Добірка наукової літератури з теми "Photocatalytic membranes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Photocatalytic membranes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Photocatalytic membranes"
Romay, Marta, Nazely Diban, Maria J. Rivero, Ane Urtiaga, and Inmaculada Ortiz. "Critical Issues and Guidelines to Improve the Performance of Photocatalytic Polymeric Membranes." Catalysts 10, no. 5 (May 19, 2020): 570. http://dx.doi.org/10.3390/catal10050570.
Повний текст джерелаArgurio, Pietro, Enrica Fontananova, Raffaele Molinari, and Enrico Drioli. "Photocatalytic Membranes in Photocatalytic Membrane Reactors." Processes 6, no. 9 (September 7, 2018): 162. http://dx.doi.org/10.3390/pr6090162.
Повний текст джерелаBobirică, Constantin, Liliana Bobirică, Maria Râpă, Ecaterina Matei, Andra Mihaela Predescu, and Cristina Orbeci. "Photocatalytic Degradation of Ampicillin Using PLA/TiO2 Hybrid Nanofibers Coated on Different Types of Fiberglass." Water 12, no. 1 (January 8, 2020): 176. http://dx.doi.org/10.3390/w12010176.
Повний текст джерелаDzhodzhyk, Oleh, Iryna Kolesnyk, Victoriia Konovalova, and Anatoliy Burban. "MODIFIED POLYETHERSULFONE MEMBRANES WITH PHOTOCATALYTIC PROPERTIES." Chemistry & Chemical Technology 11, no. 3 (August 28, 2017): 277–84. http://dx.doi.org/10.23939/chcht11.03.277.
Повний текст джерелаAsiri, Abdullah M., Valerio Pugliese, Francesco Petrosino, Sher Bahadar Khan, Khalid Ahmad Alamry, Soliman Y. Alfifi, Hadi M. Marwani, Maha M. Alotaibi, Debolina Mukherjee, and Sudip Chakraborty. "Photocatalytic Degradation of Textile Dye on Blended Cellulose Acetate Membranes." Polymers 14, no. 3 (February 7, 2022): 636. http://dx.doi.org/10.3390/polym14030636.
Повний текст джерелаLabuto, Geórgia, Sandra Sanches, João G. Crespo, Vanessa J. Pereira, and Rosa M. Huertas. "Stability of Polymeric Membranes to UV Exposure before and after Coating with TiO2 Nanoparticles." Polymers 14, no. 1 (December 30, 2021): 124. http://dx.doi.org/10.3390/polym14010124.
Повний текст джерелаShehab, Mohammed Ahmed, Nikita Sharma, Gábor Karacs, Lilla Nánai, István Kocserha, Klara Hernadi, and Zoltán Németh. "Development and Investigation of Photoactive WO3 Nanowire-Based Hybrid Membranes." Catalysts 12, no. 9 (September 10, 2022): 1029. http://dx.doi.org/10.3390/catal12091029.
Повний текст джерелаShehab, Mohammed Ahmed, Nikita Sharma, Andrea Valsesia, Gábor Karacs, Ferenc Kristály, Tamás Koós, Anett Katalin Leskó, Lilla Nánai, Klara Hernadi, and Zoltán Németh. "Preparation and Photocatalytic Performance of TiO2 Nanowire-Based Self-Supported Hybrid Membranes." Molecules 27, no. 9 (May 5, 2022): 2951. http://dx.doi.org/10.3390/molecules27092951.
Повний текст джерелаYang, Yawei, Tao Wu, and Wenxiu Que. "Fabrication of Nanoparticle/Polymer Composite Photocatalytic Membrane for Domestic Sewage In Situ Treatment." Materials 15, no. 7 (March 27, 2022): 2466. http://dx.doi.org/10.3390/ma15072466.
Повний текст джерелаZubair, Usman, Muhammad Zahid, Nimra Nadeem, Kainat Ghazal, Huda S. AlSalem, Mona S. Binkadem, Soha T. Al-Goul, and Zulfiqar Ahmad Rehan. "The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes." Membranes 12, no. 6 (June 17, 2022): 630. http://dx.doi.org/10.3390/membranes12060630.
Повний текст джерелаДисертації з теми "Photocatalytic membranes"
Sharif, Nashid. "Design of titania photocatalytic membranes containing fine ceramic fibres." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/279089.
Повний текст джерелаNasr, Maryline. "Elaboration of oxides membranes by electrospinning for photocatalytic applications." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT210/document.
Повний текст джерелаNowadays, industrial toxic chemicals are still not properly treated and these contaminants may directly impact the safety of drinking water. Photocatalysis “a green technology” is an effective and economical approach and plays an important role in solar energy conversion and degradation of organic pollutants. This thesis manuscript reports on developing advanced materials (based on TiO2 and ZnO) being capable of exploiting renewable solar energy for solving the environmental pollution problems. A part of this work was dedicated to improve the UV and visible light TiO2 photoresponse. Therefore, rGO/TiO2, BN/TiO2 and BN-Ag/TiO2 composties nanofibers were successfully elaborated using the electrospinning technique. The second part focused on ZnO. Novel structures of ZnO/ZnAl2O4 multi co-centric nanotubes and Al2O3 doped ZnO nanotubes were designed by combining the two techniques of atomic layer deposition (ALD) and electrospinning. The morphological, structural and optical properties of all synthesized nanostructures were investigated by several characterization techniques. The results show that the chemical and physical properties have a high impact on the photocatalytic properties of the synthesized materials. Moreover, it was found that the doping effect lead to a more efficient charge separation in the photocatalyst, which is an advantage for photocatalytic activities. In addition, methyl orange and methylene blue were used as model reference. A significant enhancement and a long-term stability in the photocatalytic activity were observed with the doped materials compared to the non-doped ones under both UV and visible light. Antibacterial tests against Escherichia coli have also been performed; the results indicate that BN-Ag/TiO2 present interesting photocatalytic properties for both organic compound degradation and bacterial removal
Rossouw, Arnoux. "Modified track-etched membranes using photocatalytic semiconductors for advanced oxidation water treatment processes." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80276.
Повний текст джерелаENGLISH ABSTRACT: The purpose of this study was to develop modi ed tract-etched membranes using nanocomposite TiO2 for advanced water treatment processes. Photocatalytic oxidation and reduction reactions take place on TiO2 surfaces under UV light irradiation, therefore sunlight and even normal indoor lighting could be utilised to achieve this effect. In membrane ltration, caking is a major problem, by enhancing the anti-fouling properties of photocatalysts to mineralise organic compounds the membrane life and e ciency can be improved upon. In this study the rst approach in nanocomposite membrane development was to directly modify the surface of polyethylenetherephthalate (PET) track-etched membranes (TMs) with titanium dioxide (TiO2) using inverted cylindrical magnetron sputtering (ICMS) for TiO2 thin lm deposition. The second approach was rst to thermally evaporate silver (Ag) over the entire TM surface, followed by sputtering TiO2 over the silver-coated TM. As a result a noble metal-titania nanocomposite thin lm layer is produced on top of the TM surface with both self-cleaning and superhydrophilic properties. Reactive inverted cylindrical magnetron sputtering is a physical vapour deposition method, where material is separated from a target using high energy ions and then re-assimilated on a substrate to grow thin lms. Argon gas is introduced simultaneously into the deposition chamber along with O2 (the reactive gas) to form TiO2. The photocatalytic activity and other lm properties, such as crystallinity can be in uenced by changing the sputtering power, chamber pressure, target-to-substrate distance, substrate temperature, sputtering gas composition and ow rate. These characteristics make sputtering the perfect tool for the preparation of di erent kinds of TiO2 lms and nanostructures for photocatalysis. In this work, the utilisation of ICMS to prepare photocatalytic TiO2 thin lms deposited on track-etched membranes was studied in detail with emphasis on bandgap reduction and TM surface regeneration. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on track-etched membrane substrates by exploiting the good qualities of ICMS. The TiO2-TM as well as Ag-TiO2-TM thin lms were thoroughly characterised. ICMS prepared TiO2 lms were shown to exhibit good photocatalytic activities. However, the nanocomposite Ag-TiO2 thin lms were identi ed to be a much better choice than TiO2 thin lms on their own. Finally a clear enhancement in the photocatalytic activity was achieved by forming the Ag-TiO2 nanocomposite TMs. This was evident from the band-gap improvement from 3.05 eV of the TiO2 thin lms to the 2.76 eV of the Ag-TiO2 thin lms as well as the superior surface regenerative properties of the Ag-TiO2-TMs.
AFRIKAANSE OPSOMMING: Die doel van hierdie studie was om verbeterde baan-ge etste membrane (BMe) met behulp van nano-saamgestelde titaandioksied (TiO2) vir gevorderde water behandeling prosesse te ontwikkel. Fotokatalitiese oksidasie- en reduksie reaksies vind plaas op die TiO2 oppervlaktes onder UV-lig bestraling, en dus kan sonlig en selfs gewone binnenshuise beligting gebruik word om die gewenste uitwerking te verkry. In membraan ltrasie is die aanpaksel van onsuiwerhede 'n groot probleem, maar die verbetering van die self-reinigende eienskappe van fotokatalisators deur organiese verbindings te mineraliseer, kan die membraan se leeftyd en doeltre endheid verbeter word. In hierdie studie was die eerste benadering om nano-saamgestelde membraan ontwikkeling direk te verander deur die oppervlak van polyethylenetherephthalate (PET) BMe met 'n dun lagie TiO2 te bedek, met behulp van reaktiewe omgekeerde silindriese magnetron verstuiwing (OSMV).Die tweede benadering was eers om silwer (Ag) termies te verdamp oor die hele BM oppervlak, gevolg deur TiO2 verstuiwing bo-oor die silwer bedekte BM. As gevolg hiervan is 'n edelmetaal-titanium nano-saamgestelde dun lm laag gevorm bo-op die oppervlak van die BM, met beide self-reinigende en verhoogde hidro liese eienskappe. OSMV is 'n siese damp neerslag metode, waar materiaal van 'n teiken, met behulp van ho e-energie-ione, geskei word, en dan weer opgeneem word op 'n substraat om dun lms te vorm. Argon gas word gelyktydig in die neerslag kamer, saam met O2 (die reaktiewe gas), vrygestel om TiO2 te vorm. Die fotokatalitiese aktiwiteit en ander lm eienskappe, soos kristalliniteit, kan be nvloed word deur die verandering van byvoorbeeld die verstuiwingskrag, die druk in die reaksiekamer, teiken-tot-substraat afstand, substraattemperatuur, verstuiwing gassamestelling en vloeitempo. Hierdie eienskappe maak verstuiwing die ideale hulpmiddel vir die voorbereiding van die verskillende soorte TiO2 lms en nanostrukture vir fotokatalisasie. In hierdie tesis word OSMV gebruik ter voorbereiding van fotokatalitiese TiO2 dun lms, wat gedeponeer is op BMe. Hierdie lms word dan in diepte bestudeer, met die klem op bandgaping vermindering en BM oppervlak hergenerasie. Nanogestruktureerde TiO2 fotokataliste is voorberei deur middel van sjabloongerigte neerslag op BM substrate deur die ontginning van die goeie eienskappe van OSMV. Die TiO2-BM dun lms, sowel as Ag-TiO2-BM dun lms, is deeglik gekarakteriseer. OSMV voorbereide TiO2 dun lms toon goeie fotokatalitiese aktiwiteite. Nano-saamgestelde Ag-TiO2 dun lms is egter ge denti seer as 'n veel beter keuse as TiO2 dun lms. Ten slotte is 'n duidelike verbetering in die fotokatalitiese aktiwiteit bereik deur die vorming van die Ag-TiO2 nano-saamgestelde BMe. Dit was duidelik uit die bandgapingverbetering van 3,05 eV van TiO2 dun lms in vergelyking met die 2,76 eV van Ag-TiO2 dun lms. 'n Duidelike verbetering is behaal in die fotokatalitiese aktiwiteit deur die vorming van die Ag-TiO2 nano-saamgestelde TMs.
Choi, Hyeok. "Novel Preparation of Nanostructured Titanium Dioxide Photocatalytic Particles, Films, Membranes, and Devices for Environmental Applications." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1176943161.
Повний текст джерелаZhou, Ming. "Novel photocatalytic TiO2-based porous membranes prepared by plasma-enhanced chemical vapor deposition (PECVD) for organic pollutant degradation in water." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS090/document.
Повний текст джерелаPlasma-enhanced chemical vapor deposition is applied to prepare amorphous TiO2 thin films at low temperature. Post-annealing at 300 °C for minimal staying time 4.5 h is required to form crystalline anatase phase. Characteristics of the TiO2 thin films including crystalline structure, microstructure, band gap and surface hydrophilicity, are determined. Functional performance of these anatase thin films as photocatalysts is first examined with patented Pilkington assessment by removing, under UV irradiation, stearic acid initially adsorbed on TiO2 layers here deposited on silicon wafers. Membranes M100 (TiO2 continuous layer) and M800 (TiO2-skin on support grain) are prepared on the macroporous top layer of porous alumina supports with an average pore size of 100 nm and 800 nm, respectively. These membranes are tested in “static” condition under the effect of diffusion of an organic solute in water. For Methylene Blue it is shown that the quantity of destroyed compound per unit of membrane surface area and per unit of time is equal to 2×10−8 mol m-2 s-1 for M100 and 1×10−8 mol m-2 s-1 for M800. These membranes are also tested in “dynamic” conditions, i.e. pressure-driven membrane processes, with two different configurations (photocatalytic layer on the feed side or on the permeate side) and three different organics (Methylene Blue, Acid Orange 7 and phenol). Process modelling (adsorption and photocatalysis reaction) is finally carried out from the available experimental outputs
Tran, Duc Trung. "Elaboration et mise en œuvre de membranes composites polymère-TiO2 faiblement colmatantes." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTG023.
Повний текст джерелаThis thesis deals with the elaboration and performance of a specific type of ultrafiltration membrane with anti-fouling and photo-induced properties, the PVDF-TiO2 composite membrane. The membrane was fabricated via the nonsolvent-induced phase separation method by incorporating titanium dioxide (TiO2) nanoparticles into the polyvinylidene fluoride (PVDF) polymer matrix. The TiO2 nanoparticles played a significant role in facilitating the membrane formation process and improving the composite membrane properties compared to the neat PVDF membrane. It was demonstrated that, by changing the membrane preparation temperature, the membrane structure could be affected dramatically, notably the morphological dominance of finger-like macrovoids at lower temperatures and their diminution in both size and number when temperature increased. Other membrane properties also saw systematic transitions with changes in formation temperature, as characterized by permeability, porosity, mechanical strength, crystallinity, and thermal properties. In terms of performance, the PVDF-TiO2 membrane exhibited superior permeate flux compared to the neat PVDF membrane. More importantly, when being operated in photo-filtration mode (i.e. filtration with continuous ultraviolet (UV) irradiation on the membrane), the pure water flux of PVDF-TiO2 membrane could be further increased, thanks to the enhanced hydrophilicity of the membrane, which comes from the photo-induced hydrophilicity phenomenon of TiO2. Preliminary estimations suggest that photo-filtration is a cost-effective method, as the benefit from enhanced water output outweighs the extra energy demand for UV irradiation. Furthermore, the efficiency of photo-filtration was evaluated with synthetic feed solutions containing inorganic and organic contents representative in surface water. It was identified that, while most of the common inorganic ions in drinking water had no effects on photo-filtration efficiency, the coexistence of Cu2+ and HCO3- in the feed led to severe inorganic fouling and inhibited the photo-induced hydrophilicity phenomenon. Besides, the PVDF-TiO2 membrane also showed its stronger flux performance and photocatalytic activity during photo-filtration of solutions containing organic foulants like humic acids or sodium alginate. In conclusion, the PVDF-TiO2 composite membrane exhibited much improved properties and performance compared to the neat PVDF membrane, and even stronger performance when operated in photo-filtration mode. Thus, it is a promising candidate to be used in membrane-based applications for water treatment
Lazrigh, Manal. "Floating photocatalytic Pickering emulsion particles for wastewater treatment." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19527.
Повний текст джерелаWhite, Jeremy C. "Sensing, separations and artificial photosynthetic assemblies based on the architecture of zeolite Y and zeolite L." Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1237641440.
Повний текст джерелаPhan, Duy Dũng [Verfasser], Michael [Gutachter] Stintz, Ginaurelio [Gutachter] Cuniberti, and Andreas [Gutachter] Seidel-Morgenstern. "Modelling and Evaluation of Fixed-Bed Photocatalytic Membrane Reactors / Duy Dũng Phan ; Gutachter: Michael Stintz, Ginaurelio Cuniberti, Andreas Seidel-Morgenstern." Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1226946429/34.
Повний текст джерелаRogé, Vincent. "Etude, fabrication et caractérisation de nanostructures catalytiques de type ZnO/SnO2 intégrées à des membranes modèles pour la dépollution de l'eau." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF046/document.
Повний текст джерелаWater treatment is one of the main challenge to overcome on the XXIst century. If many different techniques already exist, we investigate a new process associating the properties of porous membranes and photocatalytic materials. Thus, we studied the growth and photoactivity of core/shell structures of ZnO/SnO2 integrated into mesoporous (AAO) and macro-porous (glass fiber) membranes . The photocatalytic activity of these materials has been evaluated on organic pollutants like methylene blue or salicylic acid, but also on molecules found in the Luxembourgish Alzette river. The environmental impact of the synthesized structures has been determined with cytotoxic analyses on Caco-2 cells and Vibrio Fischeri bacteria
Книги з теми "Photocatalytic membranes"
Current Trends and Future Developments on Membranes: Photocatalytic Membranes and Photocatalytic Membrane Reactors. Elsevier, 2018.
Знайти повний текст джерелаBasile, Angelo, Sylwia Mozia, and Raffaele Molinari. Current Trends and Future Developments on Membranes: Photocatalytic Membranes and Photocatalytic Membrane Reactors. Elsevier, 2018.
Знайти повний текст джерелаKumar, Amit. Photocatalysis. Edited by Gaurav Sharma. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901359.
Повний текст джерелаAdam, Mohd Ridhwan, Siti Nurfatin Nadhirah Mohd Makhtar, Mohd Hafiz Dzarfan Othman, Takeshi Matsuura, and Mukhlis A. Rahman. Advanced Ceramics for Photocatalytic Membranes: Synthesis Methods, Characterization and Performance Analysis, and Applications in Water and Wastewater Treatment. Elsevier, 2024.
Знайти повний текст джерелаBanerjee, Diptonil, Amit Kumar Sharma, and Nirmalya Sankar Das. Nano Materials Induced Removal of Textile Dyes from Waste Water. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150502951220101.
Повний текст джерелаЧастини книг з теми "Photocatalytic membranes"
Leonardo, Palmisano. "Photocatalytic Membrane." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_462-2.
Повний текст джерелаLeonardo, Palmisano. "Photocatalytic Process." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_464-4.
Повний текст джерелаCretin, Marc, Julie Mendret, and Stephan Brosillon. "Photocatalytic Membrane Reactor." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2034-1.
Повний текст джерелаPalmisano, Leonardo. "Photocatalytic Membrane Reactor." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_463-2.
Повний текст джерелаLeonardo, Palmisano. "Photolysis in Photocatalytic Membrane Reactors." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_738-2.
Повний текст джерелаMolinari, Raffaele. "Flat Sheet Membrane Photocatalytic Reactor." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_964-4.
Повний текст джерелаMolinari, Raffaele. "Photocatalytic Processes by Membrane Operations." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_967-4.
Повний текст джерелаMolinari, Raffaele. "Flat Sheet Membrane Photocatalytic Reactor." In Encyclopedia of Membranes, 778–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_964.
Повний текст джерелаCretin, Marc, and Samuel Bernard. "Photocatalytic Nanomaterials: Preparation and Properties." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2033-1.
Повний текст джерелаMolinari, Raffaele. "Photocatalytic Membrane Reactor: Conversion of Organic Compounds." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_965-2.
Повний текст джерелаТези доповідей конференцій з теми "Photocatalytic membranes"
Liang, Robert, Melisa Hatat-Fraile, Maricor Arlos, Mark Servos, and Y. Norman Zhou. "TiO2 nanowires membranes for the use in photocatalytic filtration processes." In 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2014. http://dx.doi.org/10.1109/nano.2014.6968144.
Повний текст джерелаD'Angelo, D., S. Filice, S. Libertino, V. Kosma, I. Nicotera, V. Privitera, and S. Scalese. "Photocatalytic properties of Nafion membranes containing graphene oxide/titania nanocomposites." In 2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2014. http://dx.doi.org/10.1109/nmdc.2014.6997420.
Повний текст джерелаRossouw, A., O. V. Artoshina, A. N. Nechaev, P. Yu Apel, L. Petrik, W. J. Perold, and C. A. Pineda-Vargas. "Stable Ion Beam Analysis (RBS and PIXE) Study of Photocatalytic Track-Etched Membranes." In International African Symposium on Exotic Nuclei. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814632041_0065.
Повний текст джерелаNasikhudin, Markus Diantoro, Ahmad Kusumaatmaja, and Kuwat Triyana. "Enhancing photocatalytic performance by sonication and surfactant addition on the synthesis process of PVA/TiO2 nanofibers membranes by electrospinning method." In INTERNATIONAL CONFERENCE ON ELECTROMAGNETISM, ROCK MAGNETISM AND MAGNETIC MATERIAL (ICE-R3M) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017654.
Повний текст джерелаChoi, Hyeok, Dionysios D. Dionysiou, and Elias Stathatos. "Preparation of Nanostructured Photocatalytic TiO2 Films and Membranes Using Sol-Gel Methods Modified with Surfactant Micelles for Wastewater Treatment and Reuse in Space." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2992.
Повний текст джерелаOrbeci, Cristina, Gheorghe Nechifor, and Ion Untea. "Photocatalytic membrane system: Obtaining procedure and environmental application." In 2012 International Semiconductor Conference (CAS 2012). IEEE, 2012. http://dx.doi.org/10.1109/smicnd.2012.6400773.
Повний текст джерелаDzinun, Hazlini, and Mohd Hafiz Dzarfan Othman. "A Review on Modification of Zeolite for Photocatalytic Applications." In Conference on Center of Diploma Studies (CeDS) 2020/1. Penerbit UTHM, 2020. http://dx.doi.org/10.30880/mari.2020.01.01.002.
Повний текст джерелаJifeng Guo, Weisheng Guan, and Yanjun Lu. "The nitrobenzene wastewater treatment by the photocatalytic oxidation membrane bioreactor." In 2011 International Symposium on Water Resource and Environmental Protection (ISWREP). IEEE, 2011. http://dx.doi.org/10.1109/iswrep.2011.5893296.
Повний текст джерелаConstantin, Lucian Alexandru. "DEGRADATION OF TRICLOSAN FROM AQUEOUS SYSTEMS USING A PHOTOCATALYTIC MEMBRANE REACTOR." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b51/s20.025.
Повний текст джерелаRosman, Nurafiqah, Wan Norharyati Wan Salleh, Juhana Jaafar, Zawati Harun, Ahmad Fauzi Ismail, Nor Hafiza Ismail, Siti Zu Nurain Ahmad, Nur Aqilah Mohd Razali, and Nor Asikin Awang. "Photocatalytic PVDF ultrafiltration membrane incorporated with visible-light driven ternary heterojunction: Pure water flux behavior." In II INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES-II 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0099602.
Повний текст джерелаЗвіти організацій з теми "Photocatalytic membranes"
Bischoff, B. L., D. E. Fain, and D. L. II James. Inorganic photocatalytic membranes for the remediation of VOCs in groundwater at the Portsmouth Site. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/560879.
Повний текст джерелаZavadil, Kevin Robert, John Allen Shelnutt, Darryl Yoshio Sasaki, Yujiang Song, and Craig J. Medforth. LDRD final report on imaging self-organization of proteins in membranes by photocatalytic nano-tagging. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/875973.
Повний текст джерелаWen, Dian, and Jian Lang. A Novel Photocatalytic Membrane Decorated with Polydopamine/Halogenated Bismuth Oxide for Efficient Dye Removal under Visible Light. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2021. http://dx.doi.org/10.7546/crabs.2021.01.07.
Повний текст джерела