Добірка наукової літератури з теми "Physicochemical characterizations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Physicochemical characterizations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Physicochemical characterizations":

1

Iojoiu, C., P. Genova-Dimitrova, M. Maréchal, and J. Y. Sanchez. "Chemical and physicochemical characterizations of ionomers." Electrochimica Acta 51, no. 23 (June 2006): 4789–801. http://dx.doi.org/10.1016/j.electacta.2006.01.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shin, Sang-Chul, and Cheong-Weon Cho. "Physicochemical Characterizations of Piroxicam-Poloxamer Solid Dispersion." Pharmaceutical Development and Technology 2, no. 4 (January 1997): 403–7. http://dx.doi.org/10.3109/10837459709022639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Zhaolin, Bing Guo, Liang Hong, and Huixin Jiang. "Physicochemical and photocatalytic characterizations of TiO2/Pt nanocomposites." Journal of Photochemistry and Photobiology A: Chemistry 172, no. 1 (May 2005): 81–88. http://dx.doi.org/10.1016/j.jphotochem.2004.11.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chiang, Yu‐Chun, Pen‐Chi Chiang, and E‐E Chang. "Evaluations of the physicochemical characterizations of activated carbons." Journal of Environmental Science and Health, Part A 33, no. 7 (October 1998): 1437–63. http://dx.doi.org/10.1080/10934529809376797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pan, Kang, and Qixin Zhong. "Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties." Soft Matter 11, no. 29 (2015): 5898–904. http://dx.doi.org/10.1039/c5sm01037c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sharma, Bhumika K., Kinjal Patel, and Debesh R. Roy. "Synthesis, Physicochemical Characterizations and Antimicrobial Activity of CuO Nanoparticles." Current Nanomaterials 3, no. 2 (November 15, 2018): 121–25. http://dx.doi.org/10.2174/2405461503666180801124409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karoui, Iness J., Jihene Ayari, Nessrine Ghazouani, and Manef Abderrabba. "Physicochemical and biochemical characterizations of some Tunisian seed oils." OCL 27 (2020): 29. http://dx.doi.org/10.1051/ocl/2019035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Four Tunisian vegetable oils extracted from seeds (Nigella sativa, Opuntia ficus indica, Pistacia lentiscus and Hibiscus sabdariffa) have been characterized in this study. The following parameters were determined: acidity, peroxide value, saponification value, specific extinction coefficients K232, K270, chlorophylls and carotenoids content. The triglyceride and tocopherol compositions of the oils were determined using reversed phase high performance liquid chromatography with diode array detection (HPLC-DAD) and the fatty acids (FA) and phytosterol compositions were determined using a gas chromatography (GC) with a flame ionization detector (FID). Polyunsaturated fatty acids were predominant in all tested samples except in Pistacia lentiscus oil where monounsaturated fatty acids were predominant. Major FA were linoleic and oleic acids. β-sitosterol was the most abundant phytosterol. All samples had high content of TAGs with an equivalent carbon number of 44, 46 and 48. Nigella sativa oil had the highest content of tocopherols.
8

Bottino, Marco C., Ghada Batarseh, Jadesada Palasuk, Mohammed S. Alkatheeri, L. Jack Windsor, and Jeffrey A. Platt. "Nanotube-modified dentin adhesive—Physicochemical and dentin bonding characterizations." Dental Materials 29, no. 11 (November 2013): 1158–65. http://dx.doi.org/10.1016/j.dental.2013.08.211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Xia, Xin Liu, Lishe Gan, ChangXin Zhou, and JianXia Mo. "Preparation and physicochemical characterizations of tanshinone IIA solid dispersion." Archives of Pharmacal Research 34, no. 6 (June 2011): 949–59. http://dx.doi.org/10.1007/s12272-011-0612-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chylewska, Agnieszka, Małgorzata Ogryzek, Angelika Głębocka, Artur Sikorski, Katarzyna Turecka, Ewa D. Raczyńska, and Mariusz Makowski. "Crystalline pyrazine-2-amidoxime isolated by diffusion method and its structural and behavioral analysis in the context of crystal engineering and microbiological activity." RSC Advances 6, no. 69 (2016): 64499–512. http://dx.doi.org/10.1039/c6ra10537h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The physicochemical characterizations of PAOX were obtained both in solid-state and solution, and its two anti-conformers were observed in the X-ray. Its antimicrobial properties were tested against reference strains of bacteria and yeast.

Дисертації з теми "Physicochemical characterizations":

1

Roger, Maxime. "Développement de systèmes π-conjugués aux propriétés de fluorescence induite par l'agrégation (AIE)". Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONS005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le phénomène de fluorescence, bien qu’assez rare à l’état naturel, est couramment exploité dans le domaine de l’optoélectronique pour la fabrication d’OLEDs ou de concentrateurs solaires, mais aussi dans le domaine biomédical pour l’imagerie ou la thérapie. Ce travail est axé sur la conception de molécules fluorescentes présentant une émission induite par l’agrégation (AIE, « Aggregation Induced Emission »). Contrairement aux fluorophores conventionnels pour lesquels l’émission est éteinte à l’état agrégé, les fluorophores AIE possèdent un comportement inverse : ils sont peu fluorescents en solution mais le deviennent à l’état solide. Ce phénomène résulte de la restriction des mouvements intramoléculaires dans un environnement contraint (RIM, « restriction of intramolecular motion ») permettant de favoriser les voies de désexcitation radiatives. Ce manuscrit s’inscrit dans ce contexte et est divisé en quatre chapitres. Le premier décrit le concept et les conditions requises permettant à une molécule d’être dotée de la propriété AIE. Les trois suivants abordent tout d’abord la synthèse et l’étude de fluorophores AIE de la famille des diphénylebuta-1,3-diènes portant des groupements dérivés du thiophène électropolymérisables. Le chapitre suivant aborde la synthèse de systèmes donneurs-accepteurs basés sur le motif tétraphényléthène (TPE) en vue d’obtenir des propriétés d’absorption et/ou émission dans le domaine des grandes longueurs d’onde du rouge et du proche infrarouge (600 nm-1200 nm). Enfin, le dernier chapitre, s’intéresse au contrôle et à la modulation de la longueur d’onde d’émission en exploitant le comportement AIE de deux fluorophore à base de TPE et de quinoline malononitrile induit par la transition de phase soluble/insoluble d’un polymère thermosensible, la poly(2-n-propyl-2-oxazoline).Mot clés : Design moléculaire, fluorophore, fluorescence, émission induite par l’agrégation, AIE, synthèse organique, diphénylbuta-1,3-diène, tétraphényléthène, quinoline malononitrile, poly(2- oxazoline)
The fluorescence phenomenon while relatively rare in nature, is also commonly operating in various fields including optoelectronics for the conception of OLEDs and solar concentrators and biomedicals for imaging and therapy. This work falls into this context and aims at designing fluorescent molecules possessing aggregation induced emission (AIE) properites. In contrast to conventional fluorophores that suffer of aggregation caused quenching (ACQ) phenomenom, AIE fluorophores exhibit in general strong emission in the solid state while there are non-emissive in solution due to the restriction of intramolecular motion (RIM) which favor the radiative decay. This manuscript is built upon four chapters. The introduction describes the concept and the conditions required for a molecule to exhibit a AIE behaviour. The second chapter describes the synthesis and the characterization of AIEbased diphenylbuta-1,3-diene skeleton bearing electropolymerizable thiophene moieties. The third chapter is related to the development of donor-acceptor systems built upon a tetraphenylethene (TPE) core in view of extending their absorption / emission properties to the red or near infrared (600 nm - 1200 nm) region of the spectrum. Finally, the last chapter deals with the control and the modulation of the emission wavelength by exploiting the AIE behavior of two fluorophores based on tetraphenylethene and quinoline malononitrile induced by the folding of the chain of a thermoresponsive polymer, the poly(2-n-propyl-2-oxazoline).Keywords: Molecular design, fluorophore, fluorescent, aggregation induced emission, AIE, organic synthesis, diphénylbuta-1,3-diène, tetraphenylethene, quinoline malononitrile, poly(2-oxazoline)
2

De, Zordi Nicola. "Modified release of pharmaceutical dosage forms." Doctoral thesis, Università degli studi di Trieste, 2012. http://hdl.handle.net/10077/7733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
2010/2011
During these three years, the research was focused on the preparation of pharmaceutical solid oral dosage forms with the aim to improve the dissolution behaviors and bioavailability of poor soluble drugs, or preparing sustained release systems for water-soluble drugs. In order to improve the bioavailability of poor soluble drugs, we adopted two strategies: 1) the micronization of the drug to increase their surface area, 2) preparing solid dispersions (SDs) using hydrophilic carrier. As known in the SDs the drug is dispersed or solubilized in an inert excipient or matrix where the active ingredient could exist in finely crystalline or amorphous state. When the system is exposed to aqueous media, the carrier dissolved and the drug is released as a very fine colloidal particles. This greatly reduction in particles size and the following surface area increase, results in an improvement of the dissolution rate. In addition to bioavailability enhancement, SDs systems were also directed towards the development of extender-release dosage forms using lipophilic carriers. For both the formulative approaches, we investigated the application of microwave (MW) and supercritical fluids (SCF) as preparative methods. In particular, MW ware employed for the preparation of solid dispersion either for immediate or sustained release of drugs, while SCF were investigated for the micronization and preparation of solid with the aim to prepare immediate release systems. Moreover, were investigated the thermodynamic aspect involved in the drug processing developing mathematical approaches able to predict the best operative conditions. Beside the preparation of these systems the physicochemical characterization of the compounds were investigated in order to understand the influence of the above technologies on the solid state of the materials. The goal of these behaviors was investigated trough the dissolution profile. From the obtained results these two technologies can be considered innovative and promising way to design particles.
XXIV Ciclo
1983
3

Lansita, Janice A. (Janice Ann) 1975. "Physicochemical characterization of immortal strand DNA." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/18038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2004.
Includes bibliographical references.
Adult tissue differentiation involves the generation of distinct cell types from adult stem cells (ASCs). Current understanding of tissue differentiation mechanisms is based on studies of protein and RNAs that asymmetrically segregate between daughter cells during embryogenesis. Whether or not other types of biomolecules segregate asymmetrically has not been widely studied. In 1975, John Cairns proposed that ASCs preferentially segregate the oldest parental template DNA strands to themselves and pass on newly replicated DNA strands to their differentiating progeny in order to protect the stem cell from inheriting DNA replication mutations. This laboratory has shown non-random chromosome segregation in murine fetal fibroblasts that model asymmetric self-renewal like ASCs. In these cells, chromosomes that contain the oldest DNA strands co-segregate to the cycling daughter stem-like cells, while chromosomes with more recently replicated DNA segregate to the non-stem cell daughters. Previously, cytological methods were reported to elucidate non-random segregation in these cells. This dissertation research provides additional confirmation of the mechanism using physicochemical methods. Specifically, buoyant density-shift experiments in equilibrium CsCl density gradients were used to detect co-segregated "immortal DNA strands" based on incorporation of the thymidine base analogue bromodeoxyuridine. In addition, DNA from cells undergoing non-random mitotic chromosome segregation was analyzed for unique DNA base modifications and global structural modifications (by HPLC and melting temperature analyses). To date, these studies show no significant differences compared to control randomly segregated DNA. Components of the mitotic chromosome separation
(cont.) apparatus that might play a role in the co-segregation mechanism were also evaluated. Two homologous proteins, essential for proper chromosome segregation and cytokinesis, Aurora A kinase and Aurora B kinase, were highly reduced in expression in cells retaining immortal DNA strands and may indicate a role for them in the immortal strand mechanism. These studies independently confirm the immortal strand mechanism and provide methods for its detection in other cell lines. In addition, observed changes in chromosome segregation proteins that are potential candidates for involvement in the mechanism have revealed a new area of investigation in the laboratory. These findings are relevant to understanding normal tissue development, cancer, and aging.
y Janice A. Lansita.
Ph.D.
4

COSTANTINI, GABRIELE. "Preparation and physicochemical characterization of glycoconjugate vaccines." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/29779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The project of my PhD course has been focused on the characterization of glycoconjugate vaccines to develop a largely applicable methodology to identify their glycosylation sites. The saccharide antigens are covalently attached to the carrier protein by a spacer or using specific functionalities available in both components. The general analytical strategy has involved a tryptic digestion and an enzymatic or acid hydrolysis of carbohydrate antigens in glycoconjugates. The resulting mixture of peptides and glycopeptides with well-defined mass increment has been analyzed by liquid chromatography interfaced with a mass spectrometer (LC-MS) technique to qualitatively understand which lysine residues have been involved in the glycosylation process. Several conjugate vaccines against Candida albicans, Group A Streptococcus (GAS), Group B Streptococcus (GBS) and Neisseria meningitidis group A (MenA) have been analyzed to estimate the distribution of glycosylated lysine residues. Among those, GBS resulted the less glycosylated in comparison to Candida and MenA ones. This aspect it is probably due to the different conjugation chemistries and GBS polysaccharide size. The second part of my PhD project has been the synthesis of two β(1,3)-glucans antigens, a trisaccharide and a hexasaccharide and their conjugation to CRM197. The hexasaccharide has also been linked on a multimeric structure PAMAM4 and then conjugated to CRM197. The last part of this work has been the conjugation to CRM197 of a modified MenB LPS, provided from Institute of Biological Science (IBS) laboratory (National Research Council - Ottawa Canada). The target sites of the carrier protein (CRM197) and LPS have been activated by two different reactans, and the final glycoconjugate has been obtained by the reaction of these two. The resulting conjugate has been characterized (saccharide and protein content, MALDI-TOF mass spectrometry and NMR) using an accurate analytical panel.
5

CATALANO, ENRICO. "Physicochemical and biological characterization of magnetic nanoparticles for biomedical applications." Doctoral thesis, Università del Piemonte Orientale, 2015. http://hdl.handle.net/11579/81662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The overall goal of this project was the biological characterization by in vivo and in vitro testing of magnetic nanoparticles that can be used for various applications. The aim of this work was to understand which of the synthesized magnetic nanoparticles could be more suitable to be used as a carrier or platform for various applications in different scientific fields. Two different kinds of magnetic nanoparticles were developed: naked iron-oxide nanoparticles and silica or silica-based coated nanoparticles (core shell-type nanoparticles). Magnetic nanoparticles were prepared using a coprecipitation method. The structure, phase composition, physicochemical and surface properties, magnetic susceptibility, and release in vitro of MNPs were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. In vivo toxicity, in vitro toxicity, ROS production and genotoxicity were investigated. Therapeutic effects were evaluated by cell viability assays and flow cytometry assays. The tools developed in this thesis spanned a range of physical-chemical, biological and magnetic aspects and incorporate innovations on a nanometric range of scales. MNP-based technologies appear to hold a significant potential for a myriad of biomedical applications and the toxic potential of MNPs cannot be overlooked. For this reason we carried out different physicochemical and biological characterization of MNPs to identify a safe dose and formulation of MNPs. Understanding the relationship between the physicochemical properties of MNP constructs and their behavior will induce full translational potential of these nanoparticles. The magnetic nanoparticles prepared in this study have good biocompatibility and are suitable for further application in tumor hyperthermia.
6

衛星輝 and Sing-fai Wai. "Physicochemical characterization of brain ganglioside-stimulated protein kinase." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31236212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nishizawa, Mayu. "Physicochemical Characterization of Physiological Aspects of Protein Structure." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
京都大学
新制・課程博士
博士(工学)
甲第23219号
工博第4863号
京都大学大学院工学研究科分子工学専攻
(主査)教授 田中 庸裕, 教授 近藤 輝幸, 准教授 菅瀬 謙治, 教授 佐藤 啓文
学位規則第4条第1項該当
Doctor of Philosophy (Engineering)
Kyoto University
DGAM
8

Wai, Sing-fai. "Physicochemical characterization of brain ganglioside-stimulated protein kinase /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19739722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Elzey, Sherrie Renee. "Applications and physicochemical characterization of nanomaterials in environmental, health, and safety studies." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As commercially manufactured nanomaterials become more commonplace, they have the potential to enter ecological and biological environments sometime during their lifecycle of production, distribution, use or disposal. Despite rapid advances in the production and application of nanomaterials, little is known about how nanomaterials may interact with the environment or affect human health. This research investigates an environmental application of nanomaterials and characterizes the physicochemical properties of commonly manufactured nanomaterials in environmental health and safety studies. Characterization of nanomaterials for applications and environmental health and safety studies is essential in order to understand how physicochemical properties correlate with chemical, ecological, or biological response or lack of response. Full characterization includes determining the bulk and surface properties of nanomaterials. Bulk characterization methods examine the shape, size, phase, electronic structure and crystallinity, and surface characterization methods include surface area, arrangement of surface atoms, surface electronic structure, surface composition and functionality. This work investigates the selective catalytic reduction (SCR) of NO2 to N2 and O2 with ammonia on nanocrystalline NaY, Aldrich NaY and nanocrystalline CuY using in situ Fourier transform infrared (FTIR) spectroscopy. It was determined that the kinetics of SCR were 30% faster on nanocrystalline NaY compared to commercial NaY due to an increase in external surface area and external surface reactivity. Copper-cation exchanged nanocrystalline Y resulted in an additional increase in the rate of SCR as well as distinct NO2 and NH3 adsorption sites associated with the copper cation. These superior materials for reducing NOx could contribute to a cleaner environment. This work consists of characterization of commonly manufactured or synthesized nanomaterials and studies of nanomaterials in specific environmental conditions. Bulk and surface characterization techniques were used to examine carbon nanotubes, titanium dioxide nanoparticles, bare silver nanoparticles and polymer-coated silver nanoparticles, and copper nanoparticles. Lithium titanate nanomaterial was collected from a manufacturing facility was also characterized to identify occupational health risks. Particle size distribution measurements and chemical composition data showed the lithium titanate nanomaterial forms larger micrometer agglomerates, while the nanoparticles present were due to incidental processes. A unique approach was applied to study particle size during dissolution of nanoparticles in aqueous and acidic conditions. An electrospray coupled to a scanning mobility particle sizer (ES-SMPS) was used to determine the particle size distribution (PSD) of bare silver nanoparticles in nitric acid and copper nanoparticles in hydrochloric acid. The results show unique, size-dependent dissolution behavior for the nanoparticles relative to their micrometer sized counterparts. This research shows size-dependent properties of nanomaterials can influence how they will be transported and transformed in specific environments, and the behavior of larger sized materials cannot be used to predict nanomaterial behavior. The type of nanomaterial and the media it enters are important factors for determining the fate of the nanomaterial. These studies will be important when considering measures for exposure control and environmental remediation of nanomaterials.
10

Jores, Katja. "Lipid nanodispersions as drug carrier systems a physicochemical characterization /." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972528334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Physicochemical characterizations":

1

Stephenson, Gladys L. Guidance document on collection and preparation of sediments for physicochemical characterization and biological testing. Ottawa, Ont: Environment Canada, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rosario-Ortiz, Fernando, ed. Advances in the Physicochemical Characterization of Dissolved Organic Matter: Impact on Natural and Engineered Systems. Washington, DC: American Chemical Society, 2014. http://dx.doi.org/10.1021/bk-2014-1160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cole, K. C. Physicochemical characterization of high-performance fibre-reinforced organic-matrix composites. Part 6. Methods for quality control of matrix chemistry. Boucherville, Que: Industrial Materials Research Institute, National Research Council Canada, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Daramola, Michael Olawale. Xylenes: Synthesis, Characterization and Physicochemical Properties. Nova Science Publishers, Incorporated, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grassi, Gabriele, Mario Grassi, Nicola De Zordi, Ireneo Kikic, Mariarosa Moneghini, and Stefano Antonio Mezzasalma. Physicochemical Approaches to the Characterization of Pharmaceutical Systems. Elsevier, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grassi, Gabriele, Mario Grassi, Nicola De Zordi, Ireneo Kikic, and Mariarosa Moneghini. Physicochemical Approaches to the Characterization of Pharmaceutical Systems. Elsevier, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Durán-Valle, Carlos J. Techniques Employed in the Physicochemical Characterization of Activated Carbons. INTECH Open Access Publisher, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Khaneghah, Amin Mousavi, Hadi Hashemi Gahruie, Mohammad Hadi Eskandari, and Fatemeh Ghiasi. Physicochemical and Enzymatic Modification of Gums: Synthesis, Characterization and Application. Springer International Publishing AG, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nanostructural Materials with Rare Earth Ions: Synthesis, Physicochemical Characterization, Modification and Applications. MDPI, 2022. http://dx.doi.org/10.3390/books978-3-0365-3458-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kennedy, Thomas Patrick. Biological and physicochemical characterization of a mammary gland isolate of bovid herpesvirus 1. 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Physicochemical characterizations":

1

do Nascimento, Rafaella O., Luciana M. Rebelo, and Edward Sacher. "Physicochemical Characterizations of Nanoparticles Used for Bioenergy and Biofuel Production." In Nanotechnology for Bioenergy and Biofuel Production, 173–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45459-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shah, Rohan, Daniel Eldridge, Enzo Palombo, and Ian Harding. "Physicochemical Stability." In Lipid Nanoparticles: Production, Characterization and Stability, 75–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10711-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tarhan, Ozgur, Andrea Venerando, and Maria Julia Spotti. "Chapter 9. Physicochemical Properties, Characterizations, and Quantitative Analysis of Biopolymer-based Functional Foods and Nutraceuticals on an Industrial Scale." In Polymer Chemistry Series, 264–305. Cambridge: Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/9781839168048-00264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nimesh, Surendra, and Ramesh Chandra. "Physicochemical Characterization of Nanoparticles." In Theory, Techniques and Applications of Nanotechnology in Gene Silencing, 11–25. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003357193-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hameed, Abdulrahman Shahul. "Physicochemical and Electrochemical Characterization." In Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications, 31–45. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2302-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Antimisiaris, Sophia G., and Panayiotis V. Ioannou. "Arsonoliposomes: Preparation and Physicochemical Characterization." In Methods in Molecular Biology, 147–62. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-360-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bizarro, Monserrat, and Sandra E. Rodil. "Physicochemical Characterization of Photocatalytic Materials." In Photocatalytic Semiconductors, 103–53. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10999-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Reddy, K. R., M. W. Clark, R. D. DeLaune, and M. Kongchum. "Physicochemical Characterization of Wetland Soils." In Methods in Biogeochemistry of Wetlands, 41–54. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssabookser10.c3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Levine, Harry, and Louise Slade. "Polymer Physicochemical Characterization of Oligosaccharides." In Biotechnology of Amylodextrin Oligosaccharides, 219–60. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0458.ch016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Raspantini, Giovanni Loureiro, Marcela Tavares Luiz, Melanie Tavares, and Eduardo Ricci-Junior. "Physicochemical Characterization of Drug Nanocarrriers." In Nanocarriers for Drug Delivery, 83–105. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63389-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Physicochemical characterizations":

1

Rajak, Mohd Azrul Abdul, Zaiton Abdul Majid, and Mohammad Ismail. "Physicochemical characterizations of nano-palm oil fuel ash." In PROCEEDINGS OF THE 23RD SCIENTIFIC CONFERENCE OF MICROSCOPY SOCIETY MALAYSIA (SCMSM 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4919156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sharma, Bhumika K., Kinjal Patel, and Debesh R. Roy. "Synthesis and physicochemical characterizations and antimicrobial activity of ZnO nanoparticles." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lachkar, Chadia, Moncef Kadi, Jean-Paterne Kouadio, Morgane Presle, Sabrina El Yousfi, Jean-Francois Goupy, and Philippe Eudeline. "Failure analysis of aluminum electrolytic capacitors based on electrical and physicochemical characterizations." In 2017 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2017. http://dx.doi.org/10.1109/irps.2017.7936328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hequet, Emilie. "Synthesis and Physicochemical Characterizations of a Fluorinated Paramagnetic Contrast Agent." In 3rd International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/ecmc-3-04642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Melanie, Melanie, Wawan Hermawan, Hikmat Kasmara, and Camellia Panatarani. "Physicochemical characterizations and insecticidal properties of Lantana camara leaf ethanolic extract with powder application." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sandoval Torres, S., L. Reyes López, L. Méndez Lagunas, J. Rodríguez Ramírez, and G. Barriada Bernal. "Physicochemical characterization of mesquite flours." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ethnic foods are healthy products interesting for the new societies. Mesquite flour offers another option for making gluten-free recipes as part of a diet for people with celiac disease. The physicochemical properties of mesquite flours (Prosopis laevigata) were characterized. The mesquite pods were dried at 60°C, 15% RH and 2 m/s airflow; then a grinding and sieving process were applied. The nutritional composition and the sorption isotherms were obtained at 30, 35, 40 and 45°C for water activities of 0.07-0.9. The particle-size distribution, morphology and thermal stability of the flours were determined by different methods. Keywords: Mesquite Flours; drying; isotherms; chemical properties; morphology
7

Fontes, Clarissa, Carla Holandino, Adriana Passos, Fortune Homsani, Juliana Paiva, André Rossi, and Paulo Enrique Picciani. "Physicochemical Characterization of Dynamized Solid Drugs." In HRI London 2019—Cutting Edge Research in Homeopathy: Presentation Abstracts. The Faculty of Homeopathy, 2020. http://dx.doi.org/10.1055/s-0040-1702106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sutan, N. Mohamed, I. Yakub, and S. Hamdan. "Physicochemical characterization of polymer composite cement systems." In HPSM/OPTI 2014. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/hpsm140101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Honghua, Zhao Chun-Ji, Zheng Xiao, and Liu Chan. "Physicochemical Characterization of Cement Stabilized Highly Expansive Soil." In Geo-Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412787.211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Berni, Mauro Donizeti, and Marília Mugnol dos Santos. "Physicochemical Characterization of Sugarcane Straw: A Literature Review." In XXIII Congresso de Iniciação Científica da Unicamp. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.19146/pibic-2015-37638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Physicochemical characterizations":

1

Clarke, Antony D., and Vladimir N. Kapustin. Physicochemical and Optical Characterization of Aerosol Fields from Coastal Breaking Waves. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada627913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Clarke, Antony D., and Vladimir Kapustin. Physicochemical and Optical Characterization of Aerosol Fields from Coastal Breaking Waves. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada629580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Clarke, Antony D. Physicochemical and Optical Characterization of Aerosol Fields from Coastal Breaking Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada630286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Clarke, Antony D., and Vladimir N. Kapustin. Physicochemical and Optical Characterization of Aerosol Fields from Coastal Breaking Waves. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630901.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tuller, Markus, Asher Bar-Tal, Hadar Heller, and Michal Amichai. Optimization of advanced greenhouse substrates based on physicochemical characterization, numerical simulations, and tomato growth experiments. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7600009.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Over the last decade there has been a dramatic shift in global agricultural practice. The increase in human population, especially in underdeveloped arid and semiarid regions of the world, poses unprecedented challenges to production of an adequate and economically feasible food supply to undernourished populations. Furthermore, the increased living standard in many industrial countries has created a strong demand for high-quality, out-of-season vegetables and fruits as well as for ornamentals such as cut and potted flowers and bedding plants. As a response to these imminent challenges and demands and because of a ban on methyl bromide fumigation of horticultural field soils, soilless greenhouse production systems are regaining increased worldwide attention. Though there is considerable recent empirical and theoretical research devoted to specific issues related to control and management of soilless culture production systems, a comprehensive approach that quantitatively considers all relevant physicochemical processes within the growth substrates is lacking. Moreover, it is common practice to treat soilless growth systems as static, ignoring dynamic changes of important physicochemical and hydraulic properties due to root and microbial growth that require adaptation of management practices throughout the growth period. To overcome these shortcomings, the objectives of this project were to apply thorough physicochemical characterization of commonly used greenhouse substrates in conjunction with state-of-the-art numerical modeling (HYDRUS-3D, PARSWMS) to not only optimize management practices (i.e., irrigation frequency and rates, fertigation, container size and geometry, etc.), but to also “engineer” optimal substrates by mixing organic (e.g., coconut coir) and inorganic (e.g., perlite, pumice, etc.) base substrates and modifying relevant parameters such as the particle (aggregate) size distribution. To evaluate the proposed approach under commercial production conditions, characterization and modeling efforts were accompanied by greenhouse experiments with tomatoes. The project not only yielded novel insights regarding favorable physicochemical properties of advanced greenhouse substrates, but also provided critically needed tools for control and management of containerized soilless production systems to provide a stress-free rhizosphere environment for optimal yields, while conserving valuable production resources. Numerical modeling results provided a more scientifically sound basis for the design of commercial greenhouse production trials and selection of adequate plant-specific substrates, thereby alleviating the risk of costly mistrials.
6

Elless, M. P., and S. Y. Lee. Physicochemical and mineralogical characterization of transuranic contaminated soils for uranium soil integrated demonstration. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/28277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

CALLAWAY WS and HUBER HJ. RESULTS OF PHYSICOCHEMICAL CHARACTERIZATION AND CAUSTIC DISSOLUTION TESTS ON TANK 241-C-108 HEEL SOLIDS. Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/983929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shomer, Ilan, Ruth E. Stark, Victor Gaba, and James D. Batteas. Understanding the hardening syndrome of potato (Solanum tuberosum L.) tuber tissue to eliminate textural defects in fresh and fresh-peeled/cut products. United States Department of Agriculture, November 2002. http://dx.doi.org/10.32747/2002.7587238.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The project sought to understand factors and mechanisms involved in the hardening of potato tubers. This syndrome inhibits heat softening due to intercellular adhesion (ICA) strengthening, compromising the marketing of industrially processed potatoes, particularly fresh peeled-cut or frozen tubers. However, ICA strengthening occurs under conditions which are inconsistent with the current ideas that relate it to Ca-pectate following pectin methyl esterase (PME) activity or to formation of rhamnogalacturonan (RG)-II-borate. First, it was necessary to induce strengthening of the middle lamellar complex (MLX) and the ICA as a stress response in some plant parenchyma. As normally this syndrome does not occur uniformly enough to study it, we devised an efficient model in which ICA-strengthening is induced consistently under simulated stress by short-chain, linear, mono-carboxylic acid molecules (OAM), at 65 oC [appendix 1 (Shomer&Kaaber, 2006)]. This rapid strengthening was insufficient for allowing the involved agents assembly to be identifiable; but it enabled us to develop an efficient in vitro system on potato tuber parenchyma slices at 25 ºC for 7 days, whereas unified stress was reliably simulated by OAMs in all the tissue cells. Such consistent ICA-strengthening in vitro was found to be induced according to the unique physicochemical features of each OAM as related to its lipophilicity (Ko/w), pKa, protonated proportion, and carbon chain length by the following parameters: OAM dissociation constant (Kdiss), adsorption affinity constant (KA), number of adsorbed OAMs required for ICA response (cooperativity factor) and the water-induced ICA (ICAwater). Notably, ICA-strengthening is accompanied by cell sap leakage, reflecting cell membrane rupture. In vitro, stress simulation by OAMs at pH<pKa facilitated the consistent assembly of ICAstrengthening agents, which we were able to characterize for the first time at the molecular level within purified insoluble cell wall of ICA-strengthened tissue. (a) With solid-state NMR, we established the chemical structure and covalent binding to cell walls of suberin-like agents associated exclusively with ICA strengthening [appendix 3 (Yu et al., 2006)]; (b) Using proteomics, 8 isoforms of cell wall-bound patatin (a soluble vacuolar 42-kDa protein) were identified exclusively in ICA-strengthened tissue; (c) With light/electron microscopy, ultrastructural characterization, histochemistry and immunolabeling, we co-localized patatin and pectin in the primary cell wall and prominently in the MLX; (d) determination of cell wall composition (pectin, neutral sugars, Ca-pectate) yielded similar results in both controls and ICA-strengthened tissue, implicating factors other than PME activity, Ca2+ or borate ions; (e) X-ray powder diffraction experiments revealed that the cellulose crystallinity in the cell wall is masked by pectin and neutral sugars (mainly galactan), whereas heat or enzymatic pectin degradation exposed the crystalline cellulose structure. Thus, we found that exclusively in ICA-strengthened tissue, heat-resistant pectin is evident in the presence of patatin and suberinlike agents, where the cellulose crystallinity was more hidden than in fresh control tissue. Conclusions: Stress response ICA-strengthening is simulated consistently by OAMs at pH< pKa, although PME and formation of Ca-pectate and RG-II-borate are inhibited. By contrast, at pH>pKa and particularly at pH 7, ICA-strengthening is mostly inhibited, although PME activity and formation of Ca-pectate or RG-II-borate are known to be facilitated. We found that upon stress, vacuolar patatin is released with cell sap leakage, allowing the patatin to associate with the pectin in both the primary cell wall and the MLX. The stress response also includes formation of covalently bound suberin-like polyesters within the insoluble cell wall. The experiments validated the hypotheses, thus led to a novel picture of the structural and molecular alterations responsible for the textural behavior of potato tuber. These findings represent a breakthrough towards understanding of the hardening syndrome, laying the groundwork for potato-handling strategies that assure textural quality of industrially processed particularly in fresh peeled cut tubers, ready-to-prepare and frozen preserved products.

До бібліографії