Статті в журналах з теми "Photoiniferter polymerization"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Photoiniferter polymerization.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-45 статей у журналах для дослідження на тему "Photoiniferter polymerization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ma, Jiao, Shifang Luan, Jing Jin, Lingjie Song, Shuaishuai Yuan, Wanling Zheng, and Jinghua Yin. "Surface modification of cycloolefin polymer via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion." RSC Adv. 4, no. 45 (2014): 23528–34. http://dx.doi.org/10.1039/c4ra02619e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rubens, Maarten, Phanumat Latsrisaeng, and Tanja Junkers. "Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow." Polymer Chemistry 8, no. 42 (2017): 6496–505. http://dx.doi.org/10.1039/c7py01157a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xu, Jingcong, and Volker Abetz. "Double thermoresponsive graft copolymers with different chain ends: feasible precursors for covalently crosslinked hydrogels." Soft Matter 18, no. 10 (2022): 2082–91. http://dx.doi.org/10.1039/d1sm01692j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Graft copolymers fabricated by photoiniferter reversible addition–fragmentation chain transfer (RAFT) polymerization show unique lower critical solution temperature (LCST) transitions in water and can be easily modified for crosslinking.
4

Easterling, Charles P., Yening Xia, Junpeng Zhao, Gail E. Fanucci, and Brent S. Sumerlin. "Block Copolymer Sequence Inversion through Photoiniferter Polymerization." ACS Macro Letters 8, no. 11 (October 15, 2019): 1461–66. http://dx.doi.org/10.1021/acsmacrolett.9b00716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Arrington, Kyle J., and John B. Matson. "Assembly of a visible light photoreactor: an inexpensive tool for bottlebrush polymer synthesis via photoiniferter polymerization." Polymer Chemistry 8, no. 48 (2017): 7452–56. http://dx.doi.org/10.1039/c7py01741c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report the design of a simple, inexpensive photoreactor for photoiniferter polymerization of vinyl monomers mediated by thiocarbonylthio compounds. This photoreactor allowed for the synthesis of block copolymers and well-defined bottlebrush polymers by grafting-from and grafting-through.
6

SIBARANI, JAMES, TOMOHIRO KONNO, MADOKA TAKAI, and KAZUHIKO ISHIHARA. "NONBIOFOULING SURFACES COVERED BY BIO-INSPIRED 2-METHACRYLOYLOXYETHYL PHOSPHORYLCHOLINE POLYMER BRUSH BY USE OF POLYMERIC PHOTOINIFERTER." Nano LIFE 02, no. 04 (December 2012): 1242003. http://dx.doi.org/10.1142/s1793984412420032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A versatile method for constructing nonbiofouling and micropatterned surfaces bearing brush type poly(2-methacryloyloxyethyl phosphorylcholine) (MPC) on polymeric substrates using living radical polymerization with N,N-diethyldithiocarbamate moiety as a photoiniferter for microbiodevices was demonstrated. The polymeric photoiniferters comprised of 4-vinyl benzyl N,N-diethyldithiocarbamate (VBDC) and 2-ethylhexyl methacrylate (EHMA) were synthesized with variation of VBDC contents from 10% to 40% to easily tune the chain density of poly(MPC) grafted while the chain length was regulated by changing photoirradiation time. The characterizations of the poly(MPC)-modified surfaces were conducted by using attenuated total reflection infrared (ATR-IR), X-ray photoelectron spectroscopy (XPS), ellipsometric measurements, along with atomic force microscopy (AFM). The nonspecific protein adsorption from single and binary solutions of bovine plasma fibrinogen and bovine serum albumin was greatly suppressed on moderate to high chain density, moderate chain length of poly(MPC) and on smooth surfaces. The modified surfaces excellently eliminate cell adhesion of fibroblast-like cell L929 as well. Further, micropatterned-nonbiofouling poly(MPC) brush surface could be constructed using photomask with high fidelity.
7

Sibarani, James, Tomohiro Konno, Madoka Takai, and Kazuhiko Ishihara. "Surface Modification by Grafting with Biocompatible 2-Methacryloyloxyethyl Phosphorylcholine for Microfluidic Devices." Key Engineering Materials 342-343 (July 2007): 789–92. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Non-biofouling surfaces with polymer-based substrate were prepared for manufacturing microfluidic devices. It was done by constructing biocompatible poly(2-methacryloyloxyethyl phosphorylcholine(MPC)) brushes using surface-initiated graft polymerization method based on dithiocarbamate as photoiniferter. The density and length of the polymer chains were varied by changing the composition of the photoiniferter moiety in the base polymer (macrophotoiniferter) and the photoirradiation time, respectively. The molecular weight and thickness of the poly(MPC)- grafted chains were 320 kDa and 95±14 nm, respectively. Characterizations of the poly(MPC) modified surfaces were conducted by water contact angle, X-ray photoelectron spectroscopy, atomic force microscope. Protein adsorption resistance of these modified surfaces was then investigated by contacting with human plasma protein dissolved in phosphate buffered saline. These poly(MPC)-modified surfaces effectively reduced protein adsorption.
8

Chen, Kaimin, Lan Cao, Ying Zhang, Kai Li, Xue Qin, and Xuhong Guo. "Conformation Study of Dual Stimuli-Responsive Core-Shell Diblock Polymer Brushes." Polymers 10, no. 10 (September 30, 2018): 1084. http://dx.doi.org/10.3390/polym10101084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Stimuli-responsive nanoparticles are among the most popular research topics. In this study, two types of core-shell (polystyrene with a photoiniferter (PSV) as the core and diblock as the shell) polymer brushes (PSV@PNIPA-b-PAA and PSV@PAA-b-PNIPA) were designed and prepared using surface-initiated photoiniferter-mediated polymerization (SI-PIMP). Moreover, their pH- and temperature-stimuli responses were explored by dynamic light scattering (DLS) and turbidimeter under various conditions. The results showed that the conformational change was determined on the basis of the competition among electrostatic repulsion, hydrophobic interaction, hydrogen bonding, and steric hindrance, which was also confirmed by protein adsorption experiments. These results are not only helpful for the design and synthesis of stimuli-responsive polymer brushes but also shed light on controlled protein immobilization under mild conditions.
9

Yang, Xiao-Min, and Kun-Yuan Qiu. "Polymerization of styrene usingN-(p-tolyl)-N?,N?-diethyldithiocarbamoylacetamide as photoiniferter." Journal of Applied Polymer Science 61, no. 3 (July 18, 1996): 513–18. http://dx.doi.org/10.1002/(sici)1097-4628(19960718)61:3<513::aid-app15>3.0.co;2-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Zun, Kaimin Chen, Chen Hua, and Xuhong Guo. "Conformation Variation and Tunable Protein Adsorption through Combination of Poly(acrylic acid) and Antifouling Poly(N-(2-hydroxyethyl) acrylamide) Diblock on a Particle Surface." Polymers 12, no. 3 (March 4, 2020): 566. http://dx.doi.org/10.3390/polym12030566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Adsorption and desorption of proteins on biomaterial surfaces play a critical role in numerous biomedical applications. Spherical diblock polymer brushes (polystyrene with photoiniferter (PSV) as the core) with different block sequence, poly(acrylic acid)-b-poly(N-(2-hydroxyethyl) acrylamide) (PSV@PAA-b-PHEAA) and poly(N-(2-hydroxyethyl) acrylamide)-b-poly(acrylic acid) (PSV@PHEAA-b-PAA) were prepared via surface-initiated photoiniferter-mediated polymerization (SI-PIMP) and confirmed by a series of characterizations including TEM, Fourier transform infrared (FTIR) and elemental analysis. Both diblock polymer brushes show typical pH-dependent properties measured by dynamic light scattering (DLS) and Zeta potential. It is interesting to find out that conformation of PSV@PAA-b-PHEAA uniquely change with pH values, which is due to cooperation of electrostatic repulsion and steric hindrance. High-resolution turbidimetric titration was applied to explore the behavior of bovine serum albumin (BSA) binding to diblock polymer brushes, and the protein adsorption could be tuned by the existence of PHEAA as well as apparent PAA density. These studies laid a theoretical foundation for design of diblock polymer brushes and a possible application in biomedical fields.
11

Sivokhin, Alexey, Dmitry Orekhov, Oleg Kazantsev, Olga Sivokhina, Sergey Orekhov, Denis Kamorin, Ksenia Otopkova, Michael Smirnov, and Rostislav Karpov. "Random and Diblock Thermoresponsive Oligo(ethylene glycol)-Based Copolymers Synthesized via Photo-Induced RAFT Polymerization." Polymers 14, no. 1 (December 30, 2021): 137. http://dx.doi.org/10.3390/polym14010137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Amphiphilic random and diblock thermoresponsive oligo(ethylene glycol)-based (co)polymers were synthesized via photoiniferter polymerization under visible light using trithiocarbonate as a chain transfer agent. The effect of solvent, light intensity and wavelength on the rate of the process was investigated. It was shown that blue and green LED light could initiate RAFT polymerization of macromonomers without an exogenous initiator at room temperature, giving bottlebrush polymers with low dispersity at sufficiently high conversions achieved in 1–2 h. The pseudo-living mechanism of polymerization and high chain-end fidelity were confirmed by successful chain extension. Thermoresponsive properties of the copolymers in aqueous solutions were studied via turbidimetry and laser light scattering. Random copolymers of methoxy- and alkoxy oligo(ethylene glycol) methacrylates of a specified length formed unimolecular micelles in water with a hydrophobic core consisting of a polymer backbone and alkyl groups and a hydrophilic oligo(ethylene glycol) shell. In contrast, the diblock copolymer formed huge multimolecular micelles.
12

Kwon, Tae Seok, Hiromitsu Ochiai, Shuji Kondo, Koji Takagi, Hideo Kunisada, and Yasuo Yuki. "Radical Polymerization of p-Substituted Styrenes with Benzyl Phenyl Selenide as Photoiniferter." Polymer Journal 31, no. 5 (May 1999): 411–17. http://dx.doi.org/10.1295/polymj.31.411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Qin, Shu-Hui, and Kun-Yuan Qiu. "Synthesis of macromonomer from radical polymerization of styrene with a polymerizable photoiniferter." Journal of Applied Polymer Science 75, no. 11 (March 14, 2000): 1350–56. http://dx.doi.org/10.1002/(sici)1097-4628(20000314)75:11<1350::aid-app5>3.0.co;2-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zhao, Bowen, Jiajia Li, Yuan Xiu, Xiangqiang Pan, Zhengbiao Zhang, and Jian Zhu. "Xanthate-Based Photoiniferter RAFT Polymerization toward Oxygen-Tolerant and Rapid Living 3D Printing." Macromolecules 55, no. 5 (February 15, 2022): 1620–28. http://dx.doi.org/10.1021/acs.macromol.1c02521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Fu, Yanhong, Lin Zhang, Lei Huang, Shengwei Xiao, Feng Chen, Ping Fan, Mingqiang Zhong, and Jintao Yang. "Salt- and thermo-responsive polyzwitterionic brush prepared via surface-initiated photoiniferter-mediated polymerization." Applied Surface Science 450 (August 2018): 130–37. http://dx.doi.org/10.1016/j.apsusc.2018.04.112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bai, Jie, Kun-Yuan Qiu, and Yen Wei. "Synthesis of polymer-inorganic hybrid nanoparticlesvia radical polymerization initiated by surface-immobilized photoiniferter." Polymer International 52, no. 5 (2003): 853–58. http://dx.doi.org/10.1002/pi.1213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Luo, Ning, Andrew T. Metters, J. Brian Hutchison, Christopher N. Bowman, and Kristi S. Anseth. "A Methacrylated Photoiniferter as a Chemical Basis for Microlithography: Micropatterning Based on Photografting Polymerization." Macromolecules 36, no. 18 (September 2003): 6739–45. http://dx.doi.org/10.1021/ma0344341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Carmean, R. Nicholas, Michael B. Sims, C. Adrian Figg, Paul J. Hurst, Joseph P. Patterson, and Brent S. Sumerlin. "Ultrahigh Molecular Weight Hydrophobic Acrylic and Styrenic Polymers through Organic-Phase Photoiniferter-Mediated Polymerization." ACS Macro Letters 9, no. 4 (April 7, 2020): 613–18. http://dx.doi.org/10.1021/acsmacrolett.0c00203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Krause, Jordan E., Norman D. Brault, Yuting Li, Hong Xue, Yibo Zhou, and Shaoyi Jiang. "Photoiniferter-Mediated Polymerization of Zwitterionic Carboxybetaine Monomers for Low-Fouling and Functionalizable Surface Coatings." Macromolecules 44, no. 23 (December 13, 2011): 9213–20. http://dx.doi.org/10.1021/ma202007h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tasdelen, Mehmet Atilla, Yasemin Yuksel Durmaz, Bunyamin Karagoz, Niyazi Bicak, and Yusuf Yagci. "A new photoiniferter/RAFT agent for ambient temperature rapid and well-controlled radical polymerization." Journal of Polymer Science Part A: Polymer Chemistry 46, no. 10 (2008): 3387–95. http://dx.doi.org/10.1002/pola.22686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Di, Jianbo, and Dotsevi Y. Sogah. "Intergallery Living Polymerization Using Silicate-Anchored Photoiniferter. A Versatile Preparatory Method for Exfoliated Silicate Nanocomposites." Macromolecules 39, no. 3 (February 2006): 1020–28. http://dx.doi.org/10.1021/ma049794i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Seok Kwon, Tae, Sadanori Kumazawa, Shuji Kondo†, Koji Takagi, Hideo Kunisada, and Yasuo Yuki. "Synthesis of Telechelic Polystyrene by Radical Polymerization Using 1,4-Bis(p-tert-Butylphenylseleno-Methyl)benzene as a Photoiniferter." Journal of Macromolecular Science, Part A 35, no. 12 (December 1998): 1895–913. http://dx.doi.org/10.1080/10601329808000986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kwon, Tae Seok, Koji Takagi, Hideo Kunisada, and Yasuo Yuki. "SYNTHESIS OF ABA TYPE TRIBLOCK COPOLYMERS BY RADICAL POLYMERIZATION WITH 1,4-BIS(p-TERTBUTYLPHENYLSELENOMETHYL) BENZENE AS A PHOTOINIFERTER." Journal of Macromolecular Science, Part A 38, no. 5-6 (April 30, 2001): 605–26. http://dx.doi.org/10.1081/ma-100103593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kwon, Tae Seok, Koji Takagi, Hideo Kunisada, and Yasuo Yuki. "Synthesis of star polystyrene by radical polymerization with 1,2,4,5-tetrakis(p-tert-butylphenyl selenomethyl)benzene as a novel photoiniferter." European Polymer Journal 39, no. 7 (July 2003): 1437–41. http://dx.doi.org/10.1016/s0014-3057(03)00016-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Song, Renyuan, Xiaofeng Yu, Muxin Liu, Xiaoling Hu, and Shengqing Zhu. "Anion Exchange Affinity-Based Controllable Surface Imprinting Synthesis of Ultrathin Imprinted Films for Protein Recognition." Polymers 14, no. 10 (May 14, 2022): 2011. http://dx.doi.org/10.3390/polym14102011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anion exchange affinity-based controllable surface imprinting is an effective approach to overcome low imprinting efficiency and high non-specific binding capacity. The template proteins were first immobilized on the anchored tetraalkylammonium groups of the nanoparticles via anion exchange affinity-based interactions, enabling monolayer sorption using a low template concentration. The combined use of surface-initiated photoiniferter-mediated polymerization to precisely control the imprinted film thickness, allowing the formation of homogeneous binding cavities, and the construction of effective binding sites resulted in a low non-specific binding capacity and high imprinting efficiency. The obtained imprinted films benefited from the anion exchange mechanism, exhibiting a higher imprinting factor and faster binding rate than the reference material. Binding tests revealed that the binding strength and selective recognition properties could be tuned to a certain extent by adjusting the NaCl concentration. Additionally, in contrast to the harsh template elution conditions of the covalent immobilization approach, over 80% of the template molecules were readily removed from the imprinted films using supersonic elution with an aqueous mixture of NaCl and HAc. Introducing template immobilization by anion exchange interactions to the synthesis of imprinted materials may provide a new approach for effective biomacromolecular imprinting.
26

Ma, Jiao, Shifang Luan, Lingjie Song, Jing Jin, Shuaishuai Yuan, Shunjie Yan, Huawei Yang, Hengchong Shi, and Jinghua Yin. "Fabricating a Cycloolefin Polymer Immunoassay Platform with a Dual-Function Polymer Brush via a Surface-Initiated Photoiniferter-Mediated Polymerization Strategy." ACS Applied Materials & Interfaces 6, no. 3 (January 22, 2014): 1971–78. http://dx.doi.org/10.1021/am405017h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kwon, Tae Seok, Sadanori Kumazawa, Tetsuya Yokoi, Shuji Kondo, Hideo Kunisada, and Yasuo Yuki. "Living Radical Polymerization of Styrene with Diphenyl Diselenide as a Photoiniferter. Synthesis of Polystyrene with Carbon-Carbon Double Bonds at Both Chain Ends." Journal of Macromolecular Science, Part A 34, no. 9 (September 1997): 1553–67. http://dx.doi.org/10.1080/10601329708010026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lv, Yun-Kai, Jing Zhang, Meng-Zhe Li, Shao-Dan Zhou, Xing-Hui Ren, and Jing Wang. "Fast clean-up and selective enrichment of florfenicol in milk by restricted access media molecularly imprinted magnetic microspheres based on surface-initiated photoiniferter-mediated polymerization." Analytical Methods 8, no. 19 (2016): 3982–89. http://dx.doi.org/10.1039/c6ay00417b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A novel RAM-MIMM with water-compatible, exclusion biomacromolecules and selective enrichment analytes was prepared using a surface-initiated iniferter technique for magnetic dispersion extraction of trace florfenicol from milk samples.
29

Rathore, K., K. Raghunatha Reddy, N. S. Tomer, S. M. Desai, and R. P. Singh. "Visible-light-induced controlled/living radical polymerization of styrene with a phenyl seleno group at one terminal chain end: 1-(Phenylseleno)ethyl benzene as a photoiniferter." Journal of Applied Polymer Science 93, no. 1 (2004): 348–55. http://dx.doi.org/10.1002/app.20391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kwon, Tae Seok, Shuji Kondo, Hideo Kunisada, and Yasuo Yuki. "Synthesis of Polystyrene and Poly(methyl methacrylate) Each with a Phenyl Seleno Group at Terminal Chain End by Radical Polymerization in the Presence of Benzyl Phenyl Selenide as a Photoiniferter." Polymer Journal 30, no. 7 (July 1998): 559–65. http://dx.doi.org/10.1295/polymj.30.559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Eckert, Tilman, and Volker Abetz. "Polymethacrylamide—An underrated and easily accessible upper critical solution temperature polymer: Green synthesis via photoiniferter reversible addition–fragmentation chain transfer polymerization and analysis of solution behavior in water/ethanol mixtures." Journal of Polymer Science 58, no. 21 (September 18, 2020): 3050–60. http://dx.doi.org/10.1002/pol.20200566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Yang, Xiao Min, and Kun Yuan Qiu. "Radical Polymerization of Styrene Initiated with Alkyl N,N-Diethyldithiocarbamylacetate Photoiniferters." Journal of Macromolecular Science, Part A 34, no. 2 (February 1997): 315–25. http://dx.doi.org/10.1080/10601329708014957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Xia, Yening, Georg M. Scheutz, Charles P. Easterling, Junpeng Zhao, and Brent S. Sumerlin. "Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ring‐Opening Polymerizations." Angewandte Chemie International Edition 60, no. 34 (July 14, 2021): 18537–41. http://dx.doi.org/10.1002/anie.202106418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Xia, Yening, Georg M. Scheutz, Charles P. Easterling, Junpeng Zhao, and Brent S. Sumerlin. "Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ring‐Opening Polymerizations." Angewandte Chemie 133, no. 34 (July 14, 2021): 18685–89. http://dx.doi.org/10.1002/ange.202106418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ali, A. M. Imroz, and Andrew G. Mayes. "Preparation of Polymeric Core−Shell and Multilayer Nanoparticles: Surface-Initiated Polymerization Usingin SituSynthesized Photoiniferters." Macromolecules 43, no. 2 (January 26, 2010): 837–44. http://dx.doi.org/10.1021/ma9019812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Mueller, Matthias, Christine Bandl, and Wolfgang Kern. "Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions." Polymers 14, no. 3 (February 4, 2022): 608. http://dx.doi.org/10.3390/polym14030608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Straightforward and versatile surface modification, functionalization and coating have become a significant topic in material sciences. While physical modification suffers from severe drawbacks, such as insufficient stability, chemical induced grafting processes efficiently modify organic and inorganic materials and surfaces due to covalent linkage. These processes include the “grafting from” method, where polymer chains are directly grown from the surface in terms of a surface-initiated polymerization and the “grafting to” method where a preformed (macro)-molecule is introduced to a preliminary treated surface via a coupling reaction. Both methods require an initiating species that is immobilized at the surface and can be triggered either by heat or light, whereas light induced processes have recently received increasing interest. Therefore, a major challenge is the ongoing search for suitable anchor moieties that provide covalent linkage to the surface and include initiators for surface-initiated polymerization and coupling reactions, respectively. This review containing 205 references provides an overview on photoinitiators which are covalently coupled to different surfaces, and are utilized for subsequent photopolymerizations and photocoupling reactions. An emphasis is placed on the coupling strategies for different surfaces, including oxides, metals, and cellulosic materials, with a focus on surface coupled free radical photoinitiators (type I and type II). Furthermore, the concept of surface initiation mediated by photoiniferters (PIMP) is reviewed. Regarding controlled radical polymerization from surfaces, a large section of the paper reviews surface-tethered co-initiators, ATRP initiators, and RAFT agents. In combination with photoinitiators or photoredox catalysts, these compounds are employed for surface initiated photopolymerizations. Moreover, examples for coupled photoacids and photoacid generators are presented. Another large section of the article reviews photocoupling and photoclick techniques. Here, the focus is set on light sensitive groups, such as organic azides, tetrazoles and diazirines, which have proven useful in biochemistry, composite technology and many other fields.
37

Otsu, Takayuki, Toshiaki Matsunaga, Toru Doi, and Akikazu Matsumoto. "Features of living radical polymerization of vinyl monomers in homogeneous system using N,N-diethyldithiocarbamate derivatives as photoiniferters." European Polymer Journal 31, no. 1 (January 1995): 67–78. http://dx.doi.org/10.1016/0014-3057(94)00122-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Gromadzki, Daniel, Sergey Filippov, Miloš Netopilík, Ričardas Makuška, Alexander Jigounov, Josef Pleštil, Jiří Horský, and Petr Štĕpánek. "Combination of “living” nitroxide-mediated and photoiniferter-induced “grafting from” free-radical polymerizations: From branched copolymers to unimolecular micelles and microgels." European Polymer Journal 45, no. 6 (June 2009): 1748–58. http://dx.doi.org/10.1016/j.eurpolymj.2009.02.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Hughes, Rhys W., Megan E. Lott, Jared I. Bowman, and Brent S. Sumerlin. "Excitation Dependence in Photoiniferter Polymerization." ACS Macro Letters, December 19, 2022, 14–19. http://dx.doi.org/10.1021/acsmacrolett.2c00683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Yang, Shuaiqi, Li Zhang, Ying Chen, and Jianbo Tan. "Combining Green Light-Activated Photoiniferter RAFT Polymerization and RAFT Dispersion Polymerization for Graft Copolymer Assemblies." Macromolecules, September 28, 2022. http://dx.doi.org/10.1021/acs.macromol.2c01529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Olson, Rebecca A., Megan E. Lott, John B. Garrison, Cullen L. G. Davidson, Lucca Trachsel, Diego I. Pedro, W. Gregory Sawyer, and Brent S. Sumerlin. "Inverse Miniemulsion Photoiniferter Polymerization for the Synthesis of Ultrahigh Molecular Weight Polymers." Macromolecules, September 22, 2022. http://dx.doi.org/10.1021/acs.macromol.2c01239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Paruli, III, Ernesto, Valentina Montagna, Mariano J. Garcia-Soto, Karsten Haupt, and Carlo Gonzato. "A general photoiniferter approach to the surface functionalization of acrylic and methacrylic structures written by two-photon stereolithography." Nanoscale, 2023. http://dx.doi.org/10.1039/d2nr06627k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two-photon stereolithography (TPS) is an established additive fabrication technique allowing the voxel-by-voxel direct writing of even intricate 3D nano/microstructures via the polymerization of a photoresin. An obvious way of tuning...
43

Tasdelen, Mehmet Atilla, and Serhat Oran. "Synthesis and Characterization of Polysulfone-based Graft Copolymer Possessing Quaternary Ammonium Salts via Photoiniferter Polymerization." Journal of the Turkish Chemical Society, Section A: Chemistry, November 19, 2017, 117–32. http://dx.doi.org/10.18596/jotcsa.346590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Sun, Wei, Xiang Shen, Jingrui Liu, Zhaoqiang Wu, and Hong Chen. "Preparing Well‐Defined Polyacrylamide‐ b ‐Polycarbonate by Integrating Photoiniferter Polymerization and TBD‐Catalyzed ROP." Macromolecular Rapid Communications, June 21, 2022, 2200376. http://dx.doi.org/10.1002/marc.202200376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Lemich, Sascha Benedict, Nils Sobania, Nils‐Felix Meyer, Patrick Schütz, Birgit Hankiewicz, and Volker Abetz. "Synthesis of Multi‐Responsive gold@polymer‐Nanohybrid Materials Using Polymer Precursors Obtained by Photoiniferter RAFT‐Polymerization." Macromolecular Chemistry and Physics, December 2, 2022, 2200355. http://dx.doi.org/10.1002/macp.202200355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії