Добірка наукової літератури з теми "Plant biochemical genetics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plant biochemical genetics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Plant biochemical genetics"

1

Gray, William M., and Mark Estelle. "Biochemical genetics of plant growth." Current Opinion in Biotechnology 9, no. 2 (April 1998): 196–201. http://dx.doi.org/10.1016/s0958-1669(98)80115-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gressel, J. "Plant Biochemical Regulators." Plant Science 85, no. 1 (January 1992): 123–24. http://dx.doi.org/10.1016/0168-9452(92)90105-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Langebartels, Christian, Kristina Kerner, Silvio Leonardi, Martina Schraudner, Monika Trost, Werner Heller, and Heinrich Sandermann. "Biochemical Plant Responses to Ozone." Plant Physiology 95, no. 3 (March 1, 1991): 882–89. http://dx.doi.org/10.1104/pp.95.3.882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schraudner, Martina, Dieter Ernst, Christian Langebartels, and Heinrich Sandermann. "Biochemical Plant Responses to Ozone." Plant Physiology 99, no. 4 (August 1, 1992): 1321–28. http://dx.doi.org/10.1104/pp.99.4.1321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haughn, George W., Laurence Davin, Michael Giblin, and Edward W. Underhill. "Biochemical Genetics of Plant Secondary Metabolites in Arabidopsis thaliana." Plant Physiology 97, no. 1 (September 1, 1991): 217–26. http://dx.doi.org/10.1104/pp.97.1.217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

REITER, W. "Biochemical genetics of nucleotide sugar interconversion reactions." Current Opinion in Plant Biology 11, no. 3 (June 2008): 236–43. http://dx.doi.org/10.1016/j.pbi.2008.03.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hargreaves, J. A. "Genetic basis of biochemical mechanisms of plant disease." Physiological and Molecular Plant Pathology 30, no. 3 (May 1987): 467–68. http://dx.doi.org/10.1016/0885-5765(87)90026-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Radwanski, Elaine R., and Robert L. Last. "Tryptophan Biosynthesis and Metabolism: Biochemical and Molecular Genetics." Plant Cell 7, no. 7 (July 1995): 921. http://dx.doi.org/10.2307/3870047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Parrotta, Luigi, Umesh Kumar Tanwar, Iris Aloisi, Ewa Sobieszczuk-Nowicka, Magdalena Arasimowicz-Jelonek, and Stefano Del Duca. "Plant Transglutaminases: New Insights in Biochemistry, Genetics, and Physiology." Cells 11, no. 9 (May 3, 2022): 1529. http://dx.doi.org/10.3390/cells11091529.

Повний текст джерела
Анотація:
Transglutaminases (TGases) are calcium-dependent enzymes that catalyse an acyl-transfer reaction between primary amino groups and protein-bound Gln residues. They are widely distributed in nature, being found in vertebrates, invertebrates, microorganisms, and plants. TGases and their functionality have been less studied in plants than humans and animals. TGases are distributed in all plant organs, such as leaves, tubers, roots, flowers, buds, pollen, and various cell compartments, including chloroplasts, the cytoplasm, and the cell wall. Recent molecular, physiological, and biochemical evidence pointing to the role of TGases in plant biology and the mechanisms in which they are involved allows us to consider their role in processes such as photosynthesis, plant fertilisation, responses to biotic and abiotic stresses, and leaf senescence. In the present paper, an in-depth description of the biochemical characteristics and a bioinformatics comparison of plant TGases is provided. We also present the phylogenetic relationship, gene structure, and sequence alignment of TGase proteins in various plant species, not described elsewhere. Currently, our knowledge of these proteins in plants is still insufficient. Further research with the aim of identifying and describing the regulatory components of these enzymes and the processes regulated by them is needed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Paolis, Angelo, Giovanna Frugis, Donato Giannino, Maria Iannelli, Giovanni Mele, Eddo Rugini, Cristian Silvestri, et al. "Plant Cellular and Molecular Biotechnology: Following Mariotti’s Steps." Plants 8, no. 1 (January 10, 2019): 18. http://dx.doi.org/10.3390/plants8010018.

Повний текст джерела
Анотація:
This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gain new insights into the biochemical function of Agrobacterium rhizogenes rol genes and their application to metabolite production, fruit tree transformation, and reverse genetics; (iii) improve genetic transformation in legume species, most of them recalcitrant to regeneration; (iv) untangle the potential of KNOTTED1-like homeobox (KNOX) transcription factors in plant morphogenesis as key regulators of hormonal homeostasis; and (v) elucidate the molecular mechanisms of the transition from juvenility to the adult phase in Prunus tree species.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Plant biochemical genetics"

1

Baldwin, Samantha, and n/a. "Models for genetic analysis of polyploid plant species." University of Otago. Department of Biochemistry, 2008. http://adt.otago.ac.nz./public/adt-NZDU20090826.092431.

Повний текст джерела
Анотація:
A number of major crop species, such as allohexaploid wheat and autotetraploid potato are polyploid. Potato is the fourth most important crop in terms of production and has become an important food source in many countries. Therefore, the molecular analysis was directed towards investigating ways to develop markers to assist the potato breeding process; for example breeding for powdery scab disease resistance, and tolerance to cold induced sweetening. Polyploids have more possible genotypes per population, allele dosage effects and increased marker complexity compared to diploids. Potato is also outcrossing and therefore highly heterozygous. Various methods for detecting marker-trait associations including, linkage, quantitative trait locus (QTL) and association mapping were studied and protocols developed. A mapping population was produced and a number of traits were measured including powdery scab resistance. Powdery scab disease assays were carried out over six seasons and markers associated with disease resistance were identified. Markers associated with resistance to powdery scab were identified on chromosomes I, IV, V, VI, VIII and IX using analysis of variance (ANOVA). Linkage maps were produced for each parent of the population and QTL associated with resistance and susceptibility to disease were identified using interval mapping, which revealed QTL on chromosomes II, V, VII , VIII, IX and an unanchored linkage group. QTL were detected across years on regions of chromosomes VIII and IX. These QTL results had some overlap with the marker-trait associations that were identified using ANOVA analysis. Another marker identification technique was tested, known as association or linkage disequilibrium mapping. Alleles of candidate genes were tested for association with cold-induced sweetening using a germplasm collection. The alleles identified as important were of the apoplastic invertase and UGPase genes and a unique interaction between alleles of the apoplastic invertase and apoplastic invertase inhibitor was also detected. This thesis describes the first study into the genetics of powdery scab resistance and the markers identified as associated with resistance will be validated for use in a marker-assisted selection (MAS) programme. The tools and resources developed as part of this thesis are vital to the potato breeding programme that requires the identification of associated molecular markers.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mahmoud, Sayed Hassan. "Biochemical marker genes for molecular genetics and plant breeding in Pisum sativum L." Thesis, Durham University, 1985. http://etheses.dur.ac.uk/7853/.

Повний текст джерела
Анотація:
Three isoenzyme systems (amylase, esterase and glutamate oxalo acetate transaminase) were examined in seeds of pea ( Pisum sativum L.) and showed clear variations in their band patterns on gel electro phoresis between different lines. The inheritance of these isoenzyme systems, and the location of their structural genes on the pea genome were investigated. Reciprocal crosses were made between lines, F2 seeds were analysed for segregation in the band patterns of the isoenzymes, and F2 plants were investigated to find linkage between the genes for these isoenzymes and genes for selected morphological markers. The results obtained showed that each of the investigated isoenzyme systems is genetically controlled by co-dominant alleles at a single locus. The gene for amylase ( Amy ) was found to be on chromosome 2, linked to the loci k and wb ( wb.. .9-k. . .25.. .Amy ). The gene for esterase ( Est ) was found to be linked to the gene Br (chromosome 4) but the exact location is uncertain because of a lack of morphological markers. The gene for glutamate oxaloacetate transaminase ( Got ) was found to be on chromosome 1 linked to the loci a and d ( a...24...Got...41.. d). Gel electrophoresis techniques have also been used to investigate genetically controlled variation in the major subunits (50,000 Mr) of vicilin, a storage protein of Pisum sativum L. The Fl protein band patterns were shown to be additive with respect to those of the parental lines and to be identical in reciprocal crosses. Genetic analysis of the F2 plants indicated that the 50,000 Mr vicilin subunits band pattern is controlled by a pair of co-dominant genes at a single locus. The F2 data were used to locate this major vicilin gene locus ( Vc-1 ) to chromoscane 7, closely linked to the r locus (for round and wrinkled seed surface). A third member of pea legumin gene family, denoted legB, has been sequenced using the "dideoxy chain termination" method with the M1 3 sequencing system. The complete nucleotide sequence showed that this gene has a general form typical of an eukaryotic gene. The homolgies between this gene and the previously published gene "legA" 'were estimated and showed strong homology between the two genes with eight amino acid substitutions and deletion of 14 bp in the third intron (IVS-3).The inheritance of ribosomal RNA (rRNA) genes in ( Pisum sativum L.) was investigated in a cross between two different lines, where length variation in rDNA fragments of Eco RI digests was observed. The results obtained showed that the rRNA genes are controlled by simple Mendelian system with "co-dominance" between alleles. In order to locate the rRNA gene sites to positions on the chromosomes, the segregation of ECO. RI restriction fragments of rDNA from F2 plants with respect to genes for selected morphological markers on chromosomes 4 and 7 (the chromosomes known to have nucleolus organizer regions) were tested. The F2 data showed no linkages between the selected markers and rRNA genes, therefore, in situ hybridization using rDNA radioactive probe ((^3)H- labelled rDNA clone, pHAI) and physical mapping procedures were used. The results obtained have located the rRNA gene sites to nucleolus organizer regions (satellite constrictions) at 138 and 60 map units from the centromeres of chromosomes 4 and 7, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hall, Claire. "Biochemical genetics of glucosinolate side chain modification in Brassica and Arabidopis." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cotton, Kimberly Lynn. "Genetic and biochemical analysis of essential enzymes in triacylglycerol synthesis in arabidopsis." Thesis, Washington State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10043101.

Повний текст джерела
Анотація:

Plant oils are used in food, fuel, and feedstocks for many consumer products, and so understanding the process by which they are made and modified will help us to make plant oils more healthy, useful, and sustainable. While some of the genes encoding the ER-localized enzymatic steps to triacylglycerol (TAG) have been well understood and documented, several are still in need of study. The glycerol-3-phosphate acyl transferase (GPAT) enzymatic activity is the first step in the pathway to TAG, and it acylates glycerol 3-phosphate to produce lysophosphatidic acid. GPAT9 (AT5G60620) is conserved across land plants and is homozygous lethal, indicating an essential function. Transcript level in knockdown mutants correlates with GPAT activity and with oil levels, and the protein interacts with other enzymes in the TAG biosynthesis pathway. These data suggest that GPAT9 encodes the main GPAT involved in membrane lipid and TAG synthesis. The phosphatidic acid phosphatase (PAP) step in TAG synthesis is responsible for the hydrolysis of inorganic phosphate from phosphatidic acid and creation of diacylglycerol (DAG). There are 13 putative PAPs in Arabidopsis which are homologous to known PAPs. Most of these are involved in other processes, including the plastidial lipid synthesis pathway and signaling pathways. The Arabidopsis gene LPPβ (At4g22550) is expressed in seed tissue, its protein product is localized to the ER, and it encodes PAP activity, indicating that it is a likely candidate for the PAP involved in oil synthesis. At the conclusion of this work, questions remain about the role of LPPβ in oil synthesis and which genes encode the major enzymes involved in the steps generating phosphatidylcholine and converting it back to DAG; but the main Kennedy Pathway enzymes generating TAG have been identified and characterized.

Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nepembe, Mehafo Ndafapawa. "Elucidation of the biochemical mechanism of glycogen phosphorylation in Escherichia coli." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2524.

Повний текст джерела
Анотація:
Thesis (MSc (Genetics. Plant Biotechnology)--University of Stellenbosch, 2009.
ENGLISH ABSTRACT: Glycogen was isolated from E. coli and analysed for the amount of phosphate present within it. It was confirmed that a significant proportion of the glucose residues were phosphorylated at the C6 position. This glycogen phosphate was found also in both glgb- (glycogen branching enzyme) and glgp- (glycogen phosphorylase enzyme) mutants, demonstrating that a mechanism for phosphate incorporation that does not involve GlgP alone, and which is capable of incorporating phosphate into linear glucans could exist. The degree of phosphorylation depended on the amount of phosphate present in the media, which less being incorporated in media where phosphate was reduced. Screening for glycogen phosphorylating genes using a E. coli genomic library in a functional expression system identified the malP gene as a possible candidate for incorporation of the phosphate at the C6 position. There was no difference, however, between the glycogen phosphate content of the mutant and wild type. Efforts were made to construct a malp-/glgp- double mutant, but these were unsuccessful. In addition the influence of plants and human proteins on yeast glycogen metabolism was also investigated. These proteins have been demonstrated to have an effect on starch or glycogen in humans, plant and E. coli, but the data from this study indicated that this was not the case in yeast.
AFRIKAANSE OPSOMMING: Glikogeen, wat geisoleer was uit E.coli was geanaliseer vir fosfaat inhoud daarin. Daar was gevind dat `n beduidende proporsie van die glukose residue gefosforileerd was op die C6 posisie. Hierdie gefosforileerde glikogeen was ook gevind in glg- (glikogeen vertakkingsensieme) en glgp- (glikogeen fosforileringsensieme) mutante wat daarop dui dat `n meganisme vir fosforilering bestaan was nie slegs aangewese is op die aktiwiteit van GlgP nie, en om fosfaat te inkorporeer in linêre glukane. Die graad van fosforilering was ook afhanklik van die hoeveelheid fosfaat teenwoordig in die medium, met gevolglik minder wat geinkorporeer kan word in medium waar fosfaat verminderd was. Seleksie-gebaseerde ondersoeking vir fosforileringsensieme van glikogeen deur gebruik te maak van E. coli genomiese biblioteke in `n funksionele uitdrukkingssisteem het die malP geen geidentifiseer as een van die moontlike kandidate wat verantwoordelik kan wees vir inkorporering van fosfaat in the C6 posisie. Daar was egter geen verskil in die fosfaat inhoud van glikogeen tussen die wilde tipe en die mutante. Pogings wat aangewend is om `n malp-/glgpdubbel mutant te konstrueer was onsuksesvol. Verder is die invloed van plant en mens proteine op gis glikogeen ook bestudeer. Vroeër is aangetoon dat hierdie proteine `n invloed op stysel en glikogeen het in mense, plante en E. coli, maar data van hierdie studie toon aan dat dit nie die geval in gis is nie.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meyn, Malcolm Anthony 1967. "A genetic, biochemical, and population analysis of MGL, a non-LTR retroelement from the plant pathogenic fungus Magnaporthe grisea." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/288755.

Повний текст джерела
Анотація:
This dissertation describes the characterization of a novel transposable element isolated from the plant pathogenic fungus Magnaporthe grisea. The sequence of MGR583, a previously reported repeated DNA fragment, was completed and shown to have features characteristic of non-LTR retroelements (LINEs). These include an element length of 5.9 kb, the lack of flanking long terminal repeats, the presence of short (6-13 bp) direct repeats flanking many element copies, and two principal open reading frames (ORFs). The first ORF is 570 amino acids in length and contains homology to the gag ORFs found in many retroelements. The second ORF is 1,295 amino acids in length and has strong homology to reverse transcriptases (RT) ORFs found in non-LTR retroelements (LINEs). In accordance with these results, the name of the repeat was changed to MGL for Magnaporthe grisea LINE. Analysis of the 3' terminus of MGL showed 90% homology to the 3' terminus of Mg-SINE, suggesting an evolutionary relationship between these two elements. A survey of the distribution of MGL in populations of M. grisea showed the element to be present in all isolates tested. Copy number was not uniform between isolates, with approximately fifty copies present in rice isolates and between less than 10 and up to 50 copies in the 17 non-rice isolates tested. A PCR-based assay was designed and used to screen M. grisea isolates for polymorphic MGL insertion loci. Thirteen polymorphic MGL insertions were scored and used to construct a phylogenetic tree that included 11 non-rice isolates and 20 rice isolates. The results strongly suggested that development of virulence on rice was a single event correlated with the acquisition of virulence on several other grass species. In addition, the observation that rearrangements occurred at one of the insertion loci in some rice isolate strains support the proposal that there is considerable plasticity in the genomes of these isolates. Finally, a yeast transposon ( Tyl) system was used to express and test the second ORF for RT activity. No activity was detected for any of the MGL RT constructs tested.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Xuelu. "Biochemical and genetic analysis of factors influencing lysine content in maize (Zea mays L.) endosperm." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284224.

Повний текст джерела
Анотація:
Protein-bound and free lysine contributed to the total lysine content of maize endosperm, and both of these can be significantly increased by the opaque-2 (o2) mutation. Elongation factor 1A is one of the lysine-rich proteins increased in o2 mutants, and its concentration is highly correlated with the protein-bound lysine content of the endosperm. However, the biological basis of this correlation is unknown. The mechanism by which the free amino acid content, including free lysine, is increased by the o2 mutation is also poorly understood. Understanding the biological basis of these traits could provide new insights for improving maize nutritional quality. A maize genetic linkage map consisting of 83 DNA simple sequence repeat markers was created for two inbred lines (Oh51Ao2 and Oh545o2) that differ in elongation factor 1A and free amino acid content. Quantitative trait locus analysis was performed and identified two significant loci that accounted for 25% of the variance for elongation factor 1A content. One of them was linked with a cluster of 22-kD α-zein genes on the short arm of chromosome 4; the other locus was on the long arm of chromosome 7 and may be linked to the 27-kD γ-zein genes. Quantification of protein and mRNA levels of the major storage proteins suggested that a higher level of α-zein gene expression co-segregates with higher elongation factor 1A content. Furthermore, measurement of protein body size and density predicted a greater protein body surface area (80% higher) in Oh51Ao2 than Oh545o2, and this may partially explain the higher level of elongation factor 1A in Oh51 Ao2 by creating a more extensive cytoskeletal network. Quantitative trait locus analysis of free amino acid content identified four loci accounting for about 46% of the variation for this trait. One locus on the long arm of chromosome 2 is tightly linked to monofunctional aspartate kinase and a bifunctional aspartate kinase-homoserine dehydrogenase gene. Biochemical characterization of these enzymes indicated the aspartate kinase in Oh545o2 is less sensitive to lysine than that in Oh51 Ao2. Consequently, aspartate kinase 2 is the more promising gene involved in this quantitative locus.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mallampalli, Venkata K. P. S. "Expression and Biochemical Function of Putative Flavonoid GT Clones from Grapefruit and Identification of New Clones using the harvEST Database." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etd/1788.

Повний текст джерела
Анотація:
Flavonoids are plant secondary metabolites well known for many key roles in the life cycle of plants. They also can affect human health. Citrus paradisi is known to produce several glucosylated flavonoids and these compounds are glucosylated by enzymes known as glucosyltransferases (GTs). The focus of this research was to optimize the heterologous expression, enrichment, and biochemical characterization of grapefruit putative GT protein, PGT2, and to test the hypothesis that PGT2 is a flavonoid GT. Results showed detectable amounts of activity with quercetin, a flavonol; however, activity was lower than what would be expected if this enzyme were a flavonol-specific GT. In an additional aspect of this study, bioinformatics were used to test the hypothesis that additional putative GT clones could be identified using the harvEST database.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ross, Ian Lindsay. "Mechanisms of biocontrol of Gaeumannomyces graminis var. tritici by Pseudomonas corrugata strain 2140 : genetic and biochemical aspects." Title page, table of contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phr824.pdf.

Повний текст джерела
Анотація:
Bibliography: leaves 207-220. Pseudomonas corrigata strain 2140 (Pc2140), isolated from wheat field soil in Australia, antagonises the take-all fungus, Gaeumannomyces graminis var. tritici (Ggt) in vitro and significantly reduces take-all symptoms on wheat in pot trials. This study investigates the mechanisms by which the biocontrol agent reduces the disease symptoms. Biochemical analysis of metabolites of P. corrugata 2140 reveal a number of compounds potentially antagonistic to Ggt and which may play a role in disease control. These include water-soluble antibiotics, siderophores, proteases, peptides and volatiles including hydrogen cyanide.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Che, Ka Hing. "Development of biochemical tools to characterise human H3K27 histone demethylase JmjD3." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:da42028f-fe7c-4b9e-b3af-d103ae8b9668.

Повний текст джерела
Анотація:
Covalent modifications of histone tails play essential roles in mediating chromatin structure and epigenetic regulation. JmjD3 is a JumonjiC domain containing histone demethylase, belongs to the KDM6 subfamily, and catalyses the removal of methyl groups on methylated lysine 27 on histone 3 (H3K27), a critical mark to promote polycomb mediated repression and gene silencing. The importance of JmjD3 has been implicated in development, cancer biology and immunology. In this thesis, I report the recombinant production of active human JmjD3, development of two in vitro screening assays, a cell-based assay, and structural determination of JmjD3 in complex with the inhibitor 8-hydroxy-5-carboxyquinoline (8HQ). A highly selective and potent small molecule inhibitor GSK-J1 was subsequently identified. The inhibitor is active in HeLa cells and promotes a dose-dependent increase of global H3K27 methylation. The inhibitor GSK-J1 was used in two different cell assay systems related to inflammation and differentiation, to understand how H3K27 demethylation controls cellular functions. By inhibiting H3K27me3 demethylation, it is demonstrated that tumor necrosis factor (TNF) and other pro-inflammatory cytokines are regulated by H3K27 demethylase inhibition in M1- type macrophages derived from healthy volunteers and rheumatoid arthritis patients. It is also shown that inhibition of H3K27me3 demethylation abrogates cellular fusion of M2- type macrophages. During RANKL induced osteoclast differentiation, JmjD3 is up-regulated and promotes the expression of the key transcription factor NFATc1. By inhibiting JmjD3, NFATc1 expression is reduced and osteoclastogenesis is inhibited. This mechanism demonstrates a novel anti-resorptive principle of potential utility in conditions of excess bone resorption such as osteoporosis, bone erosion in inflammatory arthritis or cancer of the bone. These experiments further resolve the ambiguity between scaffold and catalytic function associ- ated with the H3K27 demethylase in these biological systems, and demonstrate that its enzymatic activity is crucial for epigenetic regulation of macrophage and osteoclast function.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Plant biochemical genetics"

1

R, Khanna K., ed. Biochemical aspects of crop improvement. Boca Raton: CRC Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1958-, Blonstein A. D., and King P. J. 1941-, eds. A Genetic approach to plant biochemistry. Wien: Springer-Verlag, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vani︠u︡shin, B. F. DNA methylation in plants. New York: Nova Science Publishers, Inc., 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Henry, Robert J. Molecular markers in plant improvement. Hoboken, N.J: John Wiley & Sons, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hicks, Glenn R., and Stéphanie Robert. Plant chemical genomics: Methods and protocols. New York: Humana Press, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

H, Lörz, and Wenzel Gerhard, eds. Molecular marker systems in plant breeding and crop improvement. Berlin: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Iwabuchi, Masaki, and Kazuo Shinozaki. Shokubutsu genomu kinō no dainamizumu: Tensha inshi ni yoru hatsugen seigyo. Tōkyō: Shupuringā Fearāku Tōkyō, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

International, Symposium on Population Genetics of Forest Trees (1990 Corvallis Or ). Population genetics of forest trees: Proceedings of the International Symposium on Population Genetics of Forest Trees, Corvallis, Oregon, U.S.A., July 31-August 2, 1990. Dordrecht: Kluwer Academic Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wheat Structure, Biochemistry and Functionality Conference (1995 Reading, England). Wheat structure, biochemistry and functionality. Cambridge: Royal Society of Chemistry, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wheat Structure, Biochemistry and Functionality Conference (1995 Reading, England). Wheat structure, biochemistry and functionality. Cambridge: Royal Society of Chemistry, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Plant biochemical genetics"

1

Bandurski, Robert S., Mark F. Desrosiers, Philip Jensen, Maciej Pawlak, and Aga Schulze. "Genetics, chemistry, and biochemical physiology in the study of hormonal homeostasis." In Progress in Plant Growth Regulation, 1–12. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2458-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Moinuddin, Syed G. A., John R. Cort, Clyde A. Smith, Christophe Hano, Laurence B. Davin, and Norman G. Lewis. "Linum Lignan and Associated Biochemical Pathways in Human Health and Plant Defense." In Genetics and Genomics of Linum, 167–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23964-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hennecke, Hauke, Oliver Preisig, Rachel Zufferey, and Linda Thöny-Meyer. "Biochemical Genetics of Respiration in the Bradyrhizobium Japonicum-Soybean Symbiosis." In Advances in Molecular Genetics of Plant-Microbe Interactions, 155–60. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0177-6_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Downie, J. A., C. Marie, A. K. Scheu, J. L. Firmin, K. E. Wilson, A. E. Davies, T. M. Cubo, A. Mavridou, A. W. B. Johnston, and A. Economou. "Genetic and Biochemical Studies on the Nodulation Genes of Rhizobium Leguminosarum bv. Viciae." In Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 1, 134–41. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7934-6_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Akimitsu, K., A. Isshiki, K. Ohtani, M. Ishikawa, and H. Yamamoto. "Biochemical and Molecular Roles of HST and Enzymes Produced by Pathogen of Citrus Brown Spot Disease." In Molecular Genetics of Host-Specific Toxins in Plant Disease, 281–90. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5218-1_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Spaink, H. P., O. Geiger, D. M. Sheeley, A. A. N. van Brussel, W. S. York, V. N. Reinhold, B. J. J. Lugtenberg, and E. P. Kennedy. "The Biochemical Function of the Rhizobium Leguminosarum Proteins Involved in the Production of Host Specific Signal Molecules." In Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 1, 142–49. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7934-6_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thomashow, L. S., D. W. Essar, D. K. Fujimoto, L. S. Pierson, C. Thrane, and D. M. Weller. "Genetic and Biochemical Determinants of Phenazine Antibiotic Production in Fluorescent Pseudomonads that Suppress Take-All Disease of Wheat." In Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 2, 535–41. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-0651-3_59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rühl, G. F., K. H. Standke, and K. Marmulla. "Biochemical techniques for genotype characterization." In Genetic Aspects of Plant Mineral Nutrition, 291–98. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2053-8_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weretilnyk, E. A., and A. D. Hanson. "Biochemical and Genetic Characterization of Betaine Aldehyde Dehydrogenase." In Environmental Stress in Plants, 65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73163-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Thornton, T., L. Kreppel, G. Hart, and N. Olszewski. "Genetic and Biochemical analysis of arabidopsis SPY." In Plant Biotechnology and In Vitro Biology in the 21st Century, 445–48. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4661-6_100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Plant biochemical genetics"

1

"Assessment genetic structure of Azerbaijan wild and cultivated barley genotypes by biochemical marker." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Biochemical, molecular and genetic aspects of fruit ripening in green-fruited and red-fruited tomato species." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"In vitro biochemical features in calli derived from winter wheat anthers and their possible influences on a secondary embryogenesis." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Association mapping for physio-biochemical traits under salt stress in wheat RILs population developed from cross between Frontana×Pasban90." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Bioresource collections of vegetable plants as an initial material for breeding cultivars with high biochemical value and for obtaining functional foods." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Doroftei, Veaceslav, Victor Titei, Alexei Ababii, Vasile Blaj, Sergiu Cozari, Andreea Cristina Andreoiu, Teodor Marusca, Valentina Cosman, and Ana Gutu. "Evaluarea calităţii biomasei din plantațiile semincere de ierburi perene și posibilități de valorificar." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.80.

Повний текст джерела
Анотація:
We studied the quality of the biomass (straw) of perinnal grass seed crop: Festuca arundinacea, Festuca pratensis, Festuca rubra, Pennisetum alopecuroides, Phleum pretense. The biochemical composi-tion of straw: 36-83 g/kg CP, 400-555 g/kg CF, 46-98 g/kg CA, 647-918 g/kg NDF, 424-604 g/kg ADF, 53-86 g/kg ADL, 371-518 g/kg Cel, 223-314g/kg HC, with nutritive and energy value 10.3-39.3 % DMD, 8.8-36.2 % ODM, 7.08-9.14 MJ/kg ME and 3.10-5.45 MJ/kg NEl. We found that the straw substrates for anaerobic digestion, have C/N=37-92 and biochemical methane potential 254-313 l/kg ODM. The theore-tical ethanol yield from structural carbohydrates averaged 432-605 L/t.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Introduction in Siberia (Russia) of new vegetable species with a high biochemical value." In Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Titei, Victor, Adrian Vasile Blaj, Andreea Cristina Andreoiu, and Teodor Marusca. "Evaluarea calităţii biomasei de Lolium perenne L. Ca furaj și substrat pentru obținerea biometanului." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.93.

Повний текст джерела
Анотація:
We studied the biochemical composition, nutritive value of the green mass and prepared hay from Ro-manian cultivars of perennial ryegrass, Lolium perenne L. „Mara” and „Măgura” grown in monoculture on the experimental plot of the National Botanical Garden (Institute) “Alexandru Ciubotaru”, Chisinau, R. Mol-dova. Results revealed that dry matter of harvested green mass contained 98-116 g/kg CP, 299-326 g/kg CF, 71-77 g/kg ash, 329-353 g/kg ADF, 546-593 g/kg NDF, 38-40 g/kg ADL, 291-313 g/kg Cel, 217-240 g/kg HC, with nutritive and energy value 60.9-65.3 % DMD, 60.1-64.8 % ODM, RFV=96-108, 12.12-12.45 MJ/kg DE, 9.95- 10.23 MJ/kg ME and 5.97-6.25 MJ/kg NEl. The biochemical composition, nutritive and energy va-lue of prepared hay: 94-110 g/kg CP, 351-385 g/kg CF, 79-82 g/kg ash, 390-423 g/kg ADF, 631-689 g/kg NDF, 46-50 g/kg ADL, 344-373g/kg Cel, 241-266 g/kg HC, RFV=76-86, 11.13-11.61 MJ/kg DE, 9.14- 9.53 MJ/kg ME and 5.17-5.55 MJ/kg NEl. The biochemical methane potential of green mass substrates reached 338-344 L/kg organic matter. The studied cultivars of Lolium perennec could be used in the Republic of Mol-dova for the restoration of degraded permanent grasslands, as a component of the mix of grasses and legumes for the creation of temporary grasslands, the harvested biomass can be used as feed for farm animals or as substrate in biogas generator for renewable energy production.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Influence of an introgression from Triticum timopheevii into chromosome 5A of bread wheat cultivars Saratovskaya 29 and Diamant 2 on agronomical, physiological and biochemical parameters under contrasting irrigation conditions." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lupascu, Galina, Svetlana Gavzer, Angela Rudacova, and Ala Cherdivara. "Genotipuri noi de grâu comun de toamnă – productivitatea și calitatea boabelor." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.59.

Повний текст джерела
Анотація:
The article presents data on the structural elements of the spike and the biochemical content of the grains in newly created common wheat winter genotypes, cultivated in extreme drought conditions of 2020. It was concluded that the lines and cultivars created by hybridization and individual selection of segregating populations are well adapted to drought and have a high nutritional value of grains which is of great practical interest.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Plant biochemical genetics"

1

Chamovitz, Daniel A., and Zhenbiao Yang. Chemical Genetics of the COP9 Signalosome: Identification of Novel Regulators of Plant Development. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7699844.bard.

Повний текст джерела
Анотація:
This was an exploratory one-year study to identify chemical regulators of the COP9 signalosome. Chemical Genetics uses small molecules to modify or disrupt the function of specific genes/proteins. This is in contrast to classical genetics, in which mutations disrupt the function of genes. The underlying concept is that the functions of most proteins can be altered by the binding of a chemical, which can be found by screening large libraries for compounds that specifically affect a biological, molecular or biochemical process. In addition to screens for chemicals which inhibit specific biological processes, chemical genetics can also be employed to find inhibitors of specific protein-protein interactions. Small molecules altering protein-protein interactions are valuable tools in probing protein-protein interactions. In this project, we aimed to identify chemicals that disrupt the COP9 signalosome. The CSN is an evolutionarily conserved eight-subunit protein complex whose most studied role is regulation of E3 ubiquitinligase activity. Mutants in subunits of the CSN undergo photomorphogenesis in darkness and accumulate high levels of pigments in both dark- and light-grown seedlings, and are defective in a wide range of important developmental and environmental-response pathways. Our working hypothesis was that specific molecules will interact with the CSN7 protein such that binding to its various interacting proteins will be inhibited. Such a molecule would inhibit either CSN assembly, or binding of CSN-interacting proteins, and thus specifically inhibit CSN function. We used an advanced chemical genetic screen for small-molecule-inhibitors of CSN7 protein-protein interactions. In our pilot study, following the screening of ~1200 unique compounds, we isolated four chemicals which reproducibly interfere with CSN7 binding to either CSN8 or CSN6.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jander, Georg, Gad Galili, and Yair Shachar-Hill. Genetic, Genomic and Biochemical Analysis of Arabidopsis Threonine Aldolase and Associated Molecular and Metabolic Networks. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7696546.bard.

Повний текст джерела
Анотація:
Since the amino acids threonine and isoleucine can be limiting in mammalian diet and there is interest in increasing their abundance in certain crop plants. To meet this need, a BARD proposal was written with two main research objectives: (i) investigate new avenues for manipulating threonine and isoleucine content in plants and (ii) study the role of threonine aldolase in plant metabolism. Research conducted to meet these goals included analysis of the sub-cellular localization of threonine aldolase in the plant, analysis of metabolic flux in developing embryos, over- and under-expression of Arabidopsis threonine aldolases, and transcriptional and metabolic analysis of perturbations resulting from altered threonine aldolase expression. Additionally, the broader metabolic effects of increasing lysine biosynthesis were investigated. An interesting observation that came up in the course of the project is that threonine aldolase activity affects methionine gamma-lyase in Arabidopsis. Further research showed that threonine deaminase and methionine gamma-lyase both contribute to isoleucine biosynthesis in plants. Therefore, isoleucine content can be altered by manipulating the expression of either or both of these enzymes. Additionally, both enzymes contribute to the up to 100-fold increase in isoleucine that is observed in drought-stressed Arabidopsis. Toward the end of the project it was discovered that through different projects, both groups had been able to independently up-regulate phenylalanine accumulation by different mechanisms. The Galili lab transformed Arabidopsis with a feedbackinsensitive bacterial enzyme and the Jander lab found a feedback insensitive mutation in Arabidopsis arogenate dehydratase. Exchange of the respective plant lines has allowed a comparative analysis of the different methods for increasing phenylalanine content and the creation of double mutants. The research that was conducted as part of this BARD project has led to new insights into plant amino acid metabolism. Additionally, new approaches that were found to increase the accumulation of threonine, isoleucine, and phenylalanine in plants have potential practical applications. Increased threonine and isoleucine levels can increase the nutritional value of crop plants. Elevated isoleucine accumulation may increase the osmotic stress tolerance of plants. Up-regulation of phenylalanine biosynthesis can be used to increase the production of downstream higher-value plant metabolites of biofuel feed stocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Christopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.

Повний текст джерела
Анотація:
Original Objectives: 1. Purify and biochemically characterize RB60 orthologs in higher plant chloroplasts; 2. Clone the gene(s) encoding plant RB60 orthologs and determine their structure and expression; 3. Manipulate the expression of RB60; 4. Assay the effects of altered RB60 expression on thylakoid biogenesis and photosynthetic function in plants exposed to different light conditions. In addition, we also examined the gene structure and expression of RB60 orthologs in the non-vascular plant, Physcomitrella patens and cloned the poly(A)-binding protein orthologue (43 kDa RB47-like protein). This protein is believed to a partner that interacts with RB60 to bind to the psbA5' UTR. Thus, to obtain a comprehensive view of RB60 function requires analysis of its biochemical partners such as RB43. Background & Achievements: High levels of sunlight reduce photosynthesis in plants by damaging the photo system II reaction center (PSII) subunits, such as D1 (encoded by the chloroplast tpsbAgene). When the rate of D1 synthesis is less than the rate of photo damage, photo inhibition occurs and plant growth is decreased. Plants use light-activated translation and enhanced psbAmRNA stability to maintain D1 synthesis and replace the photo damaged 01. Despite the importance to photosynthetic capacity, these mechanisms are poorly understood in plants. One intriguing model derived from the algal chloroplast system, Chlamydomonas, implicates the role of three proteins (RB60, RB47, RB38) that bind to the psbAmRNA 5' untranslated leader (5' UTR) in the light to activate translation or enhance mRNA stability. RB60 is the key enzyme, protein D1sulfide isomerase (Pill), that regulates the psbA-RN :Binding proteins (RB's) by way of light-mediated redox potentials generated by the photosystems. However, proteins with these functions have not been described from higher plants. We provided compelling evidence for the existence of RB60, RB47 and RB38 orthologs in the vascular plant, Arabidopsis. Using gel mobility shift, Rnase protection and UV-crosslinking assays, we have shown that a dithiol redox mechanism which resembles a Pill (RB60) activity regulates the interaction of 43- and 30-kDa proteins with a thermolabile stem-loop in the 5' UTR of the psbAmRNA from Arabidopsis. We discovered, in Arabidopsis, the PD1 gene family consists of II members that differ in polypeptide length from 361 to 566 amino acids, presence of signal peptides, KDEL motifs, and the number and positions of thioredoxin domains. PD1's catalyze the reversible formation an disomerization of disulfide bonds necessary for the proper folding, assembly, activity, and secretion of numerous enzymes and structural proteins. PD1's have also evolved novel cellular redox functions, as single enzymes and as subunits of protein complexes in organelles. We provide evidence that at least one Pill is localized to the chloroplast. We have used PDI-specific polyclonal and monoclonal antisera to characterize the PD1 (55 kDa) in the chloroplast that is unevenly distributed between the stroma and pellet (containing membranes, DNA, polysomes, starch), being three-fold more abundant in the pellet phase. PD1-55 levels increase with light intensity and it assembles into a high molecular weight complex of ~230 kDa as determined on native blue gels. In vitro translation of all 11 different Pill's followed by microsomal membrane processing reactions were used to differentiate among PD1's localized in the endoplasmic reticulum or other organelles. These results will provide.1e insights into redox regulatory mechanisms involved in adaptation of the photosynthetic apparatus to light stress. Elucidating the genetic mechanisms and factors regulating chloroplast photosynthetic genes is important for developing strategies to improve photosynthetic efficiency, crop productivity and adaptation to high light environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chamovitz, A. Daniel, and Georg Jander. Genetic and biochemical analysis of glucosinolate breakdown: The effects of indole-3-carbinol on plant physiology and development. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597917.bard.

Повний текст джерела
Анотація:
Genetic and biochemical analysis of glucosinolate breakdown: The effects of indole-3-carbinol on plant physiology and development Glucosinolates are a class of defense-related secondary metabolites found in all crucifers, including important oilseed and vegetable crops in the Brassica genus and the well-studied model plant Arabidopsis thaliana. Upon tissue damage, such as that provided by insect feeding, glucosinolates are subjected to catalysis and spontaneous degradation to form a variety of breakdown products. These breakdown products typically have a deterrent effect on generalist herbivores. Glucosinolate breakdown products also contribute to the anti-carcinogenic effects of eating cabbage, broccoli and related cruciferous vegetables. Indole-3-carbinol, a breakdown product of indol-3-ylmethylglucosinolate, forms conjugates with several other plant metabolites. Although some indole-3-carbinol conjugates have known functions in defense against herbivores and pathogens, most play as yet unidentified roles in plant metabolism, and possibly also plant development. At the outset, our proposal had three main hypotheses: (1) There is a specific detoxification pathway for indole-3-carbinol; (2) Metabolites derived from indole-3-carbinol are phloem-mobile and serve as signaling molecules; and (3) Indole-3-carbinol affects plant cell cycle and cell-differentiation pathways. The experiments were designed to enable us to elucidate how indole-3-carbinol and related metabolites affect plants and their interactions with herbivorous insects. We discovered that indole-3- carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescued auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of TIR1 with Aux/IAA proteins, supporting the notion that indole-3-carbinol acts as an auxin antagonist. Furthermore, transcript profiling experiments revealed the influence of indole-3-carbinol on auxin signaling in root tips, and indole-3-carbinol also affected auxin transporters. Brief treatment with indole-3-carbinol led to a reduction in the amount of PIN1 and to mislocalization of PIN2. The results indicate that chemicals induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development, which implies transport of indole-3- carbinol that we are as yet unsuccessful in detecting. Our results indicate that plant defensive metabolites also have secondary functions in regulating aspects of plant metabolism, thereby providing diversity in defense-related plant signaling pathways. Such diversity of of signaling by defensive metabolites would be beneficial for the plant, as herbivores and pathogens would be less likely to mount effective countermeasures. We propose that growth arrest can be mediated directly by the herbivory-induced chemicals, in our case, indole-3-carbinol. Thus, glucosinolate breakdown to I3C following herbivory would have two outcomes: (1) Indole-3-carbinaol would inhibit the herbivore, while (2) at the same time inducing growth arrest within the plant. Thus, our results indicate that I3C is a defensive phytohormone that modulates auxin signaling, leading to growth arrest.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sessa, Guido, and Gregory Martin. A functional genomics approach to dissect resistance of tomato to bacterial spot disease. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695876.bard.

Повний текст джерела
Анотація:
The research problem. Bacterial spot disease in tomato is of great economic importance worldwide and it is particularly severe in warm and moist areas affecting yield and quality of tomato fruits. Causal agent of spot disease is the Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv), which can be a contaminant on tomato seeds, or survive in plant debris and in association with certain weeds. Despite the economic significance of spot disease, plant protection against Xcvby cultural practices and chemical control have so far proven unsuccessful. In addition, breeding for resistance to bacterial spot in tomato has been undermined by the genetic complexity of the available sources of resistance and by the multiple races of the pathogen. Genetic resistance to specific Xcvraces have been identified in tomato lines that develop a hypersensitive response and additional defense responses upon bacterial challenge. Central goals of this research were: 1. To identify plant genes involved in signaling and defense responses that result in the onset of resistance. 2. To characterize molecular properties and mode of action of bacterial proteins, which function as avirulence or virulence factors during the interaction between Xcvand resistant or susceptible tomato plants, respectively. Our main achievements during this research program are in three major areas: 1. Identification of differentially expressed genes during the resistance response of tomato to Xcvrace T3. A combination of suppression subtractive hybridization and microarray analysis identified a large set of tomato genes that are induced or repressed during the response of resistant plants to avirulent XcvT3 bacteria. These genes were grouped in clusters based on coordinate expression kinetics, and classified into over 20 functional classes. Among them we identified genes that are directly modulated by expression of the type III effector protein AvrXv3 and genes that are induced also during the tomato resistance response to Pseudomonas syringae pv. tomato. 2. Characterization of molecular and biochemical properties of the tomato LeMPK3MAP kinase. A detailed molecular and biochemical analysis was performed for LeMPK3 MAP kinase, which was among the genes induced by XcvT3 in resistant tomato plants. LeMPK3 was induced at the mRNA level by different pathogens, elicitors, and wounding, but not by defense-related plant hormones. Moreover, an induction of LeMPK3 kinase activity was observed in resistant tomato plants upon Xcvinfection. LeMPK3 was biochemically defined as a dual-specificity MAP kinase, and extensively characterized in vitro in terms of kinase activity, sites and mechanism of autophosphorylation, divalent cation preference, Kₘand Vₘₐₓ values for ATP. 3. Characteriztion of molecular properties of the Xcveffector protein AvrRxv. The avirulence gene avrRxvis involved in the genetic interaction that determines tomato resistance to Xcvrace T1. We found that AvrRxv functions inside the plant cell, localizes to the cytoplasm, and is sufficient to confer avirulence to virulent Xcvstrains. In addition, we showed that the AvrRxv cysteine protease catalytic core is essential for host recognition. Finally, insights into cellular processes activated by AvrRxv expression in resistant plants were obtained by microarray analysis of 8,600 tomato genes. Scientific and agricultural significance: The findings of these activities depict a comprehensive and detailed picture of cellular processes taking place during the onset of tomato resistance to Xcv. In this research, a large pool of genes, which may be involved in the control and execution of plant defense responses, was identified and the stage is set for the dissection of signaling pathways specifically triggered by Xcv.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bennett, Alan B., Arthur Schaffer, and David Granot. Genetic and Biochemical Characterization of Fructose Accumulation: A Strategy to Improve Fruit Quality. United States Department of Agriculture, June 2000. http://dx.doi.org/10.32747/2000.7571353.bard.

Повний текст джерела
Анотація:
The goal of the research project was to evaluate the potential to genetically modify or engineer carbohydrate metabolism in tomato fruit to enhance levels of fructose, a sugar with nearly twice the sweetness value of other sugars. The specific research objectives to achieve that goal were to: 1. Establish the inheritance of a fructose-accumulating trait identified in F1 hybrids of an inferspecific cross between L. hirsutum XL. esculentum and identify linked molecular markers to facilitate its introgression into tomato cultivars. This objective was completed with the genetic data indicating a single major gene, termed Fgr (Fructose glucose ratio), that controlled the partitioning of hexose in the mature fruit. Molecular markers for the gene, were developed to aid introgression of this gene into cultivated tomato. In addition, a second major gene encoding fructokinase 2 (FK2) was found to be a determinant of the fructose to glucose ratio in fruit. The relationship between FK2 and Fgr is epistatic with a combined synergistic effect of the two hirsutum-derived genes on fructose/glucose ratios. 2. Characterize the metabolic and transport properties responsible for high fructose/glucose ratios in fructose-accumulating genotypes. The effect of both the Fgr and FK2 genes on the developmental accumulation of hexoses was studied in a wide range of genetic backgrounds. In all backgrounds the trait is a developmental one and that the increase in fructose to glucose ratio occurs at the breaker stage of fruit development. The following enzymes were assayed, none of which showed differences between genotypes, at either the breaker or ripe stage: invertase, sucrose synthase, FK1, FK2, hexokinase, PGI and PGM. The lack of effect of the FK2 gene on fructokinase activity is surprising and at present we have no explanation for the phenomenon. However, the hirsutum derived Fgr allele was associated with significantly lower levels of phosphorylated glucose, G1c-1-P and G1c-6-P and concomitantly higher levels of the phosphorylated fructose, Fru-6-P, in both the breaker and ripe stage. This suggests a significant role for the isomerase reaction. 3. Develop and implement molecular genetic strategies for the production of transgenic plants with altered levels of enzymes that potentially control fructose/glucose ratios in fruit. This objective focused on manipulating hexokinase and fructokinase expression in transgenic plants. Two highly divergent cDNA clones (Frk1 and Frk2), encoding fructokinase (EC 2.7.1.4), were isolated from tomato (Lycopersicon esculentum) and a potato fructokinase cDNA clone was obtained from Dr. Howard Davies. Following expression in yeast, each fructokinase was identified to code for one of the tomato or potato fructokinase isoforms Transgenic tomato plants were generated with the fructokinase cDNA clone in both sense and antisense orientations and the effect of the gene on tomato plants is currently being studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fridman, Eyal, and Eran Pichersky. Tomato Natural Insecticides: Elucidation of the Complex Pathway of Methylketone Biosynthesis. United States Department of Agriculture, December 2009. http://dx.doi.org/10.32747/2009.7696543.bard.

Повний текст джерела
Анотація:
Plant species synthesize a multitude of specialized compounds 10 help ward off pests. and these in turn may well serve as an alternative to synthetic pesticides to reduce environmental damage and health risks to humans. The general goal of this research was to perform a genetic and biochemical dissection of the natural-insecticides methylketone pathway that is specific to the glandular trichomes of the wild species of tomato, Solanumhabrochaites f. glabratum (accession PI126449). Previous study conducted by us have demonstrated that these compounds are synthesized de novo as a derivate pathway of the fatty acid biosynthesis, and that a key enzyme. designated MethylketoneSynthase 1 (MKS 1). catalyzes conversion of the intermediate B-ketoacyl- ACPs to the corresponding Cn-1 methylketones. The approach taken in this proposed project was to use an interspecific F2 population. derived from the cross between the cultivated lV182 and the wild species PIl26449. for three objectives: (i) Analyze the association between allelic status of candidate genes from the fatty acid biosynthesis pathway with the methylketone content in the leaves (ii) Perform bulk segregant analysis of genetic markers along the tomato genome for identifying genomic regions that harbor QTLs for 2TD content (iii) Apply differential gene expression analysis using the isolated glands of bulk segregant for identifying new genes that are involved in the pathway. The genetic mapping in the interspecific F2 population included app. 60 genetic markers, including the candidate genes from the FAS pathway and SSR markers spread evenly across the genome. This initial; screening identified 5 loci associated with MK content including the candidate genes MKS1, ACC and MaCoA:ACP trans. Interesting observation in this genetic analysis was the connection between shape and content of the glands, i.e. the globularity of the four cells, typical to the wild species. was associated with increased MK in the segregating population. In the next step of the research transcriptomic analysis of trichomes from high- and 10w-MK plants was conducted. This analysis identified a new gene, Methy1ketone synthase 2 (MKS2), whose protein product share sequence similarity to the thioesterase super family of hot-dog enzymes. Genetic analysis in the segregating population confirmed its association with MK content, as well as its overexpression in E. coli that led to formation of MK in the media. There are several conclusions drawn from this research project: (i) the genetic control of MK accumulation in the trichomes is composed of biochemical components in the FAS pathway and its vicinity (MKS 1 and MKS2). as well as genetic factors that mediate the morphology of these specialized cells. (ii) the biochemical pathway is now realized different from what was hypothesized before with MKS2 working upstream to I\1KS 1 and serves as the interface between primary (fatty acids) and secondary (MK) metabolism. We are currently testing the possible physical interactions between these two proteins in vitro after the genetic analysis showed clear epistatic interactions. (iii) the regulation of the pathway that lead to specialized metabolism in the wild species is largely mediated by transcription and one of the achievements of this project is that we were able to isolate and verify the specificity of the MKS1 promoter to the trichomes which allows manipulation of the pathways in these cells (currently in progress). The scientific implications of this research project is the advancement in our knowledge of hitherto unknown biochemical pathway in plants and new leads for studying a new family in plants (hot dog thioesterase). The agricultural and biotechnological implication are : (i) generation of new genetic markers that could assist in importing this pathway to cultivated tomato hence enhancing its natural resistance to insecticides, (ii) the discovery of MKS2 adds a new gene for genetic engineering of plants for making new fatty acid derived compounds. This could be assisted with the use of the isolated and verified MKS1 promoter. The results of this research were summarized to a manuscript that was published in Plant Physiology (cover paper). to a chapter in a proceeding book. and one patent was submitted in the US.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stern, David, and Gadi Schuster. Manipulating Chloroplast Gene Expression: A Genetic and Mechanistic Analysis of Processes that Control RNA Stability. United States Department of Agriculture, June 2004. http://dx.doi.org/10.32747/2004.7586541.bard.

Повний текст джерела
Анотація:
New potential for engineering chloroplasts to express novel traits has stimulated research into relevant techniques and genetic processes, including plastid transformation and gene regulation. This BARD-funded research dealt with the mechanisms that influence chloroplast RNA accumulation, and thus gene expression. Previous work on cpRNA catabolism has elucidated a pathway initiated by endonucleolytic cleavage, followed by polyadenylation and exonucleolytic degradation. A major player in this process is the nucleus-encoded exoribo-nuclease/polymerase polynucleotide phosphorylase (PNPase). Biochemical characterization of PNPase has revealed a modular structure that controls its RNA synthesis and degradation activities, which in turn are responsive to the phosphate (P) concentration. During the funding period, new insights emerged into the molecular mechanism of RNA metabolism in the chloroplast and cyanobacteria, suggesting strategies for improving agriculturally-important plants or plants with novel introduced traits.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Bingyu, Saul Burdman, Ronald Walcott, and Gregory E. Welbaum. Control of Bacterial Fruit Blotch of Cucurbits Using the Maize Non-Host Disease Resistance Gene Rxo1. United States Department of Agriculture, September 2013. http://dx.doi.org/10.32747/2013.7699843.bard.

Повний текст джерела
Анотація:
The specific objectives of this BARD proposal were: (1) To determine whether Rxol can recognize AacavrRxo1 to trigger BFB disease resistance in stable transgenic watermelon plants. (2) To determine the distribution of Aac-avrRxo1 in a global population of Aae and to characterize the biological function of Aac-avrRxo1. (3) To characterize other TIS effectors of Aae and to identify plant R gene(s) that can recognize conserved TIS effectors of this pathogen. Background to the topic: Bacterial fruit blotch (BFB) of cucurbits, caused by Acidovorax avenae subsp. citrulli (Aae), is a devastating disease that affects watermelon (Citrullus lanatus) and melon (Cucumis melo) production worldwide, including both Israel and USA. Two major groups of Aae strains have been classified based on their virulence on host plants, genetics and biochemical properties. Thus far, no effective resistance genes have been identified from cucurbit germplasm. In this project, we assessed the applicability of a non-host disease resistance gene, Rxol, to control BFB in watermelon. We also tried to identify Aae type III secreted (TIS) effectors that can be used as molecular probes to identify novel disease resistance genes in both cucurbits and Nieotianatabaeum. Major conclusions, solutions, achievements: We generated five independent transgenic watermelon (cv. Sugar Babay) plants expressing the Rxol gene. The transgenic plants were evaluated with Aae strains AAC001 and M6 under growth chamber conditions. All transgenic plants were found to be susceptible to both Aae strains. It is possible that watermelon is missing other signaling components that are required for Rxol-mediated disease resistance. In order to screen for novel BFB resistance genes, we inoculated two Aae strains on 60 Nieotiana species. Our disease assay revealed Nicotiana tabaeum is completely resistant to Aae, while its wild relative N. benthamiana is susceptible to Aae. We further demonstrated that Nieotiana benthamiana can be used as a surrogate host for studying the mechanisms of pathogenesis of Aae. We cloned 11 TIS effector genes including the avrRxolhomologues from the genomes of 22 Aae strains collected worldwide. Sequencing analysis revealed that functional avrRxol is conserved in group" but not group I Aae strains. Three effector genes- Aave_1548, Aave_2166 and Aave_2708- possessed the ability to trigger an HR response in N. tabacum when they were transiently expressed by Agrobaeterium. We conclude that N. tabacum carries at least three different non-host resistance genes that can specifically recognize AaeTIS effectors to trigger non-host resistance. Screening 522 cucurbits genotypes with two Aae strains led us to identify two germplasm (P1536473 and P1273650) that are partially resistant to Aae. Interestingly, transient expression of the TIS effector, Aave_1548, in the two germplasms also triggered HR-Iike cell death, which suggests the two lines may carry disease resistance genes that can recognize Aave_1548. Importantly, we also demonstrated that this effector contributes to the virulence of the bacterium in susceptible plants. Therefore, R genes that recognize effector Aave1548 have great potential for breeding for BFB resistance. To better understand the genome diversity of Aae strains, we generated a draft genome sequence of the Israeli Aae strain, M6 (Group I) using Iliumina technology. Comparative analysis of whole genomes of AAC001, and M6 allowed us to identify several effectors genes that differentiate groups I and II. Implications, both scientific and agricultural: The diversity of TIS effectors in group I and II strains of Aae suggests that a subset of effectors could contribute to the host range of group I and II Aae strains. Analysis of these key effectors in a larger Aae population may allow us to predict which cucurbit hosts may be at risk to BFB. Additionally, isolation of tobacco and cucurbit Rgenes that can recognize Aae type III effectors may offer new genetic resources for controlling BFB.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barkan, Alice, and Zach Adam. The Role of Proteases in Regulating Gene Expression and Assembly Processes in the Chloroplast. United States Department of Agriculture, January 2003. http://dx.doi.org/10.32747/2003.7695852.bard.

Повний текст джерела
Анотація:
Chloroplasts house many biochemical processes that are essential for plant viability. Foremost, among these is photosynthesis, which requires the protein-rich thylakoid membrane system. The activation of chloroplast genes encoding thylakoid membrane proteins and the targeting and assembly of these proteins together with their nuclear-encoded partners are essential for the elaboration of the thylakoid membrane. Several nuclear-encoded proteins that regulate chloroplast gene expression and that mediate the targeting of proteins to the thylakoid membrane have been identified in recent years, and many more remain to be discovered. The abundance of such proteins is critical and is likely to be determined to a significant extent by their stability, which in turn, is influenced by chloroplast protease activities. The primary goal of this project was to link specific proteases to specific substrates, and in particular, to specific regulatory and assembly proteins. We proposed a two-pronged approach, involving genetic analysis of the consequences of the mutational loss of chloroplast proteases, and biochemical analysis of the degradation pathways of specific proteins that have been shown to control chloroplast gene expression. Our initial bioinformatic analysis of chloroplast proteases allowed us to identify the set of pro teases that is targeted to the chloroplast. We used that information to recover three Arabidopsis mutants with T - DNA insertions in specific chloroplast protease genes. We carried out the first analysis of the stability of a regulator of chloroplast gene expression (CRS2), and found that the protein is much less stable than are typical components of the photosynthetic apparatus. Genetic reagents and analytical methods were developed that have set the stage for a rapid advancement of our understanding of chloroplast proteolysis. The results obtained may be useful for manipulating the expression of transgenes in the chloroplast and for engineering plants whose photosynthetic activity is optimized under harsh environmental conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії