Добірка наукової літератури з теми "Plant biochemical genetics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plant biochemical genetics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Plant biochemical genetics"
Gray, William M., and Mark Estelle. "Biochemical genetics of plant growth." Current Opinion in Biotechnology 9, no. 2 (April 1998): 196–201. http://dx.doi.org/10.1016/s0958-1669(98)80115-8.
Повний текст джерелаGressel, J. "Plant Biochemical Regulators." Plant Science 85, no. 1 (January 1992): 123–24. http://dx.doi.org/10.1016/0168-9452(92)90105-u.
Повний текст джерелаLangebartels, Christian, Kristina Kerner, Silvio Leonardi, Martina Schraudner, Monika Trost, Werner Heller, and Heinrich Sandermann. "Biochemical Plant Responses to Ozone." Plant Physiology 95, no. 3 (March 1, 1991): 882–89. http://dx.doi.org/10.1104/pp.95.3.882.
Повний текст джерелаSchraudner, Martina, Dieter Ernst, Christian Langebartels, and Heinrich Sandermann. "Biochemical Plant Responses to Ozone." Plant Physiology 99, no. 4 (August 1, 1992): 1321–28. http://dx.doi.org/10.1104/pp.99.4.1321.
Повний текст джерелаHaughn, George W., Laurence Davin, Michael Giblin, and Edward W. Underhill. "Biochemical Genetics of Plant Secondary Metabolites in Arabidopsis thaliana." Plant Physiology 97, no. 1 (September 1, 1991): 217–26. http://dx.doi.org/10.1104/pp.97.1.217.
Повний текст джерелаREITER, W. "Biochemical genetics of nucleotide sugar interconversion reactions." Current Opinion in Plant Biology 11, no. 3 (June 2008): 236–43. http://dx.doi.org/10.1016/j.pbi.2008.03.009.
Повний текст джерелаHargreaves, J. A. "Genetic basis of biochemical mechanisms of plant disease." Physiological and Molecular Plant Pathology 30, no. 3 (May 1987): 467–68. http://dx.doi.org/10.1016/0885-5765(87)90026-9.
Повний текст джерелаRadwanski, Elaine R., and Robert L. Last. "Tryptophan Biosynthesis and Metabolism: Biochemical and Molecular Genetics." Plant Cell 7, no. 7 (July 1995): 921. http://dx.doi.org/10.2307/3870047.
Повний текст джерелаParrotta, Luigi, Umesh Kumar Tanwar, Iris Aloisi, Ewa Sobieszczuk-Nowicka, Magdalena Arasimowicz-Jelonek, and Stefano Del Duca. "Plant Transglutaminases: New Insights in Biochemistry, Genetics, and Physiology." Cells 11, no. 9 (May 3, 2022): 1529. http://dx.doi.org/10.3390/cells11091529.
Повний текст джерелаPaolis, Angelo, Giovanna Frugis, Donato Giannino, Maria Iannelli, Giovanni Mele, Eddo Rugini, Cristian Silvestri, et al. "Plant Cellular and Molecular Biotechnology: Following Mariotti’s Steps." Plants 8, no. 1 (January 10, 2019): 18. http://dx.doi.org/10.3390/plants8010018.
Повний текст джерелаДисертації з теми "Plant biochemical genetics"
Baldwin, Samantha, and n/a. "Models for genetic analysis of polyploid plant species." University of Otago. Department of Biochemistry, 2008. http://adt.otago.ac.nz./public/adt-NZDU20090826.092431.
Повний текст джерелаMahmoud, Sayed Hassan. "Biochemical marker genes for molecular genetics and plant breeding in Pisum sativum L." Thesis, Durham University, 1985. http://etheses.dur.ac.uk/7853/.
Повний текст джерелаHall, Claire. "Biochemical genetics of glucosinolate side chain modification in Brassica and Arabidopis." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368170.
Повний текст джерелаCotton, Kimberly Lynn. "Genetic and biochemical analysis of essential enzymes in triacylglycerol synthesis in arabidopsis." Thesis, Washington State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10043101.
Повний текст джерелаPlant oils are used in food, fuel, and feedstocks for many consumer products, and so understanding the process by which they are made and modified will help us to make plant oils more healthy, useful, and sustainable. While some of the genes encoding the ER-localized enzymatic steps to triacylglycerol (TAG) have been well understood and documented, several are still in need of study. The glycerol-3-phosphate acyl transferase (GPAT) enzymatic activity is the first step in the pathway to TAG, and it acylates glycerol 3-phosphate to produce lysophosphatidic acid. GPAT9 (AT5G60620) is conserved across land plants and is homozygous lethal, indicating an essential function. Transcript level in knockdown mutants correlates with GPAT activity and with oil levels, and the protein interacts with other enzymes in the TAG biosynthesis pathway. These data suggest that GPAT9 encodes the main GPAT involved in membrane lipid and TAG synthesis. The phosphatidic acid phosphatase (PAP) step in TAG synthesis is responsible for the hydrolysis of inorganic phosphate from phosphatidic acid and creation of diacylglycerol (DAG). There are 13 putative PAPs in Arabidopsis which are homologous to known PAPs. Most of these are involved in other processes, including the plastidial lipid synthesis pathway and signaling pathways. The Arabidopsis gene LPPβ (At4g22550) is expressed in seed tissue, its protein product is localized to the ER, and it encodes PAP activity, indicating that it is a likely candidate for the PAP involved in oil synthesis. At the conclusion of this work, questions remain about the role of LPPβ in oil synthesis and which genes encode the major enzymes involved in the steps generating phosphatidylcholine and converting it back to DAG; but the main Kennedy Pathway enzymes generating TAG have been identified and characterized.
Nepembe, Mehafo Ndafapawa. "Elucidation of the biochemical mechanism of glycogen phosphorylation in Escherichia coli." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2524.
Повний текст джерелаENGLISH ABSTRACT: Glycogen was isolated from E. coli and analysed for the amount of phosphate present within it. It was confirmed that a significant proportion of the glucose residues were phosphorylated at the C6 position. This glycogen phosphate was found also in both glgb- (glycogen branching enzyme) and glgp- (glycogen phosphorylase enzyme) mutants, demonstrating that a mechanism for phosphate incorporation that does not involve GlgP alone, and which is capable of incorporating phosphate into linear glucans could exist. The degree of phosphorylation depended on the amount of phosphate present in the media, which less being incorporated in media where phosphate was reduced. Screening for glycogen phosphorylating genes using a E. coli genomic library in a functional expression system identified the malP gene as a possible candidate for incorporation of the phosphate at the C6 position. There was no difference, however, between the glycogen phosphate content of the mutant and wild type. Efforts were made to construct a malp-/glgp- double mutant, but these were unsuccessful. In addition the influence of plants and human proteins on yeast glycogen metabolism was also investigated. These proteins have been demonstrated to have an effect on starch or glycogen in humans, plant and E. coli, but the data from this study indicated that this was not the case in yeast.
AFRIKAANSE OPSOMMING: Glikogeen, wat geisoleer was uit E.coli was geanaliseer vir fosfaat inhoud daarin. Daar was gevind dat `n beduidende proporsie van die glukose residue gefosforileerd was op die C6 posisie. Hierdie gefosforileerde glikogeen was ook gevind in glg- (glikogeen vertakkingsensieme) en glgp- (glikogeen fosforileringsensieme) mutante wat daarop dui dat `n meganisme vir fosforilering bestaan was nie slegs aangewese is op die aktiwiteit van GlgP nie, en om fosfaat te inkorporeer in linêre glukane. Die graad van fosforilering was ook afhanklik van die hoeveelheid fosfaat teenwoordig in die medium, met gevolglik minder wat geinkorporeer kan word in medium waar fosfaat verminderd was. Seleksie-gebaseerde ondersoeking vir fosforileringsensieme van glikogeen deur gebruik te maak van E. coli genomiese biblioteke in `n funksionele uitdrukkingssisteem het die malP geen geidentifiseer as een van die moontlike kandidate wat verantwoordelik kan wees vir inkorporering van fosfaat in the C6 posisie. Daar was egter geen verskil in die fosfaat inhoud van glikogeen tussen die wilde tipe en die mutante. Pogings wat aangewend is om `n malp-/glgpdubbel mutant te konstrueer was onsuksesvol. Verder is die invloed van plant en mens proteine op gis glikogeen ook bestudeer. Vroeër is aangetoon dat hierdie proteine `n invloed op stysel en glikogeen het in mense, plante en E. coli, maar data van hierdie studie toon aan dat dit nie die geval in gis is nie.
Meyn, Malcolm Anthony 1967. "A genetic, biochemical, and population analysis of MGL, a non-LTR retroelement from the plant pathogenic fungus Magnaporthe grisea." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/288755.
Повний текст джерелаWang, Xuelu. "Biochemical and genetic analysis of factors influencing lysine content in maize (Zea mays L.) endosperm." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284224.
Повний текст джерелаMallampalli, Venkata K. P. S. "Expression and Biochemical Function of Putative Flavonoid GT Clones from Grapefruit and Identification of New Clones using the harvEST Database." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etd/1788.
Повний текст джерелаRoss, Ian Lindsay. "Mechanisms of biocontrol of Gaeumannomyces graminis var. tritici by Pseudomonas corrugata strain 2140 : genetic and biochemical aspects." Title page, table of contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phr824.pdf.
Повний текст джерелаChe, Ka Hing. "Development of biochemical tools to characterise human H3K27 histone demethylase JmjD3." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:da42028f-fe7c-4b9e-b3af-d103ae8b9668.
Повний текст джерелаКниги з теми "Plant biochemical genetics"
R, Khanna K., ed. Biochemical aspects of crop improvement. Boca Raton: CRC Press, 1991.
Знайти повний текст джерела1958-, Blonstein A. D., and King P. J. 1941-, eds. A Genetic approach to plant biochemistry. Wien: Springer-Verlag, 1986.
Знайти повний текст джерелаVani︠u︡shin, B. F. DNA methylation in plants. New York: Nova Science Publishers, Inc., 2008.
Знайти повний текст джерелаHenry, Robert J. Molecular markers in plant improvement. Hoboken, N.J: John Wiley & Sons, 2013.
Знайти повний текст джерелаHicks, Glenn R., and Stéphanie Robert. Plant chemical genomics: Methods and protocols. New York: Humana Press, 2014.
Знайти повний текст джерелаH, Lörz, and Wenzel Gerhard, eds. Molecular marker systems in plant breeding and crop improvement. Berlin: Springer, 2008.
Знайти повний текст джерелаIwabuchi, Masaki, and Kazuo Shinozaki. Shokubutsu genomu kinō no dainamizumu: Tensha inshi ni yoru hatsugen seigyo. Tōkyō: Shupuringā Fearāku Tōkyō, 2001.
Знайти повний текст джерелаInternational, Symposium on Population Genetics of Forest Trees (1990 Corvallis Or ). Population genetics of forest trees: Proceedings of the International Symposium on Population Genetics of Forest Trees, Corvallis, Oregon, U.S.A., July 31-August 2, 1990. Dordrecht: Kluwer Academic Publishers, 1992.
Знайти повний текст джерелаWheat Structure, Biochemistry and Functionality Conference (1995 Reading, England). Wheat structure, biochemistry and functionality. Cambridge: Royal Society of Chemistry, 2000.
Знайти повний текст джерелаWheat Structure, Biochemistry and Functionality Conference (1995 Reading, England). Wheat structure, biochemistry and functionality. Cambridge: Royal Society of Chemistry, 1995.
Знайти повний текст джерелаЧастини книг з теми "Plant biochemical genetics"
Bandurski, Robert S., Mark F. Desrosiers, Philip Jensen, Maciej Pawlak, and Aga Schulze. "Genetics, chemistry, and biochemical physiology in the study of hormonal homeostasis." In Progress in Plant Growth Regulation, 1–12. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2458-4_1.
Повний текст джерелаMoinuddin, Syed G. A., John R. Cort, Clyde A. Smith, Christophe Hano, Laurence B. Davin, and Norman G. Lewis. "Linum Lignan and Associated Biochemical Pathways in Human Health and Plant Defense." In Genetics and Genomics of Linum, 167–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23964-0_11.
Повний текст джерелаHennecke, Hauke, Oliver Preisig, Rachel Zufferey, and Linda Thöny-Meyer. "Biochemical Genetics of Respiration in the Bradyrhizobium Japonicum-Soybean Symbiosis." In Advances in Molecular Genetics of Plant-Microbe Interactions, 155–60. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0177-6_24.
Повний текст джерелаDownie, J. A., C. Marie, A. K. Scheu, J. L. Firmin, K. E. Wilson, A. E. Davies, T. M. Cubo, A. Mavridou, A. W. B. Johnston, and A. Economou. "Genetic and Biochemical Studies on the Nodulation Genes of Rhizobium Leguminosarum bv. Viciae." In Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 1, 134–41. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7934-6_21.
Повний текст джерелаAkimitsu, K., A. Isshiki, K. Ohtani, M. Ishikawa, and H. Yamamoto. "Biochemical and Molecular Roles of HST and Enzymes Produced by Pathogen of Citrus Brown Spot Disease." In Molecular Genetics of Host-Specific Toxins in Plant Disease, 281–90. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5218-1_31.
Повний текст джерелаSpaink, H. P., O. Geiger, D. M. Sheeley, A. A. N. van Brussel, W. S. York, V. N. Reinhold, B. J. J. Lugtenberg, and E. P. Kennedy. "The Biochemical Function of the Rhizobium Leguminosarum Proteins Involved in the Production of Host Specific Signal Molecules." In Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 1, 142–49. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7934-6_22.
Повний текст джерелаThomashow, L. S., D. W. Essar, D. K. Fujimoto, L. S. Pierson, C. Thrane, and D. M. Weller. "Genetic and Biochemical Determinants of Phenazine Antibiotic Production in Fluorescent Pseudomonads that Suppress Take-All Disease of Wheat." In Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 2, 535–41. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-0651-3_59.
Повний текст джерелаRühl, G. F., K. H. Standke, and K. Marmulla. "Biochemical techniques for genotype characterization." In Genetic Aspects of Plant Mineral Nutrition, 291–98. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2053-8_45.
Повний текст джерелаWeretilnyk, E. A., and A. D. Hanson. "Biochemical and Genetic Characterization of Betaine Aldehyde Dehydrogenase." In Environmental Stress in Plants, 65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73163-1_8.
Повний текст джерелаThornton, T., L. Kreppel, G. Hart, and N. Olszewski. "Genetic and Biochemical analysis of arabidopsis SPY." In Plant Biotechnology and In Vitro Biology in the 21st Century, 445–48. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4661-6_100.
Повний текст джерелаТези доповідей конференцій з теми "Plant biochemical genetics"
"Assessment genetic structure of Azerbaijan wild and cultivated barley genotypes by biochemical marker." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-159.
Повний текст джерела"Biochemical, molecular and genetic aspects of fruit ripening in green-fruited and red-fruited tomato species." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-179.
Повний текст джерела"In vitro biochemical features in calli derived from winter wheat anthers and their possible influences on a secondary embryogenesis." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-128.
Повний текст джерела"Association mapping for physio-biochemical traits under salt stress in wheat RILs population developed from cross between Frontana×Pasban90." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-126.
Повний текст джерела"Bioresource collections of vegetable plants as an initial material for breeding cultivars with high biochemical value and for obtaining functional foods." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-056.
Повний текст джерелаDoroftei, Veaceslav, Victor Titei, Alexei Ababii, Vasile Blaj, Sergiu Cozari, Andreea Cristina Andreoiu, Teodor Marusca, Valentina Cosman, and Ana Gutu. "Evaluarea calităţii biomasei din plantațiile semincere de ierburi perene și posibilități de valorificar." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.80.
Повний текст джерела"Introduction in Siberia (Russia) of new vegetable species with a high biochemical value." In Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-01.
Повний текст джерелаTitei, Victor, Adrian Vasile Blaj, Andreea Cristina Andreoiu, and Teodor Marusca. "Evaluarea calităţii biomasei de Lolium perenne L. Ca furaj și substrat pentru obținerea biometanului." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.93.
Повний текст джерела"Influence of an introgression from Triticum timopheevii into chromosome 5A of bread wheat cultivars Saratovskaya 29 and Diamant 2 on agronomical, physiological and biochemical parameters under contrasting irrigation conditions." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-189.
Повний текст джерелаLupascu, Galina, Svetlana Gavzer, Angela Rudacova, and Ala Cherdivara. "Genotipuri noi de grâu comun de toamnă – productivitatea și calitatea boabelor." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.59.
Повний текст джерелаЗвіти організацій з теми "Plant biochemical genetics"
Chamovitz, Daniel A., and Zhenbiao Yang. Chemical Genetics of the COP9 Signalosome: Identification of Novel Regulators of Plant Development. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7699844.bard.
Повний текст джерелаJander, Georg, Gad Galili, and Yair Shachar-Hill. Genetic, Genomic and Biochemical Analysis of Arabidopsis Threonine Aldolase and Associated Molecular and Metabolic Networks. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7696546.bard.
Повний текст джерелаChristopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Повний текст джерелаChamovitz, A. Daniel, and Georg Jander. Genetic and biochemical analysis of glucosinolate breakdown: The effects of indole-3-carbinol on plant physiology and development. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597917.bard.
Повний текст джерелаSessa, Guido, and Gregory Martin. A functional genomics approach to dissect resistance of tomato to bacterial spot disease. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695876.bard.
Повний текст джерелаBennett, Alan B., Arthur Schaffer, and David Granot. Genetic and Biochemical Characterization of Fructose Accumulation: A Strategy to Improve Fruit Quality. United States Department of Agriculture, June 2000. http://dx.doi.org/10.32747/2000.7571353.bard.
Повний текст джерелаFridman, Eyal, and Eran Pichersky. Tomato Natural Insecticides: Elucidation of the Complex Pathway of Methylketone Biosynthesis. United States Department of Agriculture, December 2009. http://dx.doi.org/10.32747/2009.7696543.bard.
Повний текст джерелаStern, David, and Gadi Schuster. Manipulating Chloroplast Gene Expression: A Genetic and Mechanistic Analysis of Processes that Control RNA Stability. United States Department of Agriculture, June 2004. http://dx.doi.org/10.32747/2004.7586541.bard.
Повний текст джерелаZhao, Bingyu, Saul Burdman, Ronald Walcott, and Gregory E. Welbaum. Control of Bacterial Fruit Blotch of Cucurbits Using the Maize Non-Host Disease Resistance Gene Rxo1. United States Department of Agriculture, September 2013. http://dx.doi.org/10.32747/2013.7699843.bard.
Повний текст джерелаBarkan, Alice, and Zach Adam. The Role of Proteases in Regulating Gene Expression and Assembly Processes in the Chloroplast. United States Department of Agriculture, January 2003. http://dx.doi.org/10.32747/2003.7695852.bard.
Повний текст джерела