Добірка наукової літератури з теми "Plum pox virus (PPV)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plum pox virus (PPV)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Plum pox virus (PPV)":

1

Polák, J., J. Kumar, B. Krška, and M. Ravelonandro. "Biotech/GM crops in horticulture: plum cv. HoneySweet resistant to Plum pox virus." Plant Protection Science 48, Special Issue (December 12, 2012): S43—S48. http://dx.doi.org/10.17221/37/2012-pps.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Commercialisation of Biotech/GM (Biotech) crops started in 1995. Not only field crops, but also horticultural transgenic crops are under development and are beginning to be commercialised. Genetic engineering has the potential to revolutionise fruit tree breeding. The development of transgenic fruit cultivars is in progress. Over the past 20 years an international public sector research team has collaborated in the development of HoneySweet plum which is highly resistant to Plum pox virus (PPV) the most devastating disease of plums and other stone fruits. HoneySweet was deregulated in the USA in 2010. HoneySweet (aka C5) has been evaluated for eleven years (2002–2012) in a regulated field trial in the CzechRepublic for the resistance to PPV, Prune dwarf virus (PDV), and Apple chlorotic leaf spot virus (ACLSV), all of them being serious diseases of plum. Even under the high and permanent infection pressure produced through grafting, PPV has only been detected in HoneySweet trees in several leaves and fruits situated close to the point of inoculum grafting. The lack of infection spread in HoneySweet demonstrates its high level of PPV resistance. Co-infections of PPV with PDV and/or ACLSV had practically no influence on the quantity and quality of HoneySweet fruit which are large, sweet, and of a high eating quality. In many respects, they are superior to the fruits of the well-known cultivar Stanley. Many fruit growers and fruit tree nurseries in the CzechRepublic are supportive of the deregulation of HoneySweet plum to help improve the plum production and control the spread of PPV.
2

Polák, J. "Distribution of Plum pox virus in the Czech Republic    ." Plant Protection Science 38, No. 3 (February 6, 2012): 98–101. http://dx.doi.org/10.17221/4859-pps.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plum pox virus (PPV) is widely distributed in plums and myrobalans in western, central and easternBohemia, in north-western, central and north-easternMoravia of theCzechRepublic. In southernBohemia and partly also in southernMoravia there is only a low and sporadic incidence. Naturally growing plums and myrobalans, and plums growing along roads were found to be the main sources and reservoirs of PPV infection. This high incidence in naturally growing plum and myrobalan trees makes it impossible to grow plum cultivars that are susceptible to PPV; only resistant cultivars can be grown in this country. In blackthorns the occurrence of PPV is limited to the regions with high and long-term presence of the virus. Therefore, we can conclude that blackthorn is not the primary, but a secondary source of PPV. On the other hand, sweet and sour cherries at localities of central and westernBohemia, and of southernMoravia are PPV-free. Till now the presence of strain PPV-C was not proved in theCzechRepublic. Strain PPV-M was proved only in two plum and one damson trees. It was also found in one apricot and one peach orchard planted with imported nursery material. Strain PPV-M appears to have been introduced recently and is absent from or has a very low incidence in spontaneous PPV hosts, while the widespread and long-term dissemination of strain PPV-D may indicate that it originated in the Czech Republic.
3

Mihaljfi, Teodora, Renata Iličić, Goran Barać, Zagorka Savić, and Ferenc Bagi. "Importance and symptomatology of plum pox virus." Biljni lekar 49, no. 5 (2021): 602–12. http://dx.doi.org/10.5937/biljlek2105602m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The plum pox virus was discovered in Bulgaria between 1915 and 1918, hence the name "plum pox". Despite strict quarantine measures, as early as 1980s, this virus was widespread in whole Europe, but its presence was also confirmed in South and North America, Africa and Asia. The only continent where the infection with this virus has not been described yet is Australia. The presence of strains PPV-D, PPV-M and PPV-Rec has been confirmed in Serbia. The PPV-M strain spreads very quickly naturally, and it is considered as very dangerous for stone fruit trees. Trees infected with the plum pox virus do not decay, but bear fruit of poorer quality. Poorer quality of fruits reduces their market value, which leads to significant economic damage.
4

Polák, J., and J. Pívalová. "Sporadic distribution of Plum pox virus M strain in natural sources in the Czech Republic." Horticultural Science 32, No. 3 (November 23, 2011): 85–88. http://dx.doi.org/10.17221/3770-hortsci.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The presence and distribution of M strain of Plum pox virus (PPV-M) were investigated in natural hosts of Sharka, plums, myrobalans and blackthorns in the Czech Republic. Leaves or flowers of trees were evaluated for the presence of PPV by specific polyclonal antibodies at first. PPV infected samples were investigated for the presence of PPV-M by strain specific monoclonal antibodies. 102 PPV isolates from plum, 81 from myrobalan and 25 from blackthorn were typed. PPV-M was detected in six plum trees, six myrobalan trees and in one shrub of blackthorn. Sporadic incidence of PPV-M was proved in all investigated areas of the Czech Republic. Molecular and serological typing of different PPV strains in natural hosts, plum, apricot, and peach orchards was proposed to realize in Central Europe.  
5

Polák, J. "Viruses of blackthorn and road-bordering trees of plum, myrobalan, sweet and sour cherries in the Czech Republic." Plant Protection Science 43, No. 1 (January 7, 2008): 1–4. http://dx.doi.org/10.17221/2351-pps.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The distribution of <i>Plum pox virus</i> (PPV), <i>Prune dwarf virus</i> (PDV), <i>Prunus necrotic ringspot virus</i> (PNRSV), <i>Apple chlorotic ringspot virus</i> (ACLSV) and <i>Apple mosaic virus</i> (ApMV) in naturally growing shrubs of blackthorn and road-bordering trees of plum and myrobalan, and of PPV, PDV, PNRSV and <i>Cherry leafroll virus</i> (CLRV) in sweet and sour cherry trees were investigated. The most widely distributed viruses were PPV in plums (74% of the investigated trees were infected); PPV, PDV, and PNRSV in myrobalans (26%, 11% and 18%, respectively), PDV in blackthorns (27%), and PDV and PNRSV in cherries (25% and 22%). PPV was not detected in sweet and sour cherries. The incidence of ACLSV and ApMV was negligible in individually growing trees of the genus Prunus in the Czech Republic.
6

Hauptmanová, A., and J. Polák. "The elimination of Plum pox virus in plum cv. Bluefree and apricot cv. Hanita by chemotherapy of in vitro cultures." Horticultural Science 38, No. 2 (May 3, 2011): 49–53. http://dx.doi.org/10.17221/10/2010-hortsci.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In vitro cultures of plum cv. Bluefree and apricot cv. Hanita infected with Plum pox virus (PPV) were used for the virus elimination by chemotherapy. Low ribavirin concentrations of 5 and 10 mg/l in Murashige-Skoog medium were applied in the treatment. Plum pox virus was completely eliminated by 5 mg/l of ribavirin in plum cv. Bluefree within twenty weeks and in apricot cv. Hanita in twelve weeks of the application. Plum pox virus was completely eliminated by 10 mg/l of ribavirin both in plum cv. Bluefree and apricot cv. Hanita within twelve weeks. The presence of PPV was not proved by RT-PCR. Clones of plum cv. Bluefree and apricot cv. Hanita were re-tested by RT-PCR one year after the termination of the ribavirin treatment and negative results confirmed the elimination of Plum pox virus.
7

Polák, J., M. Ravelonandro, J. Kumar-Kundu, J. Pívalová, and R. Scorza. "Interactions of Plum pox virus strain Rec with Apple chlorotic leafspot virus and Prune dwarf viruses in field-grown transgenic plum Prunus domestica L., clone C5." Plant Protection Science 44, No. 1 (April 10, 2008): 1–5. http://dx.doi.org/10.17221/535-pps.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Transgenic plums, <I>Prunus domestica</I> L. clone C5, were inoculated by bud grafting with <I>Plum pox virus</I> (PPV-Rec, recombinant strain originated from plum), PPV-Rec + <I>Apple chlorotic leafspot virus</I> (ACLSV), PPV-Rec + <I>Prune dwarf virus</I> (PDV), and PPV-Rec + ACLSV + PDV. Non-inoculated transgenic plums served as controls. Plants were grown in an open field for 5 years. They were evaluated by visible symptoms, by DAS-ELISA and RT-PCR. Mild PPV symptoms, diffuse spots or rings appeared two years after inoculation in some leaves of plants artificially inoculated with PPV-Rec, PPV-Rec + ACLSV, PPV-Rec + PDV, and PPV-Rec + ACLSV + PDV. Severe PPV symptoms appeared in leaves of shoots growing from infected buds used for inoculation. During the following three years, further weakening of PPV symptoms was observed in transgenic plants. In 2007, very mild PPV symptoms were found in only a few leaves, and over 60%, resp. 70% of the C5 trees showed no PPV symptoms. The presence of PPV was confirmed by ELISA, ISEM and RT-PCR. No difference in PPV symptoms was observed between PPV-Rec and combinations PPV-Rec + ACLSV, PPV-Rec + PDV, PPV-Rec + ACLSV + PDV. No symptoms of ACLSV appeared in combinations of ACLSV with PPV-Rec and PPV-Rec + PDV during 2004–2007, but the presence of ACLSV in leaves of transgenic plants clone C5 was proved by ELISA and RT-PCR. Neither synergistic nor antagonistic effects of ACLSV on PPV-Rec were observed. No symptoms of PDV appeared in combinations of viruses with PDV during 2004–2007. PDV was not detected by ELISA, and the presence of PDV was uncertain by RT-PCR in most of inoculated trees in 2006 and 2007. The results of RT-PCR will be further confirmed by sequence analysis and discussed. These results suggest a possible antagonistic interaction between PPV-Rec and PDV in plum clone C5.
8

Jevremovic, Darko, and Svetlana Paunovic. "Plum pox virus strains: Diversity and geographical distribution in Serbia." Pesticidi i fitomedicina 29, no. 2 (2014): 97–107. http://dx.doi.org/10.2298/pif1402097j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plum pox virus (PPV) is the causal agent of Sharka disease. Since its discovery, Sharka has been considered as a calamity in plum orchards. PPV is present worldwide in many Prunus species, causing great economic losses. In highly susceptible plum varieties, such as Pozegaca, PPV causes a premature fruit drop and reduces fruit quality, which leads to total yield loss. Eight PPV strains (PPV-M, PPV-D, PPV-EA, PPV-C, PPV-Rec, PPV-W, PPV-T and PPVCR) have been recognized so far. Three major strains (PPV-M, PPV-D and PPV-Rec) are the most widely dispersed and occur frequently in many European countries. Other strains are of minor importance due to their limited host preferences or geographic distribution. So far, all three major strains have been identified in Serbia. In this paper, we provide a comprehensive overview of the research into Plum pox virus variability in Serbia.
9

Ravelonandro, Michel, Pascal Briard, Ralph Scorza, Ann Callahan, Ioan Zagrai, Jiban K. Kundu, and Chris Dardick. "Robust Response to Plum pox virus Infection via Plant Biotechnology." Genes 12, no. 6 (May 27, 2021): 816. http://dx.doi.org/10.3390/genes12060816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Our goal was to target silencing of the Plum pox virus coat protein (PPV CP) gene independently expressed in plants. Clone C-2 is a transgenic plum expressing CP. We introduced and verified, in planta, the effects of the inverse repeat of CP sequence split by a hairpin (IRSH) that was characterized in the HoneySweet plum. The IRSH construct was driven by two CaMV35S promoter sequences flanking the CP sequence and had been introduced into C1738 plum. To determine if this structure was enough to induce silencing, cross-hybridization was made with the C1738 clone and the CP expressing but PPV-susceptible C2 clone. In total, 4 out of 63 clones were silenced. While introduction of the IRSH is reduced due to the heterozygous character in C1738 plum, the silencing induced by the IRSH PPV CP is robust. Extensive studies, in greenhouse containment, demonstrated that the genetic resource of C1738 clone can silence the CP production. In addition, these were verified through the virus transgene pyramiding in the BO70146 BlueByrd cv. plum that successfully produced resistant BlueByrd BO70146 × C1738 (HybC1738) hybrid plums.
10

Krška, B., J. Salava, J. Polák, and P. Komínek. "Genetics of resistance to Plum pox virus in apricot." Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (January 1, 2002): 180–82. http://dx.doi.org/10.17221/10350-pps.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plum pox virus (PPV) causes serious damage in apricots grown in the Czech Republic and other countries where it is<br />present. The virus spreads in orchards from infected trees by aphids to healthy trees of susceptible cultivars. Chemical<br />control is ineffective from epidemiological point of view. For this reason growing of resistant apricot cultivars is the only<br />way how to solve one of the most significant phytopathological problem. To study PPV resistance in apricot, three crosses<br />between an apricot cultivars or a selection resistant to PPV and an apricot cultivars or a selection susceptible to PPV<br />(LE-3218 × Stark Early Orange, LE-3241 × Vestar and LE-3246 × Vestar) were performed at Faculty of Horticulture<br />of Mendel University of Agriculture and Forestry in Lednice na Moravě in 1999. The BC1 seeds were stratified and the<br />subsequent seedlings were grown in a greenhouse. The seedlings were repeatedly inoculated with PPV-Vegama isolate<br />(PPV-M strain) by an infected chip. The resistance of the plants was evaluated by symptom observing and ELISA in<br />three consecutive growth periods. The χ<sup>2</sup> test was used to analyse the data. It was found that two independent dominant<br />complementary genes conditioned PPV resistance in apricot. The significance of these findings in relation to other reports<br />is discussed. Knowledge of PPV resistance inheritance will help in planning apricot breeding programmes.

Дисертації з теми "Plum pox virus (PPV)":

1

FERRI, BODIN MANUELLE. "Etudes in vitro et in vivo des interactions prunus - plum pox virus (ppv)." Montpellier, ENSA, 2000. http://www.theses.fr/2000ENSA0025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le plum pox virus (ppv) est un organisme de quarantaine responsable de la sharka, maladie majeure des arbres fruitiers du genre prunus. Peu de sources de resistance sont disponibles actuellement. L'evaluation des ressources genetiques vis-a-vis du ppv doit prendre en compte la perennite de ces especes et etre realisee en conditions confinees. Une demarche experimentale a ete developpee in vitro pour l'etude des interactions prunus - ppv. La variabilite des prunus et de l'agent pathogene a ete prise en compte a travers 6 genotypes et 9 isolats viraux. Une methodologie d'etablissement, de maintien et de multiplication d'une collection de souches virales in vitro a ete developpee sur le genotype sensible, le clone gf 8-1 de prunier mariana. Differents facteurs intervenant dans l'inoculation par greffage in vitro ont ete etudies. Le suivi de la propagation systemique du virus a ete mene in vitro et in vivo, a l'aide de la demarche amap de modelisation de l'architecture des arbres. L'optimisation de la methode d'inoculation in vitro a ete realisee sur le prunier mariana gf 8-1 et le clone resistant p1908 de prunus davidiana. Un gradient de contamination decroissant vers l'apex a ete mis en evidence in vitro et in vivo chez le genotype sensible. Aucun genotype immum n'a ete detecte, mais des resistances partielles probablement liees au mouvement systemique ont ete mises en evidence in vitro comme in vivo. L'inoculation par greffage in vitro de prunus constitue maintenant un outil fiable permettant d'apprehender les relations plante - virus, d'evaluer le comportement de genotypes issus de l'amelioration conventionnelle ou obtenus par transgenese et d'etudier le determinisme genetique de la resistance.
2

Müller, Imke. "Zum Resistenzverhalten von Prunus domestica L. und P. armeniaca L. gegenüber dem Plum Pox virus (PPV, Potyvirus)." Berlin Köster, 2005. http://deposit.ddb.de/cgi-bin/dokserv?id=2759143&prov=M&dok_var=1&dok_ext=htm.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Poque, Sylvain. "Identification de nouveaux mécanismes de résistance au Plum Pox Virus chez Arabidopsis thaliana." Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21998/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La maladie de la Sharka est due à un virus de quarantaine, le Plum Pox Virus (PPV), infectant les arbres fruitiers du genre Prunus. Il est nécessaire de trouver des moyens de lutte, telle que la sélection de plantes résistantes. Or chez ces espèces, les sources de résistance sont à l’heure actuelle en nombre limité, voire inexistantes. Il a été montré, au laboratoire, que ce virus est capable d’infecter Arabidopsis thaliana et qu’il existe chez cette espèce une grande diversité de réponse à l’infection. En effet nous avons pu observer que les accessions St-0 et JEA avais un comportement résistant, alors que l'accession Cvi-1 été partiellement résistante. Deux méthodes d’inoculation ont été comparées: une inoculation mécanique à partir de feuilles de Nicotiana benthamiana inoculées avec pICPPVnkGFP et une inoculation par agro-infection à partir d’une souche Agrobacterium tumesfasciens contenant l’isolat viral pBINPPVnkGFP. L'emploi de ces deux méthodes d'inoculation nous a permis de mettre en évidence une variabilité de la réponse au PPV en fonction de la méthode utilisée. En conséquence, cette étude visait donc à identifier le ou les facteur(s) de la plante hôte impliqué(s) dans l'infection virale. L'agro-infection de populations recombinantes (F2 et RIL), de lignées multi-parentales ainsi que l'emploi de la génétique d'association a mis en évidence chez St-0 ainsi que dans plusieurs accession distinct (sept) un locus majeur sur le groupe de liaison 3, appelé sha3. Il apparait indispensable dans le mouvement longue distance du PPV. De plus l'utilisation de la génétique d'association a permis d'initier la cartographie fine de sha3 et de réduire considérablement le nombre de gènes candidats. Un criblage de mutants a été initié afin de déterminer le ou les gènes candidats contrôlant le phénotype Sha3. Après inoculation mécanique, l’analyse d'une population recombinante a mis en évidence la présence d’un locus majeur, distinct de sha3 et positionné au milieu du bras long du groupe de liaison 1. Ce locus co-localise avec rpv1, locus identifié précédemment dans la descendance Cvi x Ler (Sicard, Loudet et al. 2008). Ce même locus a été également confirmé à la fois dans une population multi-parentale et par une approche de génétique d'association. Un gène candidat est actuellement en cours de validation au laboratoire. Une étude visant à décomposer le mécanisme de résistance porté par l’accession JEA a été mise en place. Dans ce cas, il apparait que la propagation du virus est inhibée dans les feuilles de la rosette mais pas dans les tissus floraux. Ainsi, la résistance/sensibilité au PPV chez JEA est fortement conditionnée par les stades physiologiques de la plante hôte. Des travaux complémentaires seront indispensables afin de décrire plus finement ce mécanisme de résistance très particulier. Au terme de cette thèse, nous nous attendons à ce que l’identification de ces nouveaux gènes de résistance chez Arabidopsis permette, après transfert, d’accroître la diversité des sources de résistance à la Sharka chez les arbres fruitiers
The Plum Pox Virus (PPV) infects Prunus species (stone fruit) and is the causal agent of the Sharka disease. This disease is vastly devastating for fruit and plant productivity and quality. Its cost reaches 10 billions of euros over the last 30 years. Breeding programs have been carried out with the aim to implement resistant cultivars but the number of sources of resistance in Prunus species is rather limited. It has been shown in the laboratory that this virus is able to infect Arabidopsis thaliana with a wide range of response to infection. Indeed, we observed that accessions St-0 and JEA had a resistant behavior, while accession Cvi-1 was partially resistant. Two inoculation methods were compared: mechanical inoculation from Nicotiana benthamiana leaves inoculated with pICPPVnkGFP and agro-inoculation infection from an Agrobacterium strain containing the viral isolate tumesfasciens pBINPPVnkGFP. The use of these two methods of inoculation allows us to highlight variability in the response to PPV depending on the method used. This study aims to identify the factor (s) of the host (s) involved in viral infection. Agro-infection of recombinant populations (F2 and RIL), multi-parental lines and the use of genetic association demonstrate in St-0 and several distinct accessions (seven) a major locus on linkage group 3, called sha3. It appears essential in the long-distance movement of PPV. Use of association genetics helped initiate the fine mapping of sha3 and significantly reduce the number of candidate genes. Screening of mutants was initiated to determine the gene controlling the phenotype Sha3. After mechanical inoculation, the analysis of a recombinant population revealed the presence of a major locus positioned in the middle of the long arm of linkage group 1. This locus co-localizes with rpv1, previously identified in Cvi x Ler offspring (Sicard, Loudet et al. 2008). The same locus was also confirmed with a multi-parental population and by a genetic association approach. A candidate gene is currently being validated in the laboratory. The study of the resistance mechanism carried by the accession JEA was initiated. In this case, it appears that the spread of the virus is inhibited in basal leaves but not in floral stem. The resistance / susceptibility to PPV in JEA appear to be strongly influenced by the physiological stages of the host plant. Further work will be necessary to describe more precisely this resistance mechanism very special. At the end of this thesis, we expect that the identification of these new resistance genes in Arabidopsis allows, after transfer, to increase the diversity of sources of resistance to plum pox virus in fruit trees
4

Müller, Imke. "Zum Resistenzverhalten von Prunus domestica L. und P. armeniaca L. gegenüber dem Plum pox virus (PPV, Potyvirus) /." Berlin : Köster, 2006. http://deposit.ddb.de/cgi-bin/dokserv?id=2759143&prov=M&dok_var=1&dok_ext=htm.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Varrelmann, Mark. "Begrenzung von heterologer Enkapsidierung und Rekombination bei pathogen-vermittelter Resistenz gegen das Plum pox virus der Pflaume (PPV)." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958530033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Espinoza, Christian. "Approche métabolomique non-ciblée pour révéler les réponses métaboliques des prunus à l'infection par le PPV, conduisant au développement d'un outil de détection innovant pour la détection précoce de la maladie de la sharka et la sauvegarde des vergers en Occitanie." Thesis, Perpignan, 2022. http://www.theses.fr/2022PERP0018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La maladie de la sharka, causée par le Plum pox virus (PPV), est responsable d’importantes pertes économiques chez les Prunus. Toutefois, aucun traitement préventif ou curatif n’est à ce jour disponible et peu de sources de résistance naturelle ont été retrouvées. En France, une approche prophylactique, qui repose essentiellement sur la détection et l’élimination rapide des arbres infectés, a été adoptée afin de réduire la propagation du virus. Néanmoins, certaines contraintes technico-économiques ne permettent pas la détection précoce et efficace du PPV à grande échelle par des méthodes conventionnelles. Le département des Pyrénées Orientales (France) est le plus touché par cette maladie (85% des contaminations). Ces enjeux ont motivé la création du projet Antishark, issu d'une collaboration entre AkiNaO, l'Université de Perpignan Via Domitia, la FDGDON66 et les producteurs locaux. L'objectif du projet consiste à développer une méthode innovante de détection précoce, en ciblant les réponses métaboliques de Prunus persica à un stade précoce de l'infection. Par conséquence, deux études en conditions contrôlées utilisant une approche métabolomique non-ciblée (UHPLC-HRMS) ont été réalisées. Cette approche constitue un outil prometteur pour mettre en évidence les interactions métaboliques entre le PPV et son hôte. Dans une première étude, la réponse métabolique globale à l'infection par le PPV (souches Dideron et Marcus), intégrant les feuilles symptomatiques et asymptomatiques, a permis de discriminer les profils métaboliques provenant de feuilles infectées par le PPV et de feuilles saines. Bien qu’il existe une réponse commune aux deux souches, des différences métaboliques ont également été révélées, mettant en évidence des altérations métaboliques souche-dépendante. De fait, cette observation pourrait amener à terme, la possibilité d’identifier la ou les souches virales responsables d’une infection. De plus, il est possible de discriminer les plants infectés par le PPV (feuilles symptomatiques et asymptomatiques) des plants sains et des plants infectés par un autre virus phytopathogène. Ces observations suggèrent l’existence d’une réponse spécifique potentielle à la maladie de la sharka. L’ensemble de nos résultats corroborent l'hypothèse selon laquelle les arbres asymptomatiques mais infectés par le PPV, pourraient être détectés via les altérations métaboliques provoquées le virus. Par ailleurs, les réponses métaboliques observées sur les feuilles asymptomatiques pourraient être considérées comme des réponses précoces, déclenchées avant l’apparition des symptômes. Dans un deuxième temps, des altérations métaboliques précoces, avant l’apparition des symptômes sharka, ont été confirmées par une étude cinétique et ce, malgré des tests moléculaires négatives (RT-qPCR). Nos résultats indiquent que la détection précoce des plantes infectées par le PPV, en ciblant les réponses métaboliques de Prunus persica, est de facto une stratégie prometteuse. Finalement, des corrélations statistiques entre les deux études ont été retrouvées. Bien que les cultivars présentent des profils métaboliques significativement différents, certaines variables discriminantes sont communes entre les différents cultivars testés (GF-305, nectarine jaune, pêche jaune) et également entre les différents stades d’infection du virus (symptomatique et asymptomatique). Cependant, une co-infection PPV et oïdium observée le long de l’étude cinétique en conditions contrôlées, serait susceptible d’altérer l'impact de l'infection par le PPV. Par conséquent, une nouvelle étude cinétique sans co-infection est en cours pour confirmer ou infirmer ces observations. De plus, l'identification de biomarqueurs liés à la maladie, également en cours, permettrait de mieux comprendre les interactions métaboliques entre la pêche et le PPV. Enfin, d'autres expérimentations en conditions naturelles sont en cours afin d'évaluer la robustesse de nos potentiels biomarqueurs
Sharka disease, caused by Plum pox virus (PPV), is responsible for significant economic losses in Prunus. However, no preventive or curative treatments are currently available and only a few sources of natural resistance have been found. In France, a prophylactic approach has been adopted in an attempt to limit the spread of the PPV, which is essentially based on the rapid detection and removal of infected trees. However, certain technical and economic limitations do not allow the early andeffective detection of PPV on a large scale by conventional methods. The department of Pyrénées Orientales (France) is the most affected by this disease (85% of infections). These issues motivated the creation of the Antishark project, which is the result of a collaboration between AkiNaO, the University of Perpignan Via Domitia, FDGDON66 and local producers. The objective of the project was to develop an innovative method of early detection, targeting the metabolic responses of Prunuspersica at an early stage of the infection. Consequently, two studies under monitored conditions using an untargeted metabolomics approach (UHPLC-HRMS) were carried out. This approach is a promising tool to reveal the metabolic interactions between PPV and its host. In a first study, the global metabolic response to PPV-infection (Dideron and Marcus strains), including symptomatic and asymptomatic leaves, allowed the discrimination of metabolic profiles from PPV-infected and healthy leaves. Although there was a common response between the two strains, metabolic differences were also revealed, notably highlighting strain-specific metabolic alterations. In fact, this novel result could eventually lead to the possibility of identifying the viral strain(s) responsible for the infection. Furthermore, it was possible to discriminate PPV-infected plants (symptomatic and asymptomatic leaves) from healthy plants and from plants infected by another plant pathogenic virus. These observations suggest the existence of a potential specific response to the sharka disease. Based on all these findings, the hypothesis that asymptomatic PPVinfected trees could be detected through virus-induced metabolic alterations is supported.Furthermore, the metabolic responses collected from asymptomatic leaves could be considered as early responses to PPV-infection, i.e., before the appearance of symptoms. In a second step, early metabolic alterations, before the appearance of sharka symptoms, were confirmed by a kinetic study, despite negative molecular tests (RT-qPCR). Our results indicate that early detection of PPVinfected plants by targeting metabolic responses in Prunus persica was a promising strategy. Finally,statistical correlations between the two studies were found. Although the cultivars showed significantly different metabolic profiles, some discriminant features were common between the different cultivars tested (GF-305, yellow nectarine, yellow peach) and also between the different stages of the virus infection (symptomatic and asymptomatic). Nevertheless, a co-infection of PPV and powdery mildew observed during the kinetic experiment under monitored conditions could alter the impact of PPV-infection. Consequently, a new kinetic study without co-infection, is ongoing to confirm or refute these first observations. In addition, the identification of biomarkers related to the sharka disease, also in progress, would provide a betterunderstanding of the metabolic interactions between peach and PPV. Finally, other experiments under natural conditions are underway to evaluate the robustness of our potential biomarkers
7

Hust, Michael. "Rekombinante Antikörper gegen die NIa-Protease des Plum pox virus." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966096886.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Юсько, Л. С. "Епідеміологія вірусу шарки сливи (plum pox virus) в Закарпатському регіоні". Дис. канд. біол. наук, КНУТШ, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Marandel, Grégoire. "Organisation génomique de la résistance quantitative au Plum pox virus chez les Prunus." Bordeaux 2, 2008. http://www.theses.fr/2008BOR21562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le plum pox virus (PPV), agent infectieux de la maladie de la sharka, affecte gravement les arbres fruitiers à noyaux du genre Prunus, rendant notamment les fruits impropres à la commercialisation. A ce jour, aucun cultivar de pêchers n'est résistant, mais des sources de résistance ont été identifiées et cartographiées chez P. Davidiana, espèce apparentée, et chez quelques cultivars d'abricotiers. Plusieurs des QTL cartographiés co-localisent avec des gènes candidats préalablement identifiés, parmi lesquels des facteurs d'initiation de la traduction. La résistance de P. Davidiana a été confirmée dans une population F2 et deux nouveaux QTL mineurs ont été détectés. L'étude des déterminants génétiques de la résistance portée par P. Armeniaca cv. 'Harlayne' a également été réalisée. La stratégie "gène candidat" a été poursuivie avec les facteurs d'initiation de la traduction elF4G et leurs isoformes. Nous l'avons associée au développement ciblé de marqueurs moléculaires pour la sélection assistée par marqueurs. Elle a révélé une fréquence inhabituelle de co-localisation de ces gènes avec les QTL de résistance identifiés chez P. Davidiana et P. Armeniaca cv. 'Harlayne'. Leur implication dans le contrôle de la résistance est discutée. Afin de valider ces résultats avec ceux préalablement publiés, l'ensemble des données a été intégré dans une méta-analyse QTL. Celle-ci a permis de préciser notamment les limites de la région du groupe de liaison 1 impliquée dans la résistance au PPV à la fois chez P. Davidiana et chez P. Armeniaca
The Plum pox virus (PPV), the causal agent of the sharka disease, is the most detrimental virus on stone-fruit trees, worldwide. Infected fruits are not marketable. To date, no peach cultivar is resistant. However sources of resistance have been identified and mapped in apricot and Prunus davidiana, a wild peach-related species. Several of the mapped QTL co-localize with candidate genes previously identified. Among them are the translation initiation factors. In this study, resistance in P. Davidiana was confirmed in an F2 population and two new QTL were identified. Quantitative analysis of the apricot cultivar 'Harlayne' resistance was also performed. A candidate gene strategy followed, including translation initiation factors elF4E, elF4G and their isoforms. Molecular markers targeting these genes were developped as a tool for marker-assisted selection. It revealed a striking co-localization with several resistance QTL identified in P. Davidiana and P. Armeniaca cv. 'Harlayne'. The implication od these genes in PPV resistance is discussed. In order to validate the consistency of these results with those previously published, data were merged in a QTL meta-analysis. It enabled to refine the boundaries of the genomic region controlling PPV resistance in both species, P. Davidiana and P. Armeniaca
10

Neumüller, Michael. "Die Hypersensibilität der Europäischen Pflaume (Prunus domestica L.) gegenüber dem Scharkavirus (Plum pox virus)." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB12103718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Plum pox virus (PPV)":

1

Chang, L. W. H. Pests not known to occur in the United States or of limited distribution. 88. Plum pox virus. 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Plum pox virus (PPV)":

1

Maiss, Edgar, Mark Varrelmann, Chris DiFonzo, and Benjamin Raccah. "Risk Assessment of Transgenic Plants Expressing the Coat Protein Gene of Plum Pox Potyvirus (PPV)." In Virus-Resistant Transgenic Plants: Potential Ecological Impact, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03506-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kölber, M., M. Németh, L. Krizbai, E. Kiss-Tóth, and M. Kálmán. "Detection of Plum Pox Virus by Different Methods." In Developments in Plant Pathology, 317–19. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0043-1_67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Scorza, Ralph, Ann Callahan, Michel Ravelonandro, and Michael Braverman. "Development and Regulation of the Plum Pox Virus Resistant Transgenic Plum ‘HoneySweet’." In Regulation of Agricultural Biotechnology: The United States and Canada, 269–80. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2156-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tian, Lining, Shuocheng Zhang, H. J. I. P. ne SanfaHon, Antonet Svircev, Daniel C. Brown, and Rui Wen. "PPV-Specific Hairpin RNAs is an Effective Method for Plum Pox Potyvirus Resistance." In Biotechnology and Sustainable Agriculture 2006 and Beyond, 103–6. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6635-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Miletić, Nemanja, Darko Jevremović, Olga Mitrović, Olivera Gvozdenović, Marko Pajić, and Svetlana Paunović. "Influence of Different Plum Pox Virus Strains on Chemical Composition of ‘Čačanska Lepotica’ Plum Fruit Cultivar." In 30th Scientific-Experts Conference of Agriculture and Food Industry, 76–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40049-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

da Câmara Machado, Artur, Hermann Katinger, and Margit Laimer da Câmara Machado. "Coat protein-mediated protection against plum pox virus in herbaceous model plants and transformation of apricot and plum." In Developments in Plant Breeding, 349–54. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0467-8_70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rubio, Manuel, Federico Dicenta, and Pedro Martínez-Gómez. "Genomic Designing of New Almond-Peach Rootstock-Variety Combinations Resistant to Plum Pox Virus (Sharka)." In Genomic Designing for Biotic Stress Resistant Fruit Crops, 275–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91802-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Polák, J. "The Role of Prunus Spinosa L. in Epidemiology of Plum Pox Virus in the Czech Republic." In Developments in Plant Pathology, 527–30. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0043-1_117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nicolás-Almansa, María, D. Ruiz, A. Guevara, J. Cos, Pedro Martínez-Gómez, and Manuel Rubio. "Genomic Designing of New Plum Pox Virus Resistant Plumcot [Prunus Salicina Lindl. x Prunus Armeniaca L.] Varieties Through Interspecific Hybridization." In Genomic Designing for Biotic Stress Resistant Fruit Crops, 287–304. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91802-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Butac, Madalina. "Plum Breeding." In Prunus. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Worldwide, plum is one of the main species, occupying an area of about 2,600,000 ha and ensuring production about 11,700,000 tons. Even though there are over 6000 plum cultivars belonging to 19–40 species, there is still the need to create new cultivars due to the demands of growers and consumers. In addition, the large plum-growing countries (Romania, Serbia, Germany, Bulgaria, etc.) have decreased production due to plum pox virus (PPV) attack. Therefore, these countries developed breeding programs with the following objectives: resistance/tolerance to PPV, productivity, fruit quality, late blooming, self-fertility, different ripening times, short growing period, spur fructification, etc. Using different breeding methods (controlled hybridization, open pollination, selection in wild population on Prunus sp., and mutagenesis), in the last years, over 450 plum cultivars were released, from which 70% represent European cultivars and 30% Japanese cultivars.

Тези доповідей конференцій з теми "Plum pox virus (PPV)":

1

Shehu, Dhurata, Harallamb Paçe, Dritan Sadikaj, and Ragip Elezaj. "DIAGNOSIS AND CONTROL OF PLUM POX VIRUS (PPV) ON PLUM AT THE DISTRICT OF TROPOJË, ALBANIA." In The 4th International Virtual Conference on Advanced Scientific Results. Publishing Society, 2016. http://dx.doi.org/10.18638/scieconf.2016.4.1.356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Trandafirescu, Marioara. "SELECTING APRICOT TREE GENITORS FOR THE OBTAINING OF NEW CULTIVARS RESISTANT TO THE PLUM POX VIRUS (PPV)." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2015. http://dx.doi.org/10.5593/sgem2015/b61/s25.073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Angelova, Liliya, Antoniy Stoev, Ekaterina Borisova, and Latchezar Avramov. "Detection of plum pox virus infection in selection plum trees using spectral imaging." In International Conference and School on Quantum Electronics "Laser Physics and Applications" - ICSQE 2016, edited by Tanja Dreischuh, Sanka Gateva, Albena Daskalova, and Alexandros Serafetinides. SPIE, 2017. http://dx.doi.org/10.1117/12.2261807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Drought resistance in some Prunus persica (L.) Batsch cultivars damaged with Plum Pox Virus." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії
Current page language: Ukrainian.
You might want to see the page in this language: English.
Change language