Добірка наукової літератури з теми "Phylogenesis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phylogenesis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Phylogenesis"

1

Manzo, G. "Phylogenesis — Ontogenesis — Oncogenesis." Medical Hypotheses 30, no. 4 (December 1989): 245–57. http://dx.doi.org/10.1016/0306-9877(89)90033-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Epstein, V. M. "The version of the contemporary theory of evolutionary systematics." Species and speciation. Analysis of new views and trends 313, Supplement 1 (July 25, 2009): 272–93. http://dx.doi.org/10.31610/trudyzin/2009.supl.1.272.

Повний текст джерела
Анотація:
Integral theory of evolutional systematics is presented in this article for the first time in contemporary science. It became formed as the science about evolution of species’ diversity and methods of investigation of it. Here is defined its object, subject, aim and method. Theoretical evolutional systematics is separated from practical systematics. Three sections are included in its content: idiographical systematics, nomothetical systematics and phylogenetical cybernetics. Idiographical systematics includes theories of descriptions (= meronomy), classifications (= taxonomy) and reconstructions of phylogenesis (= phylonomy). Nomothetical systematics includes the laws of phylogenetics, postulates of systematics, axioms and theorems of evolutional systematics in a whole, forming deductive theoretical system of evolutional systematics (DTS ES). Status of laws is added to 21 conformities to natural laws of phylogenetics. Here are formulated 6 postulates of systematics. On the base of logical investigations of laws and postulates as statements, the laws of phylogenetics are represented in form of 6 axioms and 15 theorems. Postulates of systematics are considered as 6 axioms. DTS ES is represented in the paper on the base of analysis of connections between 12 axioms. Phylogenetical cybernetics includes interpretation of the theory on the some systemic and probabilistic models of species, their classification and reconstruction of phylogenesis, the examples are present in the article. It is divided on three sections of investigations : systemology, theory of control phylogenetical transformations and theory of information processes in phylogenesis. The sections of evolutional systematics are interpreted accordingly philosophical conception of the levels of scientific knowledge. Systematics and phylogenetics are considered as two aspects of evolutional systematics as united science, reflecting its onthology (= the laws of phylogenesis) and gnosiologyl (= postulates of systematics). This solution conforms to initial definition of evolutional systematics as the science of evolution of species’ diversity and methods of its investigation and conforms the contemporary darwinism.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krakauer, David C., Mark Pagel, T. R. E. Southwood, and Paola M. de A. Zanotto. "Phylogenesis of prion protein." Nature 380, no. 6576 (April 1996): 675. http://dx.doi.org/10.1038/380675a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Donald, Merlin. "Representation: Ontogenesis and phylogenesis." Behavioral and Brain Sciences 17, no. 4 (December 1994): 714–15. http://dx.doi.org/10.1017/s0140525x00036700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

L⊘vtrup, Soren. "Phylogenesis, ontogenesis and evolution." Bolletino di zoologia 54, no. 3 (January 1987): 199–208. http://dx.doi.org/10.1080/11250008709355584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grif, V. G. "Mutagenesis and phylogenesis of plants." Cell and Tissue Biology 1, no. 6 (December 2007): 467–75. http://dx.doi.org/10.1134/s1990519x07060016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Blunden, Andy. "Ontogenesis, Ethnogenesis, Sociogenesis and Phylogenesis." Human Arenas 3, no. 4 (March 16, 2020): 470–74. http://dx.doi.org/10.1007/s42087-020-00103-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nes, W. D., R. A. Norton, F. G. Crumley, S. J. Madigan, and E. R. Katz. "Sterol phylogenesis and algal evolution." Proceedings of the National Academy of Sciences 87, no. 19 (October 1, 1990): 7565–69. http://dx.doi.org/10.1073/pnas.87.19.7565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Errard, Christine. "Phylogenesis / biotope interactions among formicidae." Behavioural Processes 14, no. 1 (February 1987): 35–47. http://dx.doi.org/10.1016/0376-6357(87)90065-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Giuditta, Antonio. "Phylogenesis and the Nature of Mind." Journal of Advanced Neuroscience Research 4, no. 1 (April 30, 2017): 1–8. http://dx.doi.org/10.15379/2409-3564.2017.04.01.01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Phylogenesis"

1

Marchiselli, Simone. "Molecular phylogenesis of Mediterranean Octocorals." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/4905/.

Повний текст джерела
Анотація:
In order to support the conservation of the Mediterranean octocorals improvements on information regarding their taxonomic units and phylogenetic relationships are strongly needed. In the present thesis work, phylogenetic analyses based on the mitochondrial mtMSH and 16S genes were performed including 15 Mediterranean octocorals species on the 56 recognized to date. Moreover, an extended datasets with Atlanto/Pacific congeners Octocorallia species was implemented to clarify their phylogenetic relationships and estimate the divergence times of the Mediterranean species. Results indicated that: 1) there are similarity and differences among molecular and morphological traits depending on the taxonomical level considered; 2) the molecular phylogeny of the Mediterranean octocorals retrace the previous relationships based on wide octocorals analyses; and 3) the divergence time among Mediterranean and Atlanto/Pacific species varies depending on analysed taxa. At higher taxonomic level, the Mediterranean trees supported the division of the Mediterranean Octocorallia into one major clade (Alcyoniina-Holaxonia) plus two unresolved branch including the single species available of Scleraxonia and Stolonifera respectively. This topology was better supported including the Atlanto/Pacific congeners species. The molecular evidence suggested that Alcyonium palmatum and Corallium rubrum species are the youngest with a divergence time estimated around 4 MYA. Particularly, C. rubrum results were in agreement with the hypothesis that recent orogenesis process of the Mediterranean Sea promoted the allopatric speciation of this specie. Increasing the sample design and implementing the emerging next-generation genomic-sequencing technologies, further studies would be able to improve the understanding of the Mediterranean octocorals phylogenetic relationships and evolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hawarden-Lord, Andrew Sinclair. "Organisational phylogenesis : developing and evaluating a memetic methodology." Thesis, Sheffield Hallam University, 2004. http://shura.shu.ac.uk/19772/.

Повний текст джерела
Анотація:
This research evaluates the unorthodox proposition that organisational development proceeds through the Darwinian processes of variation, selection and inheritance acting upon a non-genetic replicating code. This new replicator represents the fundamental unit of cultural transmission and was termed by evolutionist, Richard Dawkins, as the meme. The memetic position re-introduces many often neglected, sometimes shunned, evolutionary arguments into social and organisational debate by providing a naturalistic and plausible hereditary element upon which socio-cultural adaptation operates. The popularity of the neologism 'meme' initially grew through rather ad-hoc non-scientific usage on the Internet. For some time, this geekish tendency has tarnished the idea of memetics and impeded serious academic investigation into the subject. A more rigorous philosophical treatment has been provided by Daniel Dennett who has argued that, while a science of memetic cladistics may be both desirable and feasible, it remains unlikely. On the other hand one of Dawkins' most famous critics, Mary Midgley, heralds dark forebodings that one-day memes may be given actual credence. The present study necessitated the adaptation of conventional genealogical and taxonomic methods, for novel application in confirming congruence between actual organisational phylogeny and hereditary traits. One specific requirement was to develop a means of identifying, capturing and codifying such traits as meme strips for phenetic analysis. In order to handle the computational complexity inherent in the phenetic reconstruction algorithms, proprietary software had to be produced. This was extensively tested upon meme strips generated through simulated evolution. Western Christian denominational families provided a source of empirical evidence and demonstrated that the methods could be successfully applied to real organisational forms. A theological phylogeny was reliably reconstructed thereby upholding the hypothesis of cultural descent with modification based on a memetic replication. Further support for the claim was made in conjunction with the rendering of a facilities management market landscape. More importantly however, the results coming from this research suggest that the potential for formulating a science of memetics may be significantly greater than in Dennett original consideration.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sattin, Giovanna. "CARBONIC ANHYDRASE AND GLUTATHIONE PEROXIDASE. MOLECULAR PHYLOGENESIS AND PHYSIOLOGICAL IMPORTANCE FOR ENVIRONMENTAL STRESS RESISTANCE." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3422379.

Повний текст джерела
Анотація:
Glutathione peroxidase (GPX, EC 1.11.1.9 and EC 1.11.1.12) and Carbonic anhydrase (CA, EC 4.2.1.1) are two enzymes important for a variety of adaptation/tolerance processes of organisms. CA plays a key role in osmoregulation when GPX is one of the most important enzymes involved in protection of the organism against oxidative damage. In my thesis I studied GPX and CAs from Antarctic teleosts species of Notothenidae and Bathydraconidae (Paper I-II) and CAs from intertidal teleosts (Periophtalmus sobrinus, Gobidae, and Opsanus beta, Batrachoididae (Paper II-III). Firstly, I compared the obtained sequences with those available in database for teleosts and other vertebrates (human, mouse and bird) to reconstruct the molecular phylogeny of two enzyme in teleosts (Paper I-II). Finally, I have investigated the role of CA for the osmoregulation in seawater toadfish (Opsanus beta) exposed to hypersalinity (Paper III). The GenBank database, few sequences of GPX and CAs of temperate teleosts are available and no data are available for Antarctic or intertidal fish were not present. In particular, I choose to study those species because they live in environments with peculiar chemical/physical parameters that influenced, during the evolution, their physiological, morphological and behavioural characteristics. The Antarctic fish (Papers I-II) live in a well delimited geographic zone. The Southern Ocean is comprised from the Antarctic continent to the Polar Front, a curved current continuously encircling Antarctica where cold, northward-flowing Antarctic waters meet and mix with the relatively warmer sub-Antarctic waters. In this limited zone, macro evolutionary events happened, such as radiation of some fauna components. Most of the fish species living in this zone (like nototenioidae) are presents only there. Temperature (-1.9 °C) and salinity (34.8 ppt) are lower than in temperate Oceans (Legg et al. 2009). As a consequence, the oxygen concentration is higher (9 mg l-1 (Meiner et al. 2009)) in these waters because of the higher solubility of the gas. Furthermore, these parameters are constant during the year. In this perspective, is high the interest to study the evolution of some proteins such as of GPX (Paper I), linked to hyperoxia, and of CAs (Paper II), linked to osmoregulation, to investigate if two enzymes have been an independent evolution and if them aminoacidic sequences are modified compared to sequences of temperate teleosts. The intertidal species (mudskipper Periophtalmus sobrinus (Paper II) and toadfish Opsanus beta (Paper III) both live in mangrove zones. Temperature (the average 28.9°C in Kenya (Schmitz et al. 2007) and in 25.8°C Florida (Kelble et al. 2007)) and salinity (the average 32.4 ppt in Kenya (Schmitz et al. 2007) and 33.0 ppt in Florida (Kelble et al. 2007)) are higher with respect to temperate oceans and these parameters, in contrast to Antarctic habitat, are very fluctuating. Gazy Bay (Kenya), where mudskipper lives, is subject to seasonal fluctuation due to tides. Florida Bay (Florida), where toadfish lives, is subject to seasonal fluctuation due to wet and dry season. The mudskipper was sampled in Gazy Bay (during summer of 2007), and toadfish was sampled in Florida Bay (during summer of 2009). My data show that both GPXs and CAs aminoacidic sequences are conserved in all teleosts (Paper I-II). Just a few aminoacidic changes were found in Antarctic teleosts aminoacidic sequences. Considering the active site and he aminoacidic zone toward the catalytic centre of GPX (Paper I), only the polar Arg182, conserved in all teleosts GPX-1, changes in a hydrophobic Lys in Antarctic fish enzyme (Aumann et al. 1997). In CA sequences the analysis has been focused on residues that are included within 10 Å of the zinc atom (Paper II). They are almost all conserved, with only a few aminoacidic substitutions but maintaining the same properties. Consequently we assume that the features of active site and the aminoacidic sequence toward the catalytic centre of both enzymes are well conserved in teleosts. The phylogenetic tree has different topology for GPX and CA sequences (Paper I-II). In the GPX the Antarctic teleosts group together, while in the CA tree they are divided in two different groups. The topology of GPX of Antarctic teleosts is the same as that of Antarctic teleosts obtained by molecular data (16S rRNA. (Near et al. 2004). This suggests that the CAs evolved in a separate way. In the last paper (Paper III), I measured the expression and activity of CA linked to osmoregulation. It was not possible to perform the same analysis for GPXs and CAs of other fish sequenced because the samples used were frozen while to measure activity I needed fresh samples. I found a correlation between hypersalinity and increase of CA activity and expression in gills and intestine. This suggests an involvement of gill and intestine CA in regulation of seawater fish exposed to hypersalinity
I pesci vivono negli habitat più diversi: acque dolci (fino a 0,01 ppt), salate (fino a 100 ppt), stagnanti; in zone al di sopra dei 5.200 metri (Kottelat and Chu 1988) o nelle profondità abissali di 7000 metri (Nelson 1994). Alcuni vivono in zone soggette a forti maree e tollerano brevi escursioni sulla terraferma (Sayer 2005), altri resistono a temperature di circa 44°C (es. Tilapia in Africa) o di circa -2°C (es. Trematomus nelle acque antartiche) (Nelson 1994). Per vivere e riprodursi in ambienti tanto diversi hanno sviluppato una serie di adattamenti fisiologici, morfologici e comportamentali. Il mio progetto di dottorato si è concentrato su due linee di ricerca: la filogenesi molecolare di due enzimi, la Carbonico anidrasi (CA, EC 4.2.1.1) e la Glutatione perossidasi (GPX, EC 1.11.1.9 e 1.11.1.12) di specie antartiche e intertidali; il coinvolgimento della CA nell’adattamento a condizioni di ipersalinità in una specie di teleosteo della zona intertidale. I pesci antartici vivono in acque molto fredde, vicine al punto di congelamento (-1,8 °C), e con una concentrazione salina molto bassa (34,8 ppt) (Nelson 1994). Questi parametri si collocano all’estremo inferiore della scala di temperature e salinità delle acque dove vivono pesci di mare aperto la temperatura nelle acque temperate è di circa 20°C e la salinità è intorno a 40 ppt (Nelson 1994)- ma sono molto stabili anche nel periodo annuale. La zona di mare dove vivono questi organismi rappresenta una sorta di microambiente con minime variazioni (Eastman 2005). Una conseguenza diretta dei bassi valori di temperatura e salinità è una concentrazione di ossigeno molto più elevata nel caso delle acque antartiche rispetto a quelle temperate (valori nelle acque antartiche i valori vanno da un minimo di 159 a un massimo di 413 μmol/Kg (Meiner et al. 2009) mentre nelle acque temperate il minimo registrato e <20 μmol/Kg (Fuenzalida et al. 2009)). La zona di acqua costiera dove vivono questi organismi, è circondata dalla corrente circumpolare antartica, formatasi circa 22-25 milioni di anni fa in seguito a una serie di movimenti tettonici e oceanografici, che crea una naturale barriera attraverso la quale i pesci non possono passare.(Eastman 2005) Si è formato cosi un unico sito dove si sono create delle nuove nicchie ecologiche occupate da gruppi di pesci (i Nototenoidei) che si sono sviluppati in situ.(Anderson 1999) I pesci studiati sono Trematomus bernacchii, T. eulepidotus, T. lepidorinus e Cygnodraco mawsoni, appartenenti alla famiglia dei notetioneidei, la fauna maggiormente rappresentata in termini di diversità, abbondanza e biomassa nell’Oceano Antartico (Eastman 1993). I membri di questa famiglia sono caratterizzati da diversi adattamenti fisiologici (ad es. le proteine antigelo) (Chen et al., 1997; Cheng C-HC, 2002)) e da un alto grado di diversità morfologica (Eastman 2000; Kock 1992) che li rendono adatti a sopravvivere in queste acque. I Nototenioidei sono endemici in Antartide ed è stato ipotizzato che rappresentino una radiazione adattativa avvenuta nell’Oceano Antartico (Briggs 1974; Briggs 1996) Esistono 8 famiglie di Nototenioidei per un totale di 44 generi e 129 specie. Di queste, 101 sono prettamente antartiche e solo 28 sono non antartiche (Bargelloni et al., 2000; Stankovic et al., 2002; Near et al., 2004). La zona di mangrovia è situata tra mare e terra nella zona intertidale. La collocazione geografica di questo biotopo implica elevate temperature e di conseguenza la concentrazione di ossigeno disciolto e la salinità fluttuano ampiamente durante il corso della giornata per effetto combinato delle maree e della evaporazione dell’acqua (Blaber 1997; Lowe-McConell 1987; Morton 1989). Elevata salinità, elevate temperature e l’istaurarsi di condizioni di anaerobiosi nell’acqua sono le caratteristiche peculiari di questa zona (Kathiresan 2001). La maggior parte di pesci intertidali di questi areali, mostrano diversi adattamenti di tipo fisiologico, morfologico e comportamentale (Bridges 1993; Gibson 1996; Lewis 1970). I mudskippers sono un gruppo di teleostei (Perciformes, Gobiidae, Oxudercinae) che vive tra le mangrovie; sono eurialini e adattati a cambiamenti estremi di salinità (Chew and Ip 1990), esposizione all’aria (Kok et al. 1998) ipossia (Chew SF 1990), e ad alte concentrazioni di ammonio (Ip et al. 2004). I mudskippers appartengono al gruppo monofiletico dei gobioidei (Thacker 2009; Winterbottom 1993) che ha subito una radiazione nel passaggio all’habitat marino. L’Opsanus beta (Gulf toadfish) è un teleosteo marino distribuito lungo le coste tra il Golfo del Messico e il Sud America. Vive in acque stagnanti dove vi è un continuo mescolamento di acqua salata e acqua dolce. La continua evaporazione crea un ambiente con salinità fluttuante (Lirman and Cropper 2003); ad esempio le medie di salinità calcolate nella zona di Florida Bay vanno da un minimo di 24.2 ppt in novembre a un massimo di 41.8 ppt in luglio (Kelble et al. 2007). Il toadfish tollera salinità che vanno da 5 a 60 ppt in condizioni di laboratorio (McDonald and Grosell 2006). All’aumentare della salinità si osserva un aumento della richiesta di assorbimento di sale dall’intestino; questo ha un significativo impatto sul bilancio acido-base dovuto al cambiamento nell’escrezione di CO2 nell’intestino (Genz et al. 2008). La Glutatione Perossidasi La Glutatione perossidasi GPX) è una famiglia di isozimi che catalizzano la riduzione degli idroperrosidi organici ad acqua, o alla corrispondente sostanza alcolica, usando il glutatione ridotto (GSH) come donatore di elettroni. Di questo enzima, che può essere seleno-dipendente o indipendente, ne sono state caratterizzate 4 diverse isoforme: GPX1 localizzata in fegato, polmoni e reni, GPX2 gastrointestinale, GPX3 trovata in reni, polmoni, epididimo, vasi deferenti, placenta, vescicole seminali,cuore e muscolo e GPX4 (fosfolipidica) distribuita largamente nei tessuti (Hochachka and Lutz, 2001; Margis et al., 2008). L’importanza della GPX è di preservare le cellule dai possibili danni dovuti alla produzione di H2O2 prodotto nei mitocondri come conseguenza della fosforilazione ossidativa. In diversi siti lungo la catena respiratoria mitocondriale, l’ossigeno subisce una riduzione parziale, generando l’anione superossido che è il primo di una serie di radicali (O2-), il radicale idrossilico (OH∙), l’ossigeno singoletto (1O2) e il perossido di idrogeno (H2O2)) (Miller 1993b). I radicali prodotti (ROS, reactive oxigen species) interagendo con diversi target intracellulari (lipidi, proteine e acidi nucleici) attivano meccanismi di morte cellulare e inducono varie disfunzioni cellulari ritenute responsabili di molteplici patologie. In condizioni di ipossia o iperossia la produzione di ROS è maggiore (Fink and Scandalios 2002). La Carbonico Anidrasi La carbonico anidrasi riveste un ruolo fondamentale nella reazione reversibile di idratazione, deidratazione della CO2 con produzione di H+ e HCO3– (CO2+H2O→H++HCO3-). La funzione principale della CA è la regolazione acido-base e l’osmoregolazione a livello intestinale e branchiale (Geers and Gros, 2000; Esbaugh and Tufts, 2006). La CA dei pesci studiati, probabilmente, ha sviluppato un particolare adattamento, legato all’osmoregolazione, dovuto agli ambienti ipo (oceano Antartico) e ipersalino (zona intertidale) in cui vivono. Nei mammiferi si conoscono 16 differenti isozimi che differiscono per proprietà cinetiche, distribuzione tissutale e localizzazione subcellulare. Le diverse isoforme della famiglia delle α-CA sono la I, II, III, V, VII and XIII citoplasmatiche, la IV, IX, XII,XIV, XV legate in membrana (Esbaugh and Tufts 2006). La CAII sembra essere in uno stato ancestrale nei pesci, mostrando alta attività, fino ai teleostei dove apparentemente si è duplicata in due diverse isoforme, la CAb (eritrocitaria) e la CAc (citoplasmatica) (Esbaugh et al., 2004; Esbaugh et al., 2005). Il lavoro svolto durante il mio dottorato può essere suddiviso in tre parti principali: 1. Il clonaggio e il sequenziamento di GPX di pesci antartici per individuare mutazioni aminoacidiche nella sequenza della proteina caratteristiche di queste specie e fare una ricostruzione filogenetica dell’enzima. Anche in questo caso si è partiti con un’estrazione di RNA da branchie. La ricostruzione filogenetica ci ha permesso di indagare la storia evolutiva di tali proteine confrontandole con sequenze di GPX di altri teleostei e di altri vertebrati e prendendo in considerazione la storia evolutiva degli organismi. I pesci sono stati campionati durante la XIV (1998-1999), la XVII (2001-2002) e la XXI (2005-2006) campagna italiana in Antartide. 2. Il clonaggio e il sequenziamento di CA di pesci antartici e di zone intertidali (mangrovieti e acque ipersaline). Questo è stato ottenuto partendo dall’estrazione di RNA da tessuto branchiale o intestinale di tali pesci. Ottenute le sequenze delle CA, queste sono state utilizzate per un’analisi filogenetica. Le sequenze sono state confrontate tra loro e con le sequenze di CA disponibili in rete per evidenziare la presenza di zone conservate o meno ed è stata fatta una ricostruzione tridimensionale per vedere e confrontare la distribuzione di potenziale elettrico delle stesse. La ricostruzione filogenetica è servita per delineare un’ipotetica evoluzione di tali enzimi in confronto con gli enzimi di altri teleostei e di altri vertebrati tenendo conto della storia evolutiva di tali organismi. (I pesci sono stati campionati durante la XIV (1998-1999), la XVII (2001-2002)e la XXI (2005-2006) campagna italiana in Antartide.) 3. Il clonaggio e il sequenziamento della CA del Gulf Toadfish (Opsanus beta), un teleosteo che vive in zona intertidale con tendenza all’ipersalinità. Una volta ottenuta la sequenza (partendo anche in questo caso da estrazione di RNA da tessuti) è stata fatta una ricostruzione filogenetica e delle analisi di attività ed espressione dell’enzima. I tessuti analizzati sono intestino (anteriore, medio e posteriore), retto e branchie. L’analisi è stata fatta su campioni controllo (stabulati alla stessa salinità dell’acqua in cui vivono (40ppt) e su pesci stabulati in condizioni d’ipersalinità (60ppt) per 6-12-24-48-96 ore (per quanto riguarda le misure di espressione nei vari segmenti di intestino e retto) o due settimane (per quanto riguarda misure di espressione e attività su branchie e di attività sui segmenti di intestino e retto). Questo studio è stato svolto per indagare il coinvolgimento della CA a livello intestinale e branchiale nell’osmoregolazione di pesci d’acqua salata se sottoposti a un ambiente ipersalino. Per questa parte del lavoro mi sono recata da aprile a ottobre 2009 presso il laboratorio del professor Martin Grosell (RSMAS, University of Miami, Florida, USA). Risultati e Discussione Glutatione Perossidasi La sequenza della GPX1 selenio-dipendente è stata ottenuta per i pesci antartici Trematomus bernacchii (946 bp), T. lepidorhinus (946 bp), T. eulepidotus (945 bp) e Cygnodraco mawsoni (950 bp). Tutte le sequenze sono caratterizzate da un open reading frame (ORF) di 191 amminoacidi. In posizione nucleotidica 174-176 è presente la tripletta TGA che codifica per la selenocisteina, un amminoacido facente parte della triade catalitica. La proteina sequenziata corrisponde all’isoforma 1 (citoplasmatica) perché dalla ricostruzione filogenetica ottenuta con il metodo del NJ le sequenze si pongono tutte in un cluster vicino all’isoforma 1 e separato dal gruppo dalle GPX2. Si può ipotizzare un’origine monofiletica all’interno dei teleostei antartici, che sono un clade completamente separato. Questo enzima sembra essersi evoluto nei pesci antartici indipendentemente dalle altre specie di teleostei. La ricostruzione filogenetica ottenuta conferma le odierne analisi filogenetiche sull’evoluzione delle GPX (Margis et al., 2008; Toppo et al., 2008). Le varie isoforme risultano separate da valori di bootstrap che si approssimano al 100%, dimostrando che le isoforme 1, 2 e 3 sono più vicine filogeneticamente fra loro, mentre le isoforme 7 e 8 sono più affini alla GPX4. Il cluster dei teleostei antartici risulta indipendente e ben separato dagli altri con valori di bootstrap del 100%, avvalorando l’idea di un’origine monofiletica della proteina in questo gruppo. All’interno del ramo dei teleostei antartici, le distanze evolutive appaiono molto brevi, indicando che la diversificazione della GPX nelle diverse specie è avvenuta in tempi piuttosto recenti. In questo gruppo le relazioni evolutive non sono completamente risolte, nonostante alcuni nodi siano sostenuti da alti valori di bootstrap. La GPX di C. mawsoni risulta essere il sister group delle GPX delle specie appartenenti al genere Trematomus. Analisi filogenetiche basate sullo studio delle subunità 16S e 12S dell’rRNA mitocondriale, indicano Cygnodraco mawsoni come sister group della famiglia dei Nototheniidae, alla quale appartiene anche il genere Trematomus (Bargelloni et al. 2000), confermando la ricostruzione filogenetica. Il lavoro di (Epp et al. 1983) ha determinato per la prima volta la struttura cristallografica della GPX1 bovina e ha evidenziato la triade catalitica rappresentata da selenocisteina (40), glutammina (75) e triptofano (153). E’ stato proposto che nel sito attivo la glutammina e il triptofano siano legati mediante ponti idrogeno alla selenocisteina e che attivino l’elemento redox (il selenolo) proprio grazie a questo legame che dovrebbe facilitare l’attacco nucleofilico dell’idroperossido. Questi aminoacidi sono, infatti, altamente conservati anche nei teleostei. I residui coinvolti nella formazione dei foglietti β e delle α-eliche rimangono, tranne alcune eccezioni, invariati. La regione che sembra avere un ruolo fondamentale nella capacità di dimerizzazione della proteina è rappresentata dai residui 89-95, che mancano nella GPX4, che per questo motivo presenta una struttura monomerica (Scheerer et al. 2007). Questi residui sono conservati anche nei teleostei, anche se con alcune eccezioni. La Val90 è stata sostituita nei soli teleostei antartici, da un altro amminoacido alifatico, la leucina. Mentre negli anfibi e nei mammiferi in posizione 94 è presente una glicina, nei teleostei troviamo quattro amminoacidi diversi, tutti residui polari: nei teleostei antartici troviamo una lisina (carica positiva), in H. molitrix un aspartato (carica negativa), in D. rerio un glutammato (carica negativa) e negli altri teleostei una asparagina (senza carica). Possiamo ipotizzare che tali cambiamenti aminoacidici abbiano un effetto sulla velocità e sull’efficienza della reazione catalizzata dalla GPX. Carbonico anidrasi La carbonico anidrasi di tre specie antartiche e di due specie di zona intertidale è stata sequenziata completamente (Trematomus bernacchii (1062 bp), T. lepidorinhus (1656 bp), T. eulepidotus (1563 bp) per le specie antartiche e Periophtalmus sobrinus (1217 bp) e Opsanus beta (1827 bp) per le specie intertidali). Una quarta sequenza, mancante di una parte in 3’, è stata ottenuta per Cygnodraco mawsoni (713 bp), (specie Antartica) tutte con un ORF di 260 aminoacidi (GenBank accession number: GQ443602 (T. bernacchii); GQ443601 (T. lepidorinhus); GQ443600 (T. eulepidotus); GQ443603 (Periophtalmus sobrinus). Queste sequenze saranno disponibili a partire da settembre 2010 mentre per Opsanus beta (GQ443599) la sequenza è già disponibile in rete) Le sequenze mostrano un’identità piuttosto alta con le sequenze di CAII disponibili in database (dall’80% al 72%). Per questo e perché nell’albero ottenuto con il Neighbor Joining (NJ) raggruppano nel cluster delle CAII, possiamo ritenere che si tratti dell’isoforma II. Nell’albero ottenuto sono ben visibili le separazioni tra il gruppo delle CA di membrana e quelle citoplasmatiche. Tra quest’ultime vi è un’altra separazione, tra le CAII citoplasmatiche (CAIIc) e le CAII citoplasmatiche eritrocitarie (CAIIb). Possiamo ipotizzare che la CA di Opsanus beta sia l’isoforma CAIIc, ovvero che si tratti dell’isoforma citoplasmatica e non di quella eritrocitaria (CAIIb), perché nella ricostruzione filogenetica è raggruppata insieme alla CAc di trota. La CA del mudskipper, invece, raggruppa con le isoforme CAb di trota, carpa e zebrafish. Un’altra divisione ben delineata e mostrata anche nell’albero ottenuto da Esbaugh et al., 2006, è quella esistente tra mammiferi e non mammiferi. Le CA di pesci antartici raggruppano insieme in un cluster separato dagli altri e ben supportato da alti valori di bootstrap, sottolineandone la stretta relazione filogenetica. Anche l’icefish (Chionodraco hamatus) raggruppa in questo cluster. Gli aminoacidi che compongo la triade catalitica (His 94, 96, 119) e quelli che mantengono la struttura funzionale della proteina (Thr 199 e Glu 106) sono conservati, mentre possiamo notare dei cambiamenti a livello aminoacidico propri delle sequenze di carbonico anidrasi dei pesci Antartici. In posizione 10-11 si trovano una Ala e una Asn conservate solo nelle sequenze di CA di pesci antartici, come in posizione 157 dove vi è una Ser e in posizione 190-191 con una Gly e una Cys. Carbonico anidrasi in Opsanus beta La carbonico anidrasi sequenziata (GenBank accession number GQ443599) è di 1827 paia di basi con un ORF di 260 aminoacidi. La sequenza mostra un’identità del 78% con Oncorhynchus mykiss e Pseudopleuronectes americanus, del 77-76% con le altre sequenze di CA di teleostei, e del 63-59% con anfibi e mammiferi. Le analisi filogenetiche effettuate con il metodo del NJ raggruppano la CA con le isoforme citoplasmatiche degli altri teleostei e la separano dalle isoforme di membrana (CA IV, IX, XII, XIV, XV) e dalle sequenze di mammiferi e di altri tetrapodi, in accordo con quanto riportato da altri studi. La CAII può essere suddivisa in due isoforme, la CAIIc (citoplasmatica) e la CAIIb (citoplasmatica eritrocitaria). La ricostruzione filogenetica ottenuta suggerisce che l’isoforma sequenziata sia di tipo CAIIc poiché raggruppa con le CAIIc di altri pesci. Su branchie, intestino (anteriore, medio e posteriore) e retto sono state condotte misure di espressione dell’mRNA tramite qPCR. Intestino e retto mostrano simile espressione in pesci acclimatati all’acqua salata mentre le branchie mostrano un’espressione più elevata. Nei pesci sottoposti a ipersalinità (60 ppt), si osservano alti livelli di espressione rispetto al controllo (40 ppt) nell’intestino medio e posteriore e nel retto. In particolare l’intestino medio risponde per ultimo all’ipersalinità, dopo 96 ore di esposizione, mentre il retto mostra una maggiore attività già dopo 12 ore di esposizione mantenendosi stabile per tutto il tempo. L’intestino posteriore mostra un rapido incremento di espressione dopo 6 ore di esposizione con un decremento dopo 12 e 24 ore seguito da un altro incremento dopo 96 ore. Per quanto riguarda le branchie, è stato possibile fare misure di espressione su branchie perfuse solo dopo due settimane di stabulazione all’ipersalinità. I dati ottenuti non mostrano un incremento nell’espressione in pesci a 40 ppt o a 60 ppt. L’attività, misurata su tessuti di pesci controllo (40 ppt) e su tessuti di pesci esposti per due settimane a 60 ppt mostra un significativo incremento nella frazione citosolica nei tessuti dopo l’esposizione. L’attività totale, confrontata con la citosolica, mostra un minor incremento. Diversi studi mostrano che la CA è coinvolta nell’osmoregolazione in teleostei marini. Usando inibitori (Grosell and Genz 2006), è stato dimostrato che la CA ha un ruolo chiave per la secrezione intestinale di HCO3- in teleostei marini. In questo studio è stato dimostrato il coinvolgimento di questo enzima in tessuti intestinali e branchie in risposta all’ipersalinità. Il confronto tra l’espressione e l’attività registrata rivela una diversa risposta. L’espressione di mRNA incrementa nell’intestino posteriore e nel retto con effetto non evidente a livello branchiale, intestino anteriore e medio. Invece, l’attività dell’enzima aumenta visibilmente in tutti i tessuti. Le nostre osservazioni rivelano, quindi, una maggiore espressione nei tessuti distali dell’intestino. Invece, la parte anteriore dell’intestino che sotto normali condizioni di salinità è responsabile della maggior parte dell’escrezione di HCO3- non mostra un visibile cambiamento di espressione nei tessuti di pesci acclimatati a ipersalinità. Questo è in contrasto con quanto trovato nella trota (Grosell et al. 2007), dove l’attività era maggiore nella regione anteriore dell’intestino piuttosto che nella posteriore. Nelle branchie, l’attività della CA è confrontabile con quella registrata nelle diverse regioni dell’intestino. Le nostre osservazioni possono suggerire un coinvolgimento della CA branchiale nell’osmoregolazione ad ambienti ipersalini. L’incremento della capacità della CA branchiale di idratare la CO2 in pesci sottoposti a ambienti ipersalini, può aumentare la disponibilità di HCO3- e protoni e quindi conferire una maggiore abilità di trattenere HCO3- trasportata attraverso la membrana basolaterale e/o la secrezione di protoni attraverso la membrana apicale.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

CARRIERI, ANNA PAOLA. "Sampling Ancestral Recombination Graphs and Reconstruction of Phylogenetic Trees for Explaining Evolution." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/102072.

Повний текст джерела
Анотація:
The aim of the thesis is the development of algorithms to study the evolution of genomic information starting from data produced by Next Generation Sequencing (NGS) technologies. We address the problem of reconstructing evolutionary histories following two research directions which both explore algorithms for the generation (or reconstruction) of ancestral recombination graphs (or phylogenetic trees) modeling the evolution in presence of evolutionary events, such as recombination and Single Nucleotide Polymorphisms (SNPs). The first research direction regards the development of efficient algorithms for simulating complex scenarios of multiple population evolution with admixture. The aim of simulations is to obtain the resulting extant population samples and their common relevant evolutionary history captured by an ARG. We propose a backward simulation algorithm, named SimRA, for modeling complex evolutionary scenarios, which improves time and space requirements of the classical algorithm of single populations. Through extensive simulation experiments, we show that SimRA produces ARGs in compact form without compromising any accuracy. Moreover, we present the first combinatorial approach, based on persistency in topology, which detects admixture in populations. We show, based on efficient and controlled simulations computed by SimRA, that the topological framework has the potential for detecting admixture in related populations. The second research direction regards the development of efficient algorithms to reconstruct phylogenesis of contemporary species described by genomic binary characters. Established maximum parsimony models are Dollo and Camin-Sokal, both leading to NP-hard reconstruction problems. On the other hand, the perfect phylogeny, which has very efficient polynomial time algorithmic solutions, is often too restrictive for explaining the evolution of real biological data where homoplasy is present. We address the problem of reconstructing a variant of the perfect phylogeny model, the persistent phylogeny, that is more widely applicable, with the aim of retaining the computational efficiency. For this purpose, we introduce the Constrained Persistent Perfect Phylogeny problem (CPPP) which generalizes the Persistent Perfect Phylogeny (PPP) problem, by adding constraints for some observed characters. We provide a polynomial time algorithm for a particular class of instances and a parameterized algorithm for solving the general problem. We conclude the thesis with results concerning the scaffold filling computational problem which derives from the necessity of filling incomplete genomic sequences in order to maximize their similarity with a known reference genome. We consider two scaffold filling problems (One-sided and Two-sided) that are NP-hard under the maximum number of common adjacencies similarity. We design two Fixed Parameterized Tractable (FPT)-algorithms respectively for the One-side and Two-side scaffold filling problem, with only one parameter representing the number of common adjacencies between the two filled genomes.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kershaw, Gregory Stephen. "Artefacts of Human Phylogenesis: A Psychoanalytic-Anthropological Exploration of Early Infant Crying and Infant-Directed-Speech." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23270.

Повний текст джерела
Анотація:
An unknown fraction of what can be known is inaccessible to the verbalising which has otherwise made rational science so dramatically successful. The lack of a verbal currency has not extinguished these domains but their relatively diminished access has pushed them into obscurity. Despite its relative success, rational science has limits and obscuring the non-rational has foreclosed on searching it for contributions to the epistemology of human and natural phenomena. Following Vanelli (2001)*, my thesis pushes against the narrow perspective that rational science is the only legitimate mechanism for constructing new knowledge. I do this by using frameworks of comparative anthropology and psychoanalysis to interpret ‘unexplained early infant crying’ and ‘infant directed speech’, two prosaic and universal human behaviours. These two phenomena have been abundantly studied through the prism of rational science but neither has been adequately explained. I first survey the dimensions of unexplained early infant crying such as its susceptibility to cultural variation and resistance to rational explanation. That it is a human universal suggests it maybe a physical manifestation of a more deeply seated phenomenon and so I broaden the field of inquiry from that of observation of extant behaviour to human phylogeny. In so doing, I use the psychoanalytic frameworks of Winnicott and Grotstein to situate the so called “primitive agonies” as a consequence of the hominin obstetric dilemma purported to result from the habitual bipedalism by Ardipithecus ramidus ~4.4 mya. Through this synthesizing of the evidence from evolutionary anthropology, primatology and psychoanalysis, I show how the temporal, diurnal and synchronic profiles of early infant crying, including cultural variations, all become explicable as an outcome of the infant’s experience of their primitive agonies. These have no contemporary causation but emerged with the emergence of the hominin mind. A similar survey of infant directed speech, shows how unlikely it is to be a derived behaviour and that its universality again hints at deeper evolutionary roots. And so again through synthesizing phylogeny with the psychoanalytic models of Bion and Melanie Klein, I argue that premature birth of hominins exposes them to negative consequences of using that which Bion labelled in humans, the alpha-function, but which Castoriadis exposes to us as an existentially vital mental function of all sentient life. Infant directed speech can then be argued as the primary sensory stimulus to facilitate the self-organisation of the specific neural architecture from which this property of mind emerges. By engaging with the vast store of that which can be known but which is inaccessible to rational science, these seemingly trivial instances of human mental neoteny become significant knowledge pathways into the foundation of the human mind. Keywords: Hominin evolution, early infant crying, infant directed speech, primitive agonies, psychoanalytic anthropology, Winnicott, Bion, Grotstein, Castoriadis
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maiorino, Fernando Corleto. "Avaliação comparada qualitativa da participação do óxido nítrico no processo inflamatório crônico granulomatoso induzido pela inoculação de BCG." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/10/10133/tde-15062005-111340/.

Повний текст джерела
Анотація:
O óxido nítrico (NO) é um radical livre gasoso que participa de uma série de processos biológicos fisiológicos sendo produzido por enzimas denominadas óxido nítrico sintases (NOS). Diversos estudos vem demonstrando sua participação na resposta inflamatória crônica, na qual as células inflamatórias, com destaque para os macrófagos, são estimuladas a sintetizarem NOS, que por esse motivo são denominadas induzíveis (iNOS) e passam a produzir o óxido nítrico que vai atuar na modulação do processo. A fim de comprovar sua participação filogenética na resposta granulomatosa, utilizou-se como modelo experimental a inoculação de onco-BCG na musculatura de tilápias-do-Nilo (Oreochromys niloticus) e de girinos de rã touro-gigante (Rana catesbeiana), na região plantar de tartarugas ?red ear? (Trachemys scripta elegans) e no coxim plantar de hamsters sírios (Mesocricetus auratus). Fragmentos da lesão foram colhidos aos 14, 28 e 42 dias pós-inoculação, fixados em Carnoy por quatro horas, sendo em seguida transferidos para álcool 70o GL. Procedeu-se a confecção de preparados histopatológicos segundo métodos de rotina que foram corados pelo método da hematoxilina e eosina. Imunoistoquímica foi realizada para a verificação da produção de óxido nítrico indiretamente através da marcação da iNOS com anticorpos anti-iNOS humana biotinilados produzidos em coelhos. Observou-se em todos os animais desenvolvimento de granulomas que mostraram tendência a maior organização aos 42 dias; as características celulares foram semelhantes, com algumas variações específicas. Constatou-se marcação imunoistoquímica em macrófagos presentes nas lesões produzidas pela inoculação de BCG em todos os grupos experimentais, exceto nos girinos aos 14 dias, cuja marcação foi irrelevante. Os resultados permitiram concluir que o óxido nítrico participa da resposta inflamatória granulomatosa, bem como a utilização de imunoistoquímica mostrou-se método eficiente para evidenciar sua produção em estudos filogenéticos. Pesquisas futuras deverão qualificar e quantificar mediadores químicos envolvidos na regulação da participação do óxido nítrico para melhor compreender sua fisiopatologia na modulação do granuloma inflamatório.
Nitric oxide (NO) is a gaseous free radical that takes part in a series of biological physiological processes. It is produced by enzymes called nitric oxide synthetases (NOS). Several studies have demonstrated its role in chronic inflammatory response, in which inflammatory cells, mainly macrophages, are stimulated to synthesize NOS, being called then inducible nitric oxide synthetases (iNOS). Nitric oxide is then produced and acts in the modulation of the process. In order to corroborate its phylogenetic role in granulomatous response, the inoculation of onco-BCG experimental model was used in the muscle of Nile tilapias (Oreochromys niloticus) and bullfrog tadpoles (Rana catesbeiana), in the plantar region of red eared sliders (Trachemys scripta elegans) and in the plantar pad of hamsters (Mesocricetus auratus). Fragments of the lesions were collected at 14, 28 and 42 days after inoculation, fixed in Carnoy for four hours, and then transferred to alcohol 70o GL. After that, histopathological slides were prepared following routine methods, and stained by hematoxylin-eosin. Immunohistochemical tests were performed in order to assess the production of nitric oxide indirectly by means of marking iNOS with biotinylated human anti-iNOS antibodies produced by rabbits. It was observed in all animals that the development of granulomas showed greater tendency of organization at 42 days; cell characteristics were similar, with some specific variations. Immunohistochemical marking was observed in macrophages present in lesions produced by BCG inoculation in all experimental groups, except in tadpoles at 14 days, which showed irrelevant marking. Results enabled the conclusion that nitric oxide takes part in granulomatous inflammatory response. Besides, the use of immunohistochemistry showed to be an efficient method for evidencing the production of nitric oxide in phylogenetic studies. Future research studies should qualify and quantify chemical mediators involved in the regulation nitric oxide role in order to better understand its physiopathology in the modulation of inflammatory granuloma.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Comandatore, F. "EVOLUTION OF WOLBACHIA SYMBIOSIS IN ARTHOPODS AND NEMATODES: INSIGTHS FROM PHYLOGENETICS AND COMPARATIVE GENOMICS." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/274889.

Повний текст джерела
Анотація:
Wolbachia is a bacterium observed in relationship with a wide array of arthropod and nematode species. This is an obligate intracellular symbiont, maternally transferred through the host oocytes. In arthropods Wolbachia is able to manipulate reproduction, using multiple strategies to increase the fitness of infected females. In nematodes the bacterium has a fundamental, and not completely understood, role in larvae development. Wolbachia infects ~50% of all the arthropod species worldwide, and in some of them it can be considered the most important sex determination factor. In contrast, Wolbachia presence is much more limited in nematodes, being present in a limited number of filarial species. The taxonomic status within the Wolbachia genus is highly debated, with the current classification dividing all strains in 14 'supergroups'. During my Ph.D. I studied the evolution of the symbiotic relationship between Wolbachia and its arthropod and nematode hosts, using genomic approaches. Indeed, during the evolution of the Wolbachia-host relationship, genetic signs have been left in the Wolbachia genomes. I worked to identify these genomic signs and to evaluate them within an evolutionary frame, in order to obtain a better understanding of how the Wolbachia-host symbiosis evolved. The work here presented can be organized in three major sections: i) the sequencing and analysis of the genome of the filarial nematode Dirofilaria immitis and of its symbiotic Wolbachia strain, wDi; ii) the sequencing of the genome of Wolbachia endosymbiont of Litomosoides sigmodontis, and the phylogenomic reconstruction of the Wolbachia supergroups A-D; iii) a comparison of the genomes of 26 Wolbachia strains spanning the A to F supergroups. Here a schematic summary of the results is reported: 1. Dirofilaria immitis and the Wolbachia symbiont wDi show metabolic complementarity for fundamental pathways 2. The metabolic pathway for the synthesis of wDi membrane proteins is one evolving the fastest in the genome of the bacterium 3. Nematode Wolbachia belonging to supergroups C and D are monophyletic, indicating that a single transition to mutualism likely occurred during the evolution of Wolbachia 4. Wolbachia strains of the C supergroup show genomic features that are unique in the genus, such as a much higher level of synteny compared to the rest of Wolbachia supergroups, and a newly generated pattern of GC skew curves, typically observed in free-living bacteria genomes 5. Wolbachia supergroups show conserved genomic features, which suggest genomic isolation among them.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jirásková, Kristýna. "Metody rekonstrukce fylogenetických superstromů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219518.

Повний текст джерела
Анотація:
The phylogenetic reconstruction has noted great development in recent decades. The development of computers and device for sequencing biopolymers have been an enormous amount od phylogenetic data from different sources and different types. The scientists are trying to reconstruct a comlet tree of life from these data. The phylogenetic supertree are theoretically this option because a supertree alow a combination of all information gathered so far – in contras to the phylogenetic trees. This thesis present the method of reconstruction supertrees using average konsensus method.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kosíř, Kamil. "Metody rekonstrukce fylogenetických superstromů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220860.

Повний текст джерела
Анотація:
The Phylogenetic reconstruction has seen great development in the last 30 years. Computers have become more powerful and more generally accessible, and computer algorithms more sophisticated. It comes the effort of scientists to reconstruct the entire tree of life from a large amount of phylogenetic data. Just for this purpose are formed phylogenetic supertrees that allow the combination of all information gathered so far. The aim of this work is to find a method to construct supertree that will give correct results.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Faller, Beáta. "Combinatorial and probabilistic methods in biodiversity theory." Thesis, University of Canterbury. Mathematics and Statistics, 2010. http://hdl.handle.net/10092/3985.

Повний текст джерела
Анотація:
Phylogenetic diversity (PD) is a measure of species biodiversity quantified by how much of an evolutionary tree is spanned by a subset of species. In this thesis, we study optimization problems that aim to find species sets with maximum PD in different scenarios, and examine random extinction models under various assumptions to predict the PD of species that will still be present in the future. Optimizing PD with Dependencies is a combinatorial optimization problem in which species form an ecological network. Here, we are interested in selecting species sets of a given size that are ecologically viable and that maximize PD. The NP-hardness of this problem is proved and it is established which special cases of the problem are computationally easy and which are computationally hard. It is also shown that it is NP-complete to decide whether the feasible solution obtained by the greedy algorithm is optimal. We formulate the optimization problem as an integer linear program and find exact solutions to the largest food web currently in the empirical literature. In addition, we give a generalization of PD that can be used for example when we do not know the true evolutionary history. Based on this measure, an optimization problem is formulated. We discuss the complexity and the approximability properties of this problem. In the generalized field of bullets model (g-FOB), species are assumed to become extinct with possibly different probabilities, and extinction events are independent. We show that under this model the distribution of future phylogenetic diversity converges to a normal distribution as the number of species grows. When extinction probabilities are influenced by some binary character on the tree, the state-based field of bullets model (s-FOB) represents a more realistic picture. We compare the expected loss of PD under this model to that under the associated g-FOB model and find that the former is always greater than or equal to the latter. It is natural to further generalize the s-FOB model to allow more than one binary character to affect the extinction probabilities. The expected future PD obtained for the resulting trait-dependent field of bullets model (t-FOB) is compared to that for the associated g-FOB model and our previous result is generalized.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Phylogenesis"

1

Foster, Alan Dean. Phylogenesis. New York: Del Rey, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Architects, Foreign Office. Phylogenesis: Foa's ark. Barcelona: Actar, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Architects, Foreign Office. Phylogenesis: Foa's ark. Barcelona: Actar, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

W, Warr Gregory, and Cohen Nicholas 1938-, eds. Phylogenesis of immune functions. Boca Raton, Fla: CRC Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

The phylogenetic system: The systematization of organisms on the basis of their phylogenesis. Chichester [West Sussex]: Wiley, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wiley, E. O., and Bruce S. Lieberman. Phylogenetics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118017883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boudreaux, H. Bruce. Arthropod phylogeny with special reference to insects. Malabar, Fla: R.E. Krieger Pub. Co., 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Inc, ebrary, ed. Phylogenetics: Theory and practice of phylogenetics systematics. 2nd ed. Hoboken, N.J: Wiley-Blackwell, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bininda-Emonds, Olaf R. P., ed. Phylogenetic Supertrees. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2330-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mendoza Straffon, Larissa, ed. Cultural Phylogenetics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25928-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Phylogenesis"

1

Berger, Louis S. "Phylogenesis and Madness." In Human Development, Language and the Future of Mankind, 90–120. London: Palgrave Macmillan UK, 2014. http://dx.doi.org/10.1057/9781137415271_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sipiczki, Matthias. "Fission Yeast Phylogenesis and Evolution." In The Molecular Biology of Schizosaccharomyces pombe, 431–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10360-9_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Black, Mary C., and Glenn Gilbert. "A Reexamination of Bickerton’s Phylogenesis Hypothesis." In Creole Language Library, 111. Amsterdam: John Benjamins Publishing Company, 1991. http://dx.doi.org/10.1075/cll.9.14bla.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Grivet, Delphine, and Sanna Olsson. "Phylogenesis and Evolution of Mediterranean Pines." In Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin, 3–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63625-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Zhihong, Jie Yu, Tong Dan, Wenyi Zhang, and Heping Zhang. "Phylogenesis and Evolution of Lactic Acid Bacteria." In Lactic Acid Bacteria, 1–101. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8841-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tolman, Charles W. "From phylogenesis to the dominance of sociogenesis." In Psychology, Society, and Subjectivity, 86–104. London: Routledge, 2021. http://dx.doi.org/10.4324/9781315003443-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Roggen, Daniel, Dario Floreano, and Claudio Mattiussi. "A Morphogenetic Evolutionary System: Phylogenesis of the POEtic Circuit." In Evolvable Systems: From Biology to Hardware, 153–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36553-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Parncutt, Richard. "Prenatal “experience” and the phylogenesis and ontogenesis of music." In Music that works, 185–94. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-75121-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Toda, N., and K. Ayajiki. "Phylogenesis of constitutively formed nitric oxide in non-mammals." In Reviews of Physiology Biochemistry and Pharmacology, 31–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/112_0601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Langenbruch, P. F. "Histological Indications of the Phylogenesis of the Haplosclerida (Demospongiae, Porifera)." In Fossil and Recent Sponges, 289–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75656-6_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Phylogenesis"

1

Huang, Zhen. "Phylogenesis and Embodied Self-Reflexivity of Mind." In 2021 4th International Conference on Humanities Education and Social Sciences (ICHESS 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.211220.454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fiangga, Shofan, Abdul Haris Rosyidi, and Tatag Yuli Eko Siswono. "Developing history of mathematics course material based on ontogenesis and phylogenesis." In THE 8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: Coverage of Basic Sciences toward the World’s Sustainability Challanges. Author(s), 2018. http://dx.doi.org/10.1063/1.5062829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Canfora, Gerardo, Francesco Mercaldo, Antonio Pirozzi, and Corrado Aaron Visaggio. "How I Met Your Mother? - An Empirical Study about Android Malware Phylogenesis." In International Conference on Security and Cryptography. SCITEPRESS - Science and Technology Publications, 2016. http://dx.doi.org/10.5220/0005968103100317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeleeva, Vera. "SHAME AS A PERSON�S SOCIALIZATION FACTOR IN THE CONTEXT OF PHYLOGENESIS AND ONTOGENESIS." In 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018/2.2/s09.078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

STANLEY, SCOTT, and BENJAMIN A. SALISBURY. "PHYLOGENETIC GENOMICS AND GENOMIC PHYLOGENETICS." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799623_0047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Harrington, Kyle I., and Jordan B. Pollack. "Robot phylogenetics." In the 12th annual conference comp. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1830761.1830870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Forghani, Majid Ali, Artyom L. Firstkov, Pavel Alexandrovich Vasev, and Edward S. Ramsay. "Visualization of the Evolutionary Trajectory: Application of Reduced Amino Acid Alphabets and Word2Vec Embedding." In 32nd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/graphicon-2022-275-287.

Повний текст джерела
Анотація:
Analysis of viral evolution is a key element of epidemiological surveillance and control. One of the fundamental tools which is widely used to illustrate evolutionary history is the phylogenetic tree. Recently, we have proposed an alternative visualization for the phylogenetic tree using the evolutionary trajectory of its taxa. An evolutionary trajectory is a path starting from a taxon and ending at the root of the tree. In this paper, we propose an embedding of tree nodes by encoding their genetic sequence using a reduced amino acid alphabet and employing the Word2Vec framework. The suggested visualization maintains the phylogenetic relationship between nodes, while their proximity in 3D space depends on three factors: the type of reduced amino acid alphabet; fixed-length genetic patterns used in Word2Vec; and the neighbor effect of adjacent signatures. The results of our experiments showed that the majority of evolutionary history can be described in the embedded space. Moreover, they suggest potential application of our approach as an explanatory tool in studying various aspects: evolutionary dynamics; evolutionary deviation of viral variants; and phylogenetic characteristics, such as formation of new clades. Besides the usual local analysis of point mutations, the developed framework enables studying these aspects based on a more comprehensive global context, including neighboring effects, genetic signatures.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Forghani, Majid, Pavel Vasev, Edward Ramsay, and Alexander Bersenev. "Visualization of the Evolutionary Path: an Influenza Case Study." In 31th International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/graphicon-2021-3027-358-368.

Повний текст джерела
Анотація:
Visualization of viral evolution is one of the essential tasks in bioinformatics, through which virologists characterize a virus. The fundamental visualization tool for such a task is constructing a dendrogram, also called the phylogenetic tree. In this paper, we propose the visualization and characterization of the evolutionary path, starting from the root to isolated virus in the leaf of the phylogenetic tree. The suggested approach constructs the sequences of inner nodes (ancestors) within the phylogenetic tree and uses one-hot-encoding to represent the genetic sequence in a binary format. By employing embedding methods, such as multi-dimensional scaling, we project the path into 2D and 3D spaces. The final visualization demonstrates the dynamic of viral evolution locally (for an individual strain) and globally (for all isolated viruses). The results suggest applications of our approach in: detecting earlier changes in the characteristics of strains; exploring emerging novel strains; modeling antigenic evolution; and study of evolution dynamics. All of these potential applications are critical in the fight against viruses.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Daskalakis, Constantinos, Elchanan Mossel, and Sébastien Roch. "Optimal phylogenetic reconstruction." In the thirty-eighth annual ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1132516.1132540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Soghigian, John. "Molecular phylogenetics ofAedinimosquitoes." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.113652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Phylogenesis"

1

Nierzwicki-Bauer, S. A. Phylogenetic relationships among subsurface microorganisms. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6106595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nierzwicki-Bauer, S. A. Phylogenetic relationships among subsurface microorganisms. Progress report. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10106325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bruice, Thomas C. DNG and RNG Phylogenetic Single Cell Probes. Fort Belvoir, VA: Defense Technical Information Center, February 1999. http://dx.doi.org/10.21236/ada360479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pace, Norman R. Phylogenetic Analysis of Marine Picoplankton Using rRNA Sequences. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada209595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lapedes, A. S., B. G. Giraud, L. C. Liu, and G. D. Stormo. Correlated mutations in protein sequences: Phylogenetic and structural effects. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/296863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pace, Norman R. Phylogenetic Analysis of Marine Picoplankton Using Tau RNA Sequences. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada254451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nierzwicki-Bauer, S. A. Phylogenetic relationships among subsurface microorganisms. Project technical progress report. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10171574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Balkwill, D. L., and R. H. Reeves. Physiological and phylogenetic study of microbes from geochemically and hydrogeologically diverse subsurface environments. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5026959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gardner, S., and C. Jaing. Interim Report on Multiple Sequence Alignments and TaqMan Signature Mapping to Phylogenetic Trees. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1047247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Marsh, Terence L. Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia... Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/824396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії