. In the next part of this paper, numerous fabrication routes — doped and undoped ZnO thin films — are discussed and different parameters of photovoltaics are investigated, e.g. efficiency pre and post annealing temperatures, fill factors spinning speed and coating time, additives, nature of precursor which impacts on morphological and optical parameters of these sheets. In short, this review is dedicated to the ZnO photoanode, its properties, issues related to ZnO photoanode, various improvement approaches, fabrication methods successfully trialled so far followed by market potential of the DSSC technology, conclusion and recommendations
3

Yildirim, Onur, Matteo Bonomo, Nadia Barbero, Cesare Atzori, Bartolomeo Civalleri, Francesca Bonino, Guido Viscardi, and Claudia Barolo. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies." Energies 13, no. 21 (October 26, 2020): 5602. http://dx.doi.org/10.3390/en13215602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are two innovative classes of porous coordination polymers. MOFs are three-dimensional materials made up of secondary building blocks comprised of metal ions/clusters and organic ligands whereas COFs are 2D or 3D highly porous organic solids made up by light elements (i.e., H, B, C, N, O). Both MOFs and COFs, being highly conjugated scaffolds, are very promising as photoactive materials for applications in photocatalysis and artificial photosynthesis because of their tunable electronic properties, high surface area, remarkable light and thermal stability, easy and relative low-cost synthesis, and structural versatility. These properties make them perfectly suitable for photovoltaic application: throughout this review, we summarize recent advances in the employment of both MOFs and COFs in emerging photovoltaics, namely dye-sensitized solar cells (DSSCs) organic photovoltaic (OPV) and perovskite solar cells (PSCs). MOFs are successfully implemented in DSSCs as photoanodic material or solid-state sensitizers and in PSCs mainly as hole or electron transporting materials. An innovative paradigm, in which the porous conductive polymer acts as standing-alone sensitized photoanode, is exploited too. Conversely, COFs are mostly implemented as photoactive material or as hole transporting material in PSCs.
4

Huang, Chan-yan, Yan Sun, Xin Chen, and Ning Dai. "Multilayer Hybrid Structure of ZnO Nanorod Arrays Imbedded in TiO2 Network as Photoanode." MRS Proceedings 1493 (2013): 111–16. http://dx.doi.org/10.1557/opl.2013.420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTWe developed a multilayer hybrid structure by imbedding ZnO nanorod arrays in TiO2 network for each layer, for the pourese of taking ZnO nanorods as the highway of electron transport. ZnO nanorods can be prepared by hydrothermal process, which is simple, low cost and easy control. The ZnO nanorod arrays were grown by reported hydrothermal method, then TiO2 network was constructed by spin-coating titanium precursor sol on ZnO nanorod arrays and calcining. The electrochemical impedance spectrum measurements were taken to study the electrical properties of this kind of hybrids, and the results indicated that the effective electron lifetime reaches a magnitude of microsecond which is similar to the pure ZnO nanorod arrays. It reveals to us that ZnO nanorods may dominate the electrical properties of this nano-hybrid structure.
5

Wang, Wangyin, Zhiliang Wang, Qingjun Zhu, Guangye Han, Chunmei Ding, Jun Chen, Jian-Ren Shen, and Can Li. "Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell." Chemical Communications 51, no. 95 (2015): 16952–55. http://dx.doi.org/10.1039/c5cc06900a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Selopal, Gurpreet Singh, Mahyar Mohammadnezhad, Fabiola Navarro-Pardo, François Vidal, Haiguang Zhao, Zhiming M. Wang, and Federico Rosei. "A colloidal heterostructured quantum dot sensitized carbon nanotube–TiO2 hybrid photoanode for high efficiency hydrogen generation." Nanoscale Horizons 4, no. 2 (2019): 404–14. http://dx.doi.org/10.1039/c8nh00227d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Deng, Jianping, Minqiang Wang, Chengao Yang, Jing Liu, and Xiaohui Song. "TiO2 nanoparticle/ZnO nanowire hybrid photoanode for enhanced quantum dot-sensitized solar cell performance." RSC Adv. 4, no. 77 (2014): 41141–47. http://dx.doi.org/10.1039/c4ra05033a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Grau, Sergi, Serena Berardi, Alicia Moya, Roc Matheu, Vito Cristino, Juan José Vilatela, Carlo A. Bignozzi, Stefano Caramori, Carolina Gimbert-Suriñach, and Antoni Llobet. "A hybrid molecular photoanode for efficient light-induced water oxidation." Sustainable Energy & Fuels 2, no. 9 (2018): 1979–85. http://dx.doi.org/10.1039/c8se00146d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A hybrid photoanode, made of a multilayered heterostructured WO3/BiVO4 semiconductor, a carbon nanotube fibre and a rugged and highly active molecular water oxidation catalyst is described.
9

Krishnapriya, R., S. Praneetha, and A. Vadivel Murugan. "Energy-efficient, microwave-assisted hydro/solvothermal synthesis of hierarchical flowers and rice grain-like ZnO nanocrystals as photoanodes for high performance dye-sensitized solar cells." CrystEngComm 17, no. 43 (2015): 8353–67. http://dx.doi.org/10.1039/c5ce01438g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hierarchical ZnO with different morphologies have been synthesized via rapid microwave-solvothermal method. Innovative ZnO nano-hybrid architecture photoanode based DSSCs showed remarkable enhancement in solar power conversion efficiency as high as 5.64%.
10

Kumagai, Hiromu, Go Sahara, Kazuhiko Maeda, Masanobu Higashi, Ryu Abe, and Osamu Ishitani. "Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(ii)–Re(i) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation." Chemical Science 8, no. 6 (2017): 4242–49. http://dx.doi.org/10.1039/c7sc00940b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new Ru(ii)–Re(i)/CuGaO2 hybrid photocathode was developed and combined with a CoOx/TaON photoanode to drive non-biased visible-light-driven CO2 reduction with water oxidation.
11

Devadoss, Anitha, Asako Kuragano, Chiaki Terashima, P. Sudhagar, Kazuya Nakata, Takeshi Kondo, Makoto Yuasa, and Akira Fujishima. "Single-step electrospun TiO2–Au hybrid electrodes for high selectivity photoelectrocatalytic glutathione bioanalysis." Journal of Materials Chemistry B 4, no. 2 (2016): 220–28. http://dx.doi.org/10.1039/c5tb01740h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One-step electrospun Au nanoparticle decorated TiO2 nanofiber membrane served as effective photoanode for highly selective glutathione analysis with a photoelectrocatalytic oxidation process.
12

Wang, Dongting, Shangheng Liu, Mingfa Shao, Jinghan Zhao, Yukun Gu, Qiuyi Li, Xianxi Zhang, Jinsheng Zhao, and Yuzhen Fang. "Design of SnO2 Aggregate/Nanosheet Composite Structures Based on Function-Matching Strategy for Enhanced Dye-Sensitized Solar Cell Performance." Materials 11, no. 9 (September 19, 2018): 1774. http://dx.doi.org/10.3390/ma11091774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hierarchical SnO2 nanocrystallites aggregates (NAs) were prepared with a simple room temperature–based aqueous solution method followed by simple freeze-drying treatment. The as-prepared SnO2 NAs were subsequently combined with SnO2 nanosheet–based structures from the viewpoint of a function-matching strategy, and under an optimized condition, a power conversion efficiency (PCE) of 5.59% was obtained for the resultant hybrid photoanode, a remarkable 60% enhancement compared to that of dye-sensitized solar cells (DSCs) fabricated with bare SnO2 NAs architecture. The significantly enhanced efficiency can be attributed to the combination of the desirable electron transport property obtained by the intentionally introduced SnO2 nanosheets (NSs) and the effectively retained inherent characteristics of SnO2 NAs, i.e., large surface area and strong light-scattering effect. This work provides a promising approach for the rapid development of highly efficient SnO2 photoanode film-based DSCs with the properties of simplicity of operation and control over the photoanode composition.
13

Collomb, Marie-Noëlle, Daniela V. Morales, Catalina N. Astudillo, Baptiste Dautreppe, and Jérôme Fortage. "Hybrid photoanodes for water oxidation combining a molecular photosensitizer with a metal oxide oxygen-evolving catalyst." Sustainable Energy & Fuels 4, no. 1 (2020): 31–49. http://dx.doi.org/10.1039/c9se00597h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Nakajima, Tomohiko, Aya Hagino, Takako Nakamura, Tetsuo Tsuchiya, and Kazuhiro Sayama. "WO3 nanosponge photoanodes with high applied bias photon-to-current efficiency for solar hydrogen and peroxydisulfate production." Journal of Materials Chemistry A 4, no. 45 (2016): 17809–18. http://dx.doi.org/10.1039/c6ta07997k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Lin, Jia, Li Zheng, Xiaolin Liu, Shu Zhu, Yongsheng Liu, and Xianfeng Chen. "Assembly of a high-scattering photoelectrode using a hybrid nano-TiO2 paste." Journal of Materials Chemistry C 3, no. 26 (2015): 6645–51. http://dx.doi.org/10.1039/c5tc00860c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Jiang, Wenchao, Xiaoxuan Yang, Fei Li, Qian Zhang, Siyuan Li, Haili Tong, Yi Jiang, and Lixin Xia. "Immobilization of a molecular cobalt cubane catalyst on porous BiVO4via electrochemical polymerization for efficient and stable photoelectrochemical water oxidation." Chemical Communications 55, no. 10 (2019): 1414–17. http://dx.doi.org/10.1039/c8cc08802k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Liu, Xiaolin, Min Guo, Jia Lin, Xianfeng Chen, and Haitao Huang. "Design of multi-layered TiO2 nanotube/nanoparticle hybrid structure for enhanced efficiency in dye-sensitized solar cells." RSC Adv. 4, no. 85 (2014): 45180–84. http://dx.doi.org/10.1039/c4ra08340g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zhao, Y. L., D. S. Yao, C. B. Song, L. Zhu, J. Song, X. Q. Gu, and Y. H. Qiang. "CNT–G–TiO2 layer as a bridge linking TiO2 nanotube arrays and substrates for efficient dye-sensitized solar cells." RSC Advances 5, no. 54 (2015): 43805–9. http://dx.doi.org/10.1039/c5ra01085c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Giannopoulos, Panagiotis, Archontoula Nikolakopoulou, Aikaterini K. Andreopoulou, Lamprini Sygellou, Joannis K. Kallitsis, and Panagiotis Lianos. "An alternative methodology for anchoring organic sensitizers onto TiO2 semiconductors for photoelectrochemical applications." J. Mater. Chem. A 2, no. 48 (2014): 20748–59. http://dx.doi.org/10.1039/c4ta04515g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Perfluorophenyl functionalized organic dyes were employed for the development of TiO2 organic hybrid NPs via stable non-hydrolysable Ti–O–C bonds. Respective photoanodes were tested in DSSCs and photoelectrochemical cells.
20

Guo, Jian, Chengyu Mao, Ruikang Zhang, Mingfei Shao, Min Wei, and Pingyun Feng. "Reduced titania@layered double hydroxide hybrid photoanodes for enhanced photoelectrochemical water oxidation." Journal of Materials Chemistry A 5, no. 22 (2017): 11016–25. http://dx.doi.org/10.1039/c7ta00770a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yao, Liang, Yongpeng Liu, Han-Hee Cho, Meng Xia, Arvindh Sekar, Barbara Primera Darwich, Rebekah A. Wells, et al. "A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion." Energy & Environmental Science 14, no. 5 (2021): 3141–51. http://dx.doi.org/10.1039/d1ee00152c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust in situ-formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.
22

Kolay, Ankita, Manoranjan Ojha, and Melepurath Deepa. "Graphene nanoparticles-decorated silicon nanowires with tungsten oxide counter electrode for quasi-solid state hybrid solar cells." Sustainable Energy & Fuels 5, no. 6 (2021): 1874–91. http://dx.doi.org/10.1039/d0se01605e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Visible light harvesting IL-GNP co-sensitized SiNW yield 7.93% efficiency for the solar cell. The I2,I- gel with SiO2 nanoparticles efficiently scavenges holes from IL-GNP/SiNW heterojunction and restricts photoanode degradation.
23

Sharma, Sandeep Kumar. "Metal-Organic Frameworks: A promising material for enhancing the photovoltaic performance of Dye-Sensitized Solar Cells." Journal of University of Shanghai for Science and Technology 23, no. 04 (April 28, 2021): 267–77. http://dx.doi.org/10.51201/jusst/21/04237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The introgression of metal–organic frameworks (MOFs) in dye-sensitized solar cells has received greater attention over the past decade. Many efforts have been made to improve the performance of these cells by optimizing its different components viz. photosensitizer, photoanode, and counter electrode. This article provides the recent advances in each of these major directions achieved through MOF and its hybrid components in dye-sensetized solar cells.
24

Zhang, Xiaodan, Wenming Liao, Wei Mu, Dajiang Zheng, Yusheng Zhou, Bailiang Xue, Wei Liu, Zhiqun Lin, and Yulin Deng. "Rational design of hybrid dye-sensitized solar cells composed of double-layered photoanodes with enhanced power conversion efficiency." J. Mater. Chem. A 2, no. 29 (2014): 11035–39. http://dx.doi.org/10.1039/c4ta02232g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Wu, Dapeng, Xiaojuan Shi, Hui Dong, Feng Zhu, Kai Jiang, Dongsheng Xu, Xicheng Ai, and Jianping Zhang. "The effect of photoanode structure on the performances of quantum-dot-sensitized solar cells: a case study of the anatase TiO2nanocrystals and polydisperse mesoporous spheres hybrid photoanodes." J. Mater. Chem. A 2, no. 38 (2014): 16276–84. http://dx.doi.org/10.1039/c4ta02871f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wang, Ren Bao, Ling Liu, Lei Wan, and Jin Zhang Xu. "Application of Nano-SiO2 on Photoanode of Quantum Dots Sensitized Solar Cells." Advanced Materials Research 850-851 (December 2013): 169–72. http://dx.doi.org/10.4028/www.scientific.net/amr.850-851.169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new TiO2-nanoSiO2 hybrid film is prepared through adding the nanosized SiO2 into the TiO2. A more environmental and simpler method is found to prepare CdSe quantum dots (QDs) sensitized TiO2nanoSiO2 hybrid films for the quantum dots-sensitized solar cells (QDSSCs) application. The prepared colloidal CdSe QDs (~2.6nm) was linked to the TiO2-nanoSiO2 hybrid film using 3-mercaptopropionic acid (3-MPA) as a linker molecule slowly with drop and drop. The power conversion efficiency of 1.33% was achieved using the sensitization photo-electrode prepared by using TiO2nanoSiO2 hybrid film modified with CdSe (TiO2-nanoSiO2/CdSe) under the illumination of one sun.
27

Na, Jongbeom, Jeonghun Kim, Chihyun Park, and Eunkyoung Kim. "TiO2nanoparticulate-wire hybrids for highly efficient solid-state dye-sensitized solar cells using SSP-PEDOTs." RSC Adv. 4, no. 84 (2014): 44555–62. http://dx.doi.org/10.1039/c4ra08583c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
TiO2photoanodes for I2-free solid-state dye-sensitized solar cells (ssDSSCs) were prepared from multifunctional new TiO2nanostructures to enhance light harvesting and charge collection efficiency in ssDSSCs using poly(3,4-ethylenedioxythiophene)s (PEDOTs).
28

Chetia, Tridip Ranjan, Mohammad Shaad Ansari, and Mohammad Qureshi. "Graphitic carbon nitride as a photovoltaic booster in quantum dot sensitized solar cells: a synergistic approach for enhanced charge separation and injection." Journal of Materials Chemistry A 4, no. 15 (2016): 5528–41. http://dx.doi.org/10.1039/c6ta00761a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Li, Lin, Rong Chen, Xun Zhu, Qiang Liao, Dingding Ye, Biao Zhang, Xuefeng He, Long Jiao, Hao Feng, and Wei Zhang. "A ternary hybrid CdS/SiO2/TiO2 photoanode with enhanced photoelectrochemical activity." Renewable Energy 127 (November 2018): 524–30. http://dx.doi.org/10.1016/j.renene.2018.05.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Cao, Xiaohu, Chunjiang Xu, Xiangming Liang, Jiarui Ma, Meie Yue, and Yong Ding. "Rationally designed/assembled hybrid BiVO4-based photoanode for enhanced photoelectrochemical performance." Applied Catalysis B: Environmental 260 (January 2020): 118136. http://dx.doi.org/10.1016/j.apcatb.2019.118136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Gong, Lunlun, Peili Zhang, Guoquan Liu, Yu Shan, and Mei Wang. "A silicon-based hybrid photocathode modified with an N5-chelated nickel catalyst in a noble-metal-free biomimetic photoelectrochemical cell for solar-driven unbiased overall water splitting." Journal of Materials Chemistry A 9, no. 20 (2021): 12140–51. http://dx.doi.org/10.1039/d1ta01963e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A noble-metal-free biomimetic PEC cell assembled by coupling of an N5-chelated nickel catalyst-modified silicon photocathode and a Co4O4 cubane-modified BiVO4 photoanode demonstrated efficient unbiased overall water splitting under illumination.
32

Kim, Ki, Sung Lee, Hwapyong Kim, Young Park, and Su-Il In. "Improved Microbial Electrolysis Cell Hydrogen Production by Hybridization with a TiO2 Nanotube Array Photoanode." Energies 11, no. 11 (November 16, 2018): 3184. http://dx.doi.org/10.3390/en11113184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A microbial electrolysis cell (MEC) consumes the chemical energy of organic material producing, in turn, hydrogen. This study presents a new hybrid MEC design with improved performance. An external TiO2 nanotube (TNT) array photoanode, fabricated by anodization of Ti foil, supplies photogenerated electrons to the MEC electrical circuit, significantly improving overall performance. The photogenerated electrons help to reduce electron depletion of the bioanode, and improve the proton reduction reaction at the cathode. Under simulated AM 1.5 illumination (100 mW cm−2) the 28 mL hybrid MEC exhibits a H2 evolution rate of 1434.268 ± 114.174 mmol m−3 h−1, a current density of 0.371 ± 0.000 mA cm−2 and power density of 1415.311 ± 23.937 mW m−2, that are respectively 30.76%, 34.4%, and 26.0% higher than a MEC under dark condition.
33

Wang, Kun Qi, and Juan Tang. "Natural Chlorophyll-Sensitized Nanocrystalline TiO2 as Photoanode of a Hybrid Photoelectrochemical Biofuel Cell." Advanced Materials Research 496 (March 2012): 399–402. http://dx.doi.org/10.4028/www.scientific.net/amr.496.399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A photoelectrochemical biofuel cell (PEBFC) generating electrical energy directly from sunlight and biomass was investigated. In this paper, the PEBFC had a natural chlorophyll-sensitized titanium dioxide (TiO2) film photoanode and Pt black cathode. The electron transport process of the PEBFC was described. The performances of the PEBFC were obtained by photocurrent-photovoltage characteristic curves. The open-circuit photovoltage (Voc), the short-circuit photocurrent (Isc) and the maximum power density (Pmax) is 0.53V, 1.000 μAcm-2 and1.1520 μWcm-2 at 0.37 V, respectively. The incident photo-to-current efficiency (IPCE) is 8.4% at 380 nm.
34

Yu, Hua, Bofei Xue, Porun Liu, Jingxia Qiu, William Wen, Shanqing Zhang, and Huijun Zhao. "High-Performance Nanoporous TiO2/La2O3 Hybrid Photoanode for Dye-Sensitized Solar Cells." ACS Applied Materials & Interfaces 4, no. 3 (February 22, 2012): 1289–94. http://dx.doi.org/10.1021/am2015553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Vaghasiya, Jayraj V., Keval K. Sonigara, Kishan B. Fadadu, and Saurabh S. Soni. "Hybrid AgNP–TiO2 thin film based photoanode for dye sensitized solar cell." Perspectives in Science 8 (September 2016): 46–49. http://dx.doi.org/10.1016/j.pisc.2016.03.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Brune, Alicia, Goojin Jeong, Paul A. Liddell, Tadashi Sotomura, Thomas A. Moore, Ana L. Moore, and Devens Gust. "Porphyrin-Sensitized Nanoparticulate TiO2as the Photoanode of a Hybrid Photoelectrochemical Biofuel Cell." Langmuir 20, no. 19 (September 2004): 8366–71. http://dx.doi.org/10.1021/la048974i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Martimiano do Prado, Thiago, Fernando Lindo Silva, Guilherme Grosseli, Pedro Sergio Fadini, Orlando Fatibello-Filho, and Fernando Cruz de Moraes. "Using BiVO4/CuO-Based Photoelectrocatalyzer for 4-Nitrophenol Degradation." Materials 13, no. 6 (March 14, 2020): 1322. http://dx.doi.org/10.3390/ma13061322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present work reports the degradation of 4-nitrophenol using BiVO4/CuO hybrid material synthesized by the precipitation of BiVO4 in the presence of CuO. Morphological and structural characterizations were performed using X-ray diffraction and scanning electronic microscopy coupled to energy dispersive X-ray spectroscopy. Through the calculation of the Kubelka–Munk function applied to diffuse reflectance spectrophotometry data, the hybrid material presented absorption edge of 1.85 eV. The formation of p-n heterojunction between BiVO4 and CuO renders the hybrid material suitable for the construction of a photoanode employed in hydroxyl radical generation. UV–vis spectrophotometry and high-performance liquid chromatography experiments were performed in order to monitor the degradation of 4-nitrophenol and the formation of secondary products. Additional information regarding the hybrid material was obtained through ion chromatography and total organic carbon analyses. The application of BiVO4/CuO-based photocatalyzer led to a 50.2% decrease in total organic carbon after the degradation of 4-nitrophenol. Based on the results obtained in the study, BiVO4/CuO has proved to be a promising material suitable for the removal of recalcitrant compounds in water treatment plants.
38

Kim, Cham, Jong Tae Kim, Hoyoung Kim, Sung Hwan Park, Kyoung-Cheon Son, and Yoon Soo Han. "Effects of metal hydroxide-treated photoanode on the performance of hybrid solar cells." Current Applied Physics 10, no. 4 (November 2010): e176-e180. http://dx.doi.org/10.1016/j.cap.2010.06.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Zhao, Zhifeng, Guoquan Liu, Yong Zhu, Hua Gao, and Fei Li. "A semiconductor/molecular catalyst hybrid photoanode with FeOOH as an electron transfer relay." Chemistry – An Asian Journal 16, no. 13 (June 2, 2021): 1745–49. http://dx.doi.org/10.1002/asia.202100403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Majumder, T., J. J. L. Hmar, S. Dhar, and S. P. Mondal. "Superior photoelectrochemical properties of ZnO nanorods/poly(3-hexylthiophene) hybrid photoanodes." Chemical Physics 490 (June 2017): 1–6. http://dx.doi.org/10.1016/j.chemphys.2017.03.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Trzciński, K., M. Szkoda, M. Sawczak, and A. Lisowska-Oleksiak. "Enhanced Photoelectrocatalytical Performance of Inorganic-Inorganic Hybrid Consisting BiVO4, V2O5, and Cobalt Hexacyanocobaltate as a Perspective Photoanode for Water Splitting." Electrocatalysis 11, no. 2 (December 10, 2019): 180–87. http://dx.doi.org/10.1007/s12678-019-00566-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThin layers of BiVO4/V2O5 were prepared on FTO substrates using pulsed laser deposition technique. The method of cobalt hexacyanocobaltate (Cohcc) synthesis on the BiVO4/V2O5 photoanodes consists of cobalt deposition followed by electrochemical oxidation of metallic Co in K3[Co(CN)6] aqueous electrolyte. The modified electrodes were tested as photoanodes for water oxidation under simulated sunlight irradiation. Deposited films were characterized using UV-Vis spectroscopy, Raman spectroscopy, and scanning electron microscopy. Since the V2O5 is characterized by a narrower energy bandgap than BiVO4, the presence of V2O5 shifts absorption edge (ΔE = ~0.25 eV) of modified films towards lower energies enabling the conversion of a wider range of solar radiation. The formation of heterojunction increases photocurrent of water oxidation measured at 1.2 V vs Ag/AgCl (3 M KCl) to over 1 mA cm-2, while bare BiVO4 and V2O5 exhibit 0.37 and 0.08 mA cm-2, respectively. On the other hand, the modification of obtained layers with Cohcc shifts onset potential of photocurrent generation into a cathodic direction. As a result, the photocurrent enhancement at a wide range of applied potential was achieved.
42

Bai, Yang, Zheng Xing, Hua Yu, Zhen Li, Rose Amal, and Lianzhou Wang. "Porous Titania Nanosheet/Nanoparticle Hybrids as Photoanodes for Dye-Sensitized Solar Cells." ACS Applied Materials & Interfaces 5, no. 22 (November 11, 2013): 12058–65. http://dx.doi.org/10.1021/am403897f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Aashish, A., R. Ramakrishnan, J. D. Sudha, M. Sankaran, and G. Krishnapriya. "Self-assembled hybrid polyvinylcarbazole–titania nanotubes as an efficient photoanode for solar energy harvesting." Solar Energy Materials and Solar Cells 151 (July 2016): 169–78. http://dx.doi.org/10.1016/j.solmat.2016.03.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Danko, D. B., P. M. Sylenko, A. M. Shlapak, O. Y. Khyzhun, L. G. Shcherbakova, O. G. Ershova, and Y. M. Solonin. "Photoelectrochemical cell for water decomposition with a hybrid photoanode and a metal-hydride cathode." Solar Energy Materials and Solar Cells 114 (July 2013): 172–78. http://dx.doi.org/10.1016/j.solmat.2013.03.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Hu, Gui-Lin, You-Jia Lei, Rong Hu, Hua-Ming Sun, Quan Gu, Da-Zhong Ren, and Hong-Yan Wang. "Photo-electrocatalytic water oxidation based on an earth-abundant metallic semiconductor-molecule hybrid photoanode." International Journal of Hydrogen Energy 44, no. 60 (December 2019): 31884–91. http://dx.doi.org/10.1016/j.ijhydene.2019.10.075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Amini, Aida, Hossein Abdizadeh, and Mohammad Reza Golobostanfard. "Hybrid 1D/2D Carbon Nanostructure-Incorporated Titania Photoanodes for Perovskite Solar Cells." ACS Applied Energy Materials 3, no. 7 (June 4, 2020): 6195–204. http://dx.doi.org/10.1021/acsaem.0c00200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Yodyingyong, Supan, Qifeng Zhang, Kwangsuk Park, Christopher S. Dandeneau, Xiaoyuan Zhou, Darapond Triampo, and Guozhong Cao. "ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells." Applied Physics Letters 96, no. 7 (February 15, 2010): 073115. http://dx.doi.org/10.1063/1.3327339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Lee, Cheolmin, Dasom Jeon, Sanghyun Bae, Hyunwoo Kim, Yujin Han, Yang Woo Lee, and Jungki Ryu. "Semiconducting Synthetic Melanin-Based Organic/Inorganic Hybrid Photoanodes for Solar Water Oxidation." ChemSusChem 11, no. 19 (September 6, 2018): 3534–41. http://dx.doi.org/10.1002/cssc.201801135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Lee, Jong-Gun, Do-Yeon Kim, Jung-Jae Park, You-Hong Cha, Joshua Y. Yoon, Hyo Sang Jeon, Byoung Koun Min, et al. "Graphene-Titania Hybrid Photoanodes by Supersonic Kinetic Spraying for Solar Water Splitting." Journal of the American Ceramic Society 97, no. 11 (August 22, 2014): 3660–68. http://dx.doi.org/10.1111/jace.13174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Dembele, Kadiatou Therese, Gurpreet Singh Selopal, Caterina Soldano, Riad Nechache, Julio Cesar Rimada, Isabella Concina, Giorgio Sberveglieri, Federico Rosei, and Alberto Vomiero. "Hybrid Carbon Nanotubes–TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells." Journal of Physical Chemistry C 117, no. 28 (July 2, 2013): 14510–17. http://dx.doi.org/10.1021/jp403553t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії