Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Photopolymerization.

Статті в журналах з теми "Photopolymerization"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Photopolymerization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Peyrot, Fabienne, Sonia Lajnef, and Davy-Louis Versace. "Electron Paramagnetic Resonance Spin Trapping (EPR–ST) Technique in Photopolymerization Processes." Catalysts 12, no. 7 (2022): 772. http://dx.doi.org/10.3390/catal12070772.

Повний текст джерела
Анотація:
To face economic issues of the last ten years, free-radical photopolymerization (FRP) has known an impressive enlightenment. Multiple performing photoinitiating systems have been designed to perform photopolymerizations in the visible or near infrared (NIR) range. To fully understand the photochemical mechanisms involved upon light activation and characterize the nature of radicals implied in FRP, electron paramagnetic resonance coupled to the spin trapping (EPR–ST) method represents one of the most valuable techniques. In this context, the principle of EPR–ST and its uses in free-radical phot
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jessop, Julie L. P. "A Practical Primer: Raman Spectroscopy for Monitoring of Photopolymerization Systems." Polymers 15, no. 18 (2023): 3835. http://dx.doi.org/10.3390/polym15183835.

Повний текст джерела
Анотація:
Photopolymerization systems provide compelling advantages for industrial applications due to their fast reaction kinetics, wide selection of monomers for physical property development, and energy-efficient initiation via illumination. These same advantages can present challenges when attempting to monitor these reactions or characterize their resulting polymers; however, Raman spectroscopy can provide the flexibility and resolution needed. In this overview, Raman spectroscopy is compared to common characterization techniques, such as photo-differential scanning calorimetry and infrared spectro
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Elian, Christine, Vlasta Brezová, Pauline Sautrot-Ba, Martin Breza, and Davy-Louis Versace. "Lawsone Derivatives as Efficient Photopolymerizable Initiators for Free-Radical, Cationic Photopolymerizations, and Thiol—Ene Reactions." Polymers 13, no. 12 (2021): 2015. http://dx.doi.org/10.3390/polym13122015.

Повний текст джерела
Анотація:
Two new photopolymerizable vinyl (2-(allyloxy) 1,4-naphthoquinone, HNQA) and epoxy (2-(oxiran-2yl methoxy) 1,4-naphthoquinone, HNQE) photoinitiators derived from lawsone were designed in this paper. These new photoinitiators can be used as one-component photoinitiating systems for the free-radical photopolymerization of acrylate bio-based monomer without the addition of any co-initiators. As highlighted by the electron paramagnetic resonance (EPR) spin-trapping results, the formation of carbon-centered radicals from an intermolecular H abstraction reaction was evidenced and can act as initiati
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lin, Jui-Teng, Jacques Lalevee, and Da-Chun Cheng. "A Critical Review for Synergic Kinetics and Strategies for Enhanced Photopolymerizations for 3D-Printing and Additive Manufacturing." Polymers 13, no. 14 (2021): 2325. http://dx.doi.org/10.3390/polym13142325.

Повний текст джерела
Анотація:
The synergic features and enhancing strategies for various photopolymerization systems are reviewed by kinetic schemes and the associated measurements. The important topics include (i) photo crosslinking of corneas for the treatment of corneal diseases using UVA-light (365 nm) light and riboflavin as the photosensitizer; (ii) synergic effects by a dual-function enhancer in a three-initiator system; (iii) synergic effects by a three-initiator C/B/A system, with electron-transfer and oxygen-mediated energy-transfer pathways; (iv) copper-complex (G1) photoredox catalyst in G1/Iod/NVK systems for
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Jing, Jacques Lalevée, Jiacheng Zhao, Bernadette Graff, Martina H. Stenzel, and Pu Xiao. "Dihydroxyanthraquinone derivatives: natural dyes as blue-light-sensitive versatile photoinitiators of photopolymerization." Polymer Chemistry 7, no. 47 (2016): 7316–24. http://dx.doi.org/10.1039/c6py01550f.

Повний текст джерела
Анотація:
Dihydroxyanthraquinone derivatives can be used as versatile blue-light-sensitive photoinitiators for cross-linked free radical photopolymerization, RAFT photopolymerization, and cationic photopolymerization.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lang, Margit, Stefan Hirner, Frank Wiesbrock, and Peter Fuchs. "A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization." Polymers 14, no. 10 (2022): 2074. http://dx.doi.org/10.3390/polym14102074.

Повний текст джерела
Анотація:
Photopolymerizations, in which the initiation of a chemical-physical reaction occurs by the exposure of photosensitive monomers to a high-intensity light source, have become a well-accepted technology for manufacturing polymers. Providing significant advantages over thermal-initiated polymerizations, including fast and controllable reaction rates, as well as spatial and temporal control over the formation of material, this technology has found a large variety of industrial applications. The reaction mechanisms and kinetics are quite complex as the system moves quickly from a liquid monomer mix
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lin, De, Huiguang Kou, Wen-Fang Shi, Hui-Ya Yuan, and Yong-Lie Chen. "Photopolymerizaton of hyperbranched aliphatic acrylated poly(amide ester). II. Photopolymerization kinetics." Journal of Applied Polymer Science 82, no. 7 (2001): 1637–41. http://dx.doi.org/10.1002/app.2003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hayase, Shuji. "Cationic photopolymerization." Kobunshi 35, no. 2 (1986): 116–19. http://dx.doi.org/10.1295/kobunshi.35.116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xu, Rui Xin, Li Jie Wang, and Ming Hui He. "Benzoylformamides as New Photocaged Bases for Free Radical Photopolymerization." Applied Mechanics and Materials 731 (January 2015): 573–77. http://dx.doi.org/10.4028/www.scientific.net/amm.731.573.

Повний текст джерела
Анотація:
Benzoylformamide (BFA) derivatives are proposed as new photocaged bases. Initially their abilities as photoinitiators to initiate the free radical photopolymerization of acrylic monomers have been investigated. Next, we detail regarding the model photopolymerization in the presence of BFA-dBA (N,N-Dibenzyl-2-oxo-2-phenylacetamide) as a photocaged base. In combination with a benzoyl peroxide initiator, BFA-dBA is able to initiate the amine-mediated redox photopolymerization of acrylates, and photopolymerization rate is markedly enhanced.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhou, Hua, Yugang Huang, Yun Zhang, et al. "Hydrogen abstraction of carbon/phosphorus-containing radicals in photoassisted polymerization." RSC Advances 6, no. 73 (2016): 68952–59. http://dx.doi.org/10.1039/c6ra00156d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Acosta Ortiz, Ricardo, Jorge Luis Robles Olivares, and Roberto Yañez Macias. "Synthesis and Thiol-Ene Photopolymerization of Bio-Based Hybrid Aromatic–Aliphatic Monomers Derived from Limonene, Cysteamine and Hydroxycinnamic Acid Derivatives." Polymers 16, no. 23 (2024): 3295. http://dx.doi.org/10.3390/polym16233295.

Повний текст джерела
Анотація:
Three novel bio-based monomers were synthesized through an amidation reaction involving allylated derivatives of coumaric, ferulic and phloretic acid and a diamine obtained from a thiol-ene coupling reaction between limonene and cysteamine. The monomers containing the enone bond of the cinnamic moiety underwent photoisomerization and photocycloaddition reactions upon UV light irradiation. All three monomers were photocured via thiol-ene photopolymerization using a glycerol-derived trifunctional thiol, resulting in fully bio-based poly(amide–thioether)s. The polymers derived from monomers that
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Manjuk, O. N. "ACTUAL PROBLEMS OF MODERN TECHNOLOGIES OF DIRECT TEETH RESTORATION AND THEIR DECISIONS." Health and Ecology Issues, no. 4 (December 28, 2009): 71–74. http://dx.doi.org/10.51523/2708-6011.2009-6-4-14.

Повний текст джерела
Анотація:
Today the use of composites and photopolymerization reactors has become widely spread in stomatologic practice. They are irreplaceable while making qualitative and aesthetic restorations of teeth. Photopolymerization is a complex and ambiguous process, which is proved by existance of many factors influencing it. And this, in it’s turn, demands closer and thought over approach, as well as development and introduction of algorithms of use of photopolymerization reactors considering the type of the applied device and clinical situation.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Cataldo, F. "On cyanogen photopolymerization." European Polymer Journal 35, no. 4 (1999): 571–79. http://dx.doi.org/10.1016/s0014-3057(98)00173-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kaur, Manmeet, and A. K. Srivastava. "PHOTOPOLYMERIZATION: A REVIEW." Journal of Macromolecular Science, Part C: Polymer Reviews 42, no. 4 (2002): 481–512. http://dx.doi.org/10.1081/mc-120015988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ueno, Kosei, Saulius Juodkazis, Toshiyuki Shibuya, Vygantas Mizeikis, Yukie Yokota, and Hiroaki Misawa. "Nanoparticle-Enhanced Photopolymerization." Journal of Physical Chemistry C 113, no. 27 (2009): 11720–24. http://dx.doi.org/10.1021/jp901773k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Akgün, Ertan, Alex Muntean, Jürgen Hubbuch, Michael Wörner, and Marco Sangermano. "Cationic Aerosol Photopolymerization." Macromolecular Materials and Engineering 300, no. 2 (2014): 136–39. http://dx.doi.org/10.1002/mame.201400211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Neckers, D. C. "Architecture with photopolymerization." Polymer Engineering and Science 32, no. 20 (1992): 1481–89. http://dx.doi.org/10.1002/pen.760322007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Matsuzawa, Shuji, Kazuo Yamamura, Tomio Oyama, Hiroaki Takayanagi, and Shinji Ebe. "Photopolymerization of vinyltrichloroacetate." Journal of Polymer Science Part C: Polymer Letters 24, no. 9 (1986): 477–80. http://dx.doi.org/10.1002/pol.1986.140240908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Gražulevičius, Juozas V., Rimtautus Kavaliūnas, and Rūta Lazauskaitė. "Photopolymerization of carbazolyloxiranes." Polymer International 36, no. 1 (1995): 81–85. http://dx.doi.org/10.1002/pi.1995.210360111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hanemann, Thomas, Robert Ruprecht, and Jürgen H. Haußelt. "Micromolding and photopolymerization." Advanced Materials 9, no. 11 (1997): 927–29. http://dx.doi.org/10.1002/adma.19970091117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yan, Yunxing, Xutang Tao, Guibao Xu, et al. "Synthesis, Characterization, and Non-Linear Optical Properties of Two New Symmetrical Two-Photon Photopolymerization Initiators." Australian Journal of Chemistry 58, no. 1 (2005): 29. http://dx.doi.org/10.1071/ch04111.

Повний текст джерела
Анотація:
Two new symmetrical two-photon free-radical photopolymerization initiators, 1,4-bis-{2-[4-(2-pyridin-4-ylvinyl)phenyl]vinyl}-2,5-bisdimethoxybenzene 6 and 1,4-bis-{2-[4-(2-pyridin-4-ylvinyl)phenyl]vinyl}-2,5-bisdodecyloxybenzene 7, were synthesized using an efficient Wittig and Pd-catalyzed Heck coupling methodology. One-photon fluorescence, one-photon fluorescence quantum yields, one-photon fluorescence lifetimes, and two-photon fluorescence have been investigated. Experimental results show that both compounds were good two-photon absorbing chromophores and effective two-photon photopolymeriz
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Sangermano, Marco. "Advances in cationic photopolymerization." Pure and Applied Chemistry 84, no. 10 (2012): 2089–101. http://dx.doi.org/10.1351/pac-con-12-04-11.

Повний текст джерела
Анотація:
This review discusses cationic UV-curing processes of vinyl ethers, propenyl ethers, and epoxy monomers. Cationic photopolymerization based on photogeneration of acid from onium salts induced by UV light and consecutive polymerization initiated by photogenerated acid was first proposed at the end of the 1970s. The process engendered high interest both in academia and in industry. Cationic photoinduction presents some advantages over comparable radical-mediated processes, particularly the absence of inhibition by oxygen, low shrinkage, and good adhesion, and mechanical properties of the UV-cure
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Bonsor, Stephen J., and William M. Palin. "‘Let there be Light,’ and there was Light, but was it Enough? A Review of Modern Dental Light Curing." Dental Update 48, no. 8 (2021): 633–40. http://dx.doi.org/10.12968/denu.2021.48.8.633.

Повний текст джерела
Анотація:
Light curing, or photopolymerization, is a very common method of effecting the set of resin-containing dental materials. This review summarizes key aspects that influence optimal photopolymerization, and how both a basic knowledge of chemistry and properties of the light-curing device are essential to achieve optimal clinical performance of the material. Tips are offered with respect to both the light-curing units and those materials which are cured by them to ensure best practice when working clinically. CPD/Clinical Relevance: A thorough knowledge and understanding of photopolymerization is
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Magini, Marcio, and Máira R. Rodrigues. "Dynamical Model to Describe the Interactions between the Chemical Components in Environment of Photopolymerization of MMA by Dye/Amine Systems." Research Letters in Organic Chemistry 2008 (January 25, 2008): 1–5. http://dx.doi.org/10.1155/2008/404936.

Повний текст джерела
Анотація:
This work discusses the model that explains the aspects of photopolymerization of methyl methacrylate initiated by dye/amine systems. This model is based on a simulation that uses differential equations. A similar model following the hypothesis presented here was used with success in a preliminary work, by Magini and Rodrigues (2005), to describe the cationic photopolymerization of THF in the presence of sensitizers/sulfonium salt systems. Using the same structure was possible to generate a straight correlation between experimental and theoretical results for this system, free radically initia
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Dacic, Stefan, Dragica Dacic-Simonovic, Slavoljub Zivkovic, et al. "Scanning electron microscopy analysis of marginal adaptation of composite resines to enamel after using of standard and gradual photopolimerization." Srpski arhiv za celokupno lekarstvo 142, no. 7-8 (2014): 404–12. http://dx.doi.org/10.2298/sarh1408404d.

Повний текст джерела
Анотація:
Introduction. Bonding between composite and hard dental tissue is most commonly assessed by measuring bonding strength or absence of marginal gap along the restoration interface. Marginal index (MI) is a significant indicator of the efficiency of the bond between material and dental tissue because it also shows the values of width and length of marginal gap. Objective. The aim of this investigation was to estimate quantitative and qualitative features of the bond between composite resin and enamel and to determine the values of MI in enamel after application of two techniques of photopolymeriz
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hussin, Mohd Sabri, Syah Mohd Amin Omar, Sanusi Hamat, Muhamad Qayyum Zawawi Ahamad Suffin, and Wan Azani Mustafa. "Representative Volume Element in Photopolymerization Additive Manufacturing Techniques for Mold Production: A Comprehensive Structured Review." Malaysian Journal on Composites Science and Manufacturing 16, no. 1 (2025): 184–200. https://doi.org/10.37934/mjcsm.16.1.184200.

Повний текст джерела
Анотація:
In recent years, the use of Representative Volume Elements (RVE) in photopolymerization additive manufacturing (AM) for mold production has attracted significant attention for its potential to enhance material performance and structural reliability. This systematic literature review (SLR) provides a structured analysis of recent developments in RVE applications within photopolymerization techniques. It focuses on their effectiveness in addressing the challenges of dimensional precision, mechanical strength, and thermal stability in AM molds. The review addresses the need for a consolidated und
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Knezevic, A., M. Ristic, N. Demoli, Z. Tarle, S. Music, and V. Negovetic Mandic. "Composite Photopolymerization with Diode Laser." Operative Dentistry 32, no. 3 (2007): 279–84. http://dx.doi.org/10.2341/06-79.

Повний текст джерела
Анотація:
Clinical Relevance Many curing lights that are present in clinical practice today cause the clinician to wonder which curing unit is best for the photopolymerization of dental light curing materials. This study introduces the blue diode laser photopolymerization of composite materials, which, if acceptable for clinical use, offers the best polymerization properties compared to other units available on the market today.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Begantsova, Y. E., and A. N. Konev. "Kinetics of multifunctional (meth)acrylates photopolymerization in the presence of aromatic imidazole." Himiâ vysokih ènergij 58, no. 4 (2024): 267–74. https://doi.org/10.31857/s0023119324040054.

Повний текст джерела
Анотація:
The photolysis of phenanthroline-containing imidazole in DMSO solution and the initiating ability of the compound in photopolymerization of multifunctional (meth)acrylates under LED irradiation (λ = 395 nm) under aerobic conditions were investigated for the first time. The relationship of kinetic parameters of photopolymerization with light intensity, chemical structure, and viscosity of multifunctional monomers was established.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Ke, Jhair Peña, and Jinfeng Xing. "Upconversion Nanoparticle‐Assisted Photopolymerization." Photochemistry and Photobiology 96, no. 4 (2020): 741–49. http://dx.doi.org/10.1111/php.13249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Schoch, K. F. "PHOTOINITIATION, PHOTOPOLYMERIZATION, AND PHOTOCURING." IEEE Electrical Insulation Magazine 12, no. 6 (1996): 36. http://dx.doi.org/10.1109/mei.1996.546285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

HASEGAWA, Masaki. "Four Center Type Photopolymerization." Kobunshi 47, no. 1 (1998): 35. http://dx.doi.org/10.1295/kobunshi.47.35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Nowak, Damian, Joanna Ortyl, Iwona Kamińska-Borek, Katarzyna Kukuła, Monika Topa, and Roman Popielarz. "Photopolymerization of hybrid monomers." Polymer Testing 64 (December 2017): 313–20. http://dx.doi.org/10.1016/j.polymertesting.2017.10.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Belk, Michaël, Konstantin G. Kostarev, Vitaly Volpert, and Tamara M. Yudina. "Frontal Photopolymerization with Convection." Journal of Physical Chemistry B 107, no. 37 (2003): 10292–98. http://dx.doi.org/10.1021/jp0276855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Jasinski, Florent, Per B. Zetterlund, André M. Braun, and Abraham Chemtob. "Photopolymerization in dispersed systems." Progress in Polymer Science 84 (September 2018): 47–88. http://dx.doi.org/10.1016/j.progpolymsci.2018.06.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Tomeckova, Vladislava, Fabien Teyssandier, Steven J. Norton, Brian J. Love, and John W. Halloran. "Photopolymerization of acrylate suspensions." Journal of Photochemistry and Photobiology A: Chemistry 247 (November 2012): 74–81. http://dx.doi.org/10.1016/j.jphotochem.2012.08.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Clapper, Jason D., Lucas Sievens-Figueroa, and C. Allan Guymon. "Photopolymerization in Polymer Templating†." Chemistry of Materials 20, no. 3 (2008): 768–81. http://dx.doi.org/10.1021/cm702130r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zhao, Zeang, Jiangtao Wu, Xiaoming Mu, Haosen Chen, H. Jerry Qi, and Daining Fang. "Origami by frontal photopolymerization." Science Advances 3, no. 4 (2017): e1602326. http://dx.doi.org/10.1126/sciadv.1602326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Bagheri, Ali, and Jianyong Jin. "Photopolymerization in 3D Printing." ACS Applied Polymer Materials 1, no. 4 (2019): 593–611. http://dx.doi.org/10.1021/acsapm.8b00165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Fouassier, J. P. "Present trends in photopolymerization." Journal of Photochemistry and Photobiology A: Chemistry 51, no. 1 (1990): 67–71. http://dx.doi.org/10.1016/1010-6030(90)87043-b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Guillaneuf, Yohann, Denis Bertin, Didier Gigmes, Davy-Louis Versace, Jacques Lalevée, and Jean-Pierre Fouassier. "Toward Nitroxide-Mediated Photopolymerization." Macromolecules 43, no. 5 (2010): 2204–12. http://dx.doi.org/10.1021/ma902774s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Rodriguez, Ferdinand, Connie H. Chu, W. T. Wayne K. Chu, and Mary Ann Rondinella. "Adiabatic photopolymerization of acrylamide." Journal of Applied Polymer Science 30, no. 4 (1985): 1629–37. http://dx.doi.org/10.1002/app.1985.070300428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Salman, Salman R., Mustafa M. F. Al-Jarrah, and E. Ahmed. "Photopolymerization of p-divinylbenzene." Journal of Polymer Science: Polymer Letters Edition 26, no. 2 (1988): 99–102. http://dx.doi.org/10.1002/pol.1988.140260207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Cataldo, Franco. "On C60 fullerene photopolymerization." Polymer International 48, no. 2 (1999): 143–49. http://dx.doi.org/10.1002/(sici)1097-0126(199902)48:2<143::aid-pi121>3.0.co;2-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Thiem, Heiko, Peter Strohriegl, Maxim Shkunov, and Iain McCulloch. "Photopolymerization of Reactive Mesogens." Macromolecular Chemistry and Physics 206, no. 21 (2005): 2153–59. http://dx.doi.org/10.1002/macp.200500272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Abraham, Chemtob, Jasinski Florent, Zetterlund Per, and Braun André. "Photopolymerization in dispersed systems." Progress in Polymer Science 84 (June 23, 2018): 47–88. https://doi.org/10.1016/j.progpolymsci.2018.06.006.

Повний текст джерела
Анотація:
Zero-VOC technologies combining ecological and economic efficiency are destined to occupy a growing place in the polymer economy. Today,&nbsp;Polymerization&nbsp;in dispersed systems and&nbsp;Photopolymerization&nbsp;are the two major key players. The hybrid technology based on photopolymerization in dispersed systems has emerged as the next technological frontier, not only to make processes even more efficient and&nbsp;eco-friendly, but also to expand the range of polymer products and properties. This review summarizes the current knowledge in research relevant to this field in an exhaustive
Стилі APA, Harvard, Vancouver, ISO та ін.
46

JAKUBIAK, JULITA, and JAN F. RABEK. "Three-dimensional (3D) photopolymerization in stereolithography. Part I. Fundamentals of 3D photopolymerization." Polimery 45, no. 11/12 (2000): 759–70. http://dx.doi.org/10.14314/polimery.2000.759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Tian, Jing, Qing Zhang, Man Yuan, Xiao Yan Zhou, Hui Fen Guo, and Hong Kai Wang. "Polymerization of Acrylamide Photo Initiated by Ferroferric Oxide Nanoparticles." Advanced Materials Research 901 (February 2014): 35–39. http://dx.doi.org/10.4028/www.scientific.net/amr.901.35.

Повний текст джерела
Анотація:
In this investigation, nanoparticles of ferroferric oxide were synthesized and used as the photo initiator in the polymerization of acrylamide. The influences of different factors, including reaction time, light intensity, the content of ferroferric oxide nanoparticles, and the concentration of acrylamide monomer on the synthesis of polyacrylamide were discussed. The possible mechanisms of the photopolymerization irritated by Fe3O4 nanoparticles, and the photoinitiation stage with the participantion of the acrylamide radicals were also proposed. The results show that the ferroferric oxide nano
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Bouchikhi, Nouria, Manel Bouazza, Salah Hamri, et al. "Photo-curing kinetics of hydroxyethyl acrylate (HEA): synergetic effect of dye/amine photoinitiator systems." International Journal of Industrial Chemistry 11, no. 1 (2019): 1–9. http://dx.doi.org/10.1007/s40090-019-00197-7.

Повний текст джерела
Анотація:
AbstractThe aim of this study is to examine and evaluate several dye/amine systems as photoinitiators for photopolymerization of 2-hydroxyethyl acrylate (HEA) monomer under visible light conditions. For this purpose, a series of dye/amine photoinitiators were formed using methylene blue (MB) or acridine orange (AO) as photosensitizers, and triethanolamine (TEOA), ethyl 4-(dimethylamino) benzoate (EDMAB), trioctylamine (TOA), and N,N-diméthylallylamine (DMAA) as co-initiators. The photopolymerization kinetic of the HEA monomer in the presence of proposed dye/amine systems was performed using Fo
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Acosta Ortiz, Ricardo, Rebeca Sadai Sánchez Huerta, Antonio Serguei Ledezma Pérez, and Aida E. García Valdez. "Synthesis of a Curing Agent Derived from Limonene and the Study of Its Performance to Polymerize a Biobased Epoxy Resin Using the Epoxy/Thiol-Ene Photopolymerization Technique." Polymers 14, no. 11 (2022): 2192. http://dx.doi.org/10.3390/polym14112192.

Повний текст джерела
Анотація:
This study describes the synthesis of a curing agent derived from limonene as well as its application to prepare biobased thermoset polymers via the epoxy/thiol-ene photopolymerization (ETE) method. A biobased commercial epoxy resin was used to synthesize a crosslinked polymeric matrix of polyether-polythioether type. The preparation of the curing agent required two steps. First, a diamine intermediate was prepared by means of a thiol-ene coupling reaction between limonene and cysteamine hydrochloride. Second, the primary amino groups of the intermediate compound were alkylated using allyl bro
Стилі APA, Harvard, Vancouver, ISO та ін.
50

França, Fabiana Mantovani Gomes, Frederico Seidi Hori, Alex José Souza dos Santos, and José Roberto Lovadino. "The effect of insertion and photopolymerization techniques on microleakage of Class V cavities: a quantitative evaluation." Brazilian Oral Research 19, no. 1 (2005): 30–35. http://dx.doi.org/10.1590/s1806-83242005000100006.

Повний текст джерела
Анотація:
The aim of this in vitro study was to evaluate by spectrophotometry the influence of the incremental technique and progressive light curing in the microleakage of Class V cavities. Forty samples were prepared with class V cylindrical cavities on the buccal root surface of bovine incisive teeth and filled with composite resin (Z250). The samples were divided into four groups: I: cavity was bulk filled and the composite was light cured for 40 seconds; Group II: cavity was bulk filled and a "soft-start" polymerization was used; Group III: cavity was filled with the incremental technique in two co
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!