Добірка наукової літератури з теми "Proanthocyanidols"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Proanthocyanidols".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Proanthocyanidols"
Girard, Marion, Annika Lehtimäki, Giuseppe Bee, Frigga Dohme-Meier, Maarit Karonen, and Juha-Pekka Salminen. "Changes in Feed Proanthocyanidin Profiles during Silage Production and Digestion by Lamb." Molecules 25, no. 24 (December 12, 2020): 5887. http://dx.doi.org/10.3390/molecules25245887.
Повний текст джерелаLiu, Zhi Qiang, Qing Li Yang, Chu Shu Zhang, Yan Zhang, Shi Qing Wang, and Jie Sun. "Study on Antioxidant Activity of Proanthocyanidins from Peanut Skin." Advanced Materials Research 197-198 (February 2011): 1582–86. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.1582.
Повний текст джерелаZhao, Wen, Yuc Cai Meng, Zhi Ping Yin, Wei Hua Liu, and Cui Jiao Niu. "Study on the Isolation and Purification of Proanthocyanidins from Rhodiola Rose by Macroporous Adsorbent Resin." Advanced Materials Research 236-238 (May 2011): 2053–57. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.2053.
Повний текст джерелаChen, X., J. Xiong, Q. He, and F. Wang. "Characterization and Potential Antidiabetic Activity of Proanthocyanidins from the Barks of Acacia mangium and Larix gmelinii." Journal of Chemistry 2019 (March 3, 2019): 1–9. http://dx.doi.org/10.1155/2019/4793047.
Повний текст джерелаLevdansky, Vladimir Aleksandrovich, Irina Vladimirovna Korol'kova, Aleksandr Vladimirovich Levdanskiy, and Boris Nikolayevich Kuznetsov. "ISOLATION AND STUDY OF PROANTHOCYANIDINS FROM BARK OF PINE PÍNUS SYLVÉSTRIS L." chemistry of plant raw material, no. 4 (December 21, 2020): 227–33. http://dx.doi.org/10.14258/jcprm.2020047749.
Повний текст джерелаNi, Liwen, Fanbin Zhao, Bolun Li, Tong Wei, Hang Guan, and Shixue Ren. "Antioxidant and Fluorescence Properties of Hydrogenolyzised Polymeric Proanthocyanidins Prepared Using SO42−/ZrO2 Solid Superacids Catalyst." Molecules 23, no. 10 (September 25, 2018): 2445. http://dx.doi.org/10.3390/molecules23102445.
Повний текст джерелаYu, Dan, Ting Huang, Bin Tian, and Jicheng Zhan. "Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants." Foods 9, no. 12 (November 30, 2020): 1774. http://dx.doi.org/10.3390/foods9121774.
Повний текст джерелаAttia, Sabry M., Saleh A. Bakheet, and Nouf M. Al-Rasheed. "Proanthocyanidins Produce Significant Attenuation of Doxorubicin-Induced Mutagenicity via Suppression of Oxidative Stress." Oxidative Medicine and Cellular Longevity 3, no. 6 (2010): 404–13. http://dx.doi.org/10.4161/oxim.3.6.14418.
Повний текст джерелаLi, Xin, Jingling Liu, Qinxiang Chang, Ziyun Zhou, Ruilian Han, and Zongsuo Liang. "Antioxidant and Antidiabetic Activity of Proanthocyanidins from Fagopyrum dibotrys." Molecules 26, no. 9 (April 21, 2021): 2417. http://dx.doi.org/10.3390/molecules26092417.
Повний текст джерелаTang, Chenyu, Bing Tan, and Xiangjun Sun. "Elucidation of Interaction between Whey Proteins and Proanthocyanidins and Its Protective Effects on Proanthocyanidins during In-Vitro Digestion and Storage." Molecules 26, no. 18 (September 8, 2021): 5468. http://dx.doi.org/10.3390/molecules26185468.
Повний текст джерелаДисертації з теми "Proanthocyanidols"
Keunebroek, Jean-Philippe. "Les proanthocyanidols du pin maritime et du cyprès." Paris 5, 1991. http://www.theses.fr/1991PA05P006.
Повний текст джерелаDumont, Delphine. "Les proanthocyanidols de la vigne : intérêt pharmacologique et applications thérapeutiques." Paris 5, 1992. http://www.theses.fr/1992PA05P031.
Повний текст джерелаAltıok, Evren Ülkü Semra. "Production of proanthocyanidins from grape seed/." [s.l.]: [s.n.], 2003. http://library.iyte.edu.tr/tezler/master/biyoteknoloji/T000247.rar.
Повний текст джерелаRibas, Latre Aleix. "Modulation of central and peripheral molecular clocks by proanthocyanidins." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/284444.
Повний текст джерелаCircadian rhythms allow organisms to anticipate environmental changes and to adapt the metabolism to feeding regime and food availability. In fact, alterations of circadian rhythm induce metabolic disturbances, such as metabolic syndrome. Circadian rhythms are maintained by a central clock in the hypothalamus, but circadian clocks are also present in peripheral tissues. At molecular level, the clock system is composed by feedback loops of core-clock and clock-controlled genes. The most important synchronizer of the clock system is light, but other external cues, such as fasting-feeding time or food components, also act as synchronizers. Proanthocyanidins, a flavonoid sub-class, are reported to have a vast range of beneficial effects improving all the components of the metabolic syndrome. Therefore, the main objective of this thesis was to evaluate the capacity of proanthocyanidins to modulate the central and peripheral molecular clocks under standard or disrupted conditions. Results show that proanthocyanidins modulate the 24-h rhythm expression of clock-core and clock-controlled gens in the central and peripheral clocks. However, the time of proanthocyanidin administration, in the light or dark phase, determine the precise effect on the molecular clock. The modulation of the clock system is associated with variations of the circadian fluctuation of some important metabolites in plasma or NAD levels in liver. Overall these results suggest that proanthocyanidins could mediate their beneficial metabolic effects through their interaction with the clock machinery.
Los ritmos circadianos permiten a los organismos anticiparse a los cambios medioambientales y adaptar el metabolismo al patrón de alimentación y la disponibilidad de alimentos. De hecho, alteraciones del ritmo circadiano provocan trastornos del metabolismo como el síndrome metabólico. Los ritmos circadianos se mantienen por la acción del reloj central ubicado en el hipotálamo, aunque la mayoría de tejidos periféricos también disponen de reloj molecular. Desde un punto de vista molecular, el sistema circadiano está compuesto por genes “reloj” que interaccionan entre sí, formando un bucle de regulación. La señal externa más importante que sincroniza el sistema circadiano con el exterior es la luz, pero los ciclos de alimentación y ayunas, así como algunos componentes de los alimentos también actúan como señales externas sincronizadoras del reloj molecular. Las proantocianidinas, que son una subclase de los flavanoides, ejercen una amplia gama de efectos beneficiosos sobre la salud, mejorando todas las patologías del síndrome metabólico. Por lo tanto, el objetivo de la presente tesis fue evaluar la capacidad de las proantocianidinas para modular el reloj molecular a nivel central y periférico, bajo situaciones estándar o alteradas. Los resultados muestran que las proantocianidinas modulan el ritmo de expresión de los genes reloj a lo largo de las 24 horas, tanto a nivel central como periférico, aunque sus efectos dependen de si el tratamiento con proantocianidinas se ha realizado durante la fase de luz o la fase de oscuridad. Además, los efectos sobre el sistema circadiano están asociados a modificaciones en la fluctuación circadiana de algunos metabolitos importantes en plasma, o de los niveles de NAD en el hígado. En conjunto, estos resultados sugieren que las proantocianidinas podrían mediar sus efectos beneficiosos sobre el metabolismo a través de su interacción con el reloj molecular.
Eydelnant, Irwin Adam. "Inhibition of bacterial adhesion to biomaterials by cranberry derived proanthocyanidins." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112567.
Повний текст джерелаThis thesis demonstrates the effectivity of North American cranberry (Vaccinium macrocarpon) derived proanthocyanidins in preventing the adhesion of pathogenic bacteria to biomaterial surfaces. Specifically, using a model of catheter associated urinary tract infection, significant reductions in initial adhesion of uropathogenic Escherichia coli and Enterococcus faecalis to PVC and PTFE were observed. With the application of colloidal theory, a mechanism of steric interference was determined as responsible for these effects.
The evidence presented implicates PAC as a molecule of interest for the development of novel biomaterials with increased resistance to bacteria colonization.
Zeng, Hainian. "FOLIAR ANTHOCYANINS AND PROANTHOCYANIDINS IN SIX ORNAMENTAL VARIETIES OF ACER PALMATUM." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-11062009-103243/.
Повний текст джерелаWeckman, Nicole. "Quartz crystal microbalance studies of biomolecule binding to cranberry derived proanthocyanidins." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121484.
Повний текст джерелаTandis que la consommation de canneberge a été liée à la prévention d'infections bactériennes dans les voies urinaires pendant de nombreuses années, notre compréhension de la biodisponibilité et les mécanismes par lequel canneberge empêche les infections bactériennes est limitée. Malgré l'utilisation fréquente dans les essais cliniques, la biodisponibilité de matières dérivées de canneberges dans les voies urinaires peut être limitée en raison de leur interaction avec les protéines de sérum humain tels que l'albumine, α-1 glycoprotéine acide (AAG) et du fibrinogène. Dès qu'elles arrivent à la voie urinaire, les matières dérivées de canneberges peuvent interférer avec la pathogenèse bactérienne via l'interaction avec les lipopolysaccharides (LPS) sur la surface bactérienne et les biosurfactants sécrétées, rhamnolipide. Microbalance à quartz avec la surveillance de la dissipation (QCM-D) est un instrument capable de détecter de mass avec une haute sensibilité qui est utilisé dans cette étude d'enquêter directement sur les interactions entre les matières dérivées de canneberges et protéines de sérum humain ou des composants bactériens (LPS et rhamnolipide). Les liaisons entre les proanthocyanidines de canneberge (CPAC) et les trois protéines sériques, les rhamnolipides, et le LPS de Escherichia coli O111:B4 uropathogènique peut être décrite par les isothermes de type Langmuir permettant la détermination de la constante d'affinité apparente d'adsorption entre la CPAC et chaque biomolécule. CPAC interagit fortement avec le fibrinogène avec une constante de fixation de 2.2x108 M-1. CPAC a des interactions plus faibles avec l'albumine et AAG, avec les constantes de fixation de 2.4x106 M-1 et 1.5x106 M-1, respectivement. Ces interactions de liaison limiteront la biodisponibilité de la CPAC au site d'action, mettant ainsi en évidence la nécessité d'une meilleure compréhension de la biodisponibilité et la pharmacocinétique de la consommation de canneberge avant d'autres essais cliniques. De plus, CPAC interagit avec le LPS de Pseudomonas aeruginosa 10 de manière fondamentalement différente qu'il interagit avec le LPS de E. coli O111:B4 ou rhamnolipides de P. aeruginosa, soutenant la théorie selon laquelle il y a plusieurs mécanismes par laquelle canneberge empêche les infections bactériennes et la canneberge peut-être plus efficace pour prévenir certaines infections bactériennes.
Quesada, Isabel Maria. "Effects of dietary catechins and proanthocyanidins on zinc homeostasis in hepatic cells." Doctoral thesis, Universitat Rovira i Virgili, 2010. http://hdl.handle.net/10803/8695.
Повний текст джерелаi fruits amb efectes beneficiosos sobre la salut. Actuen com a antioxidants segrestant
espècies reactives d'oxigen (ROS) i quelant els metalls ferro i coure. També es comporten
com a molècules senyalitzadores, modulant múltiples vies de senyalització i metabòliques i
l'expressió gènica, incloent-hi la d'enzims antioxidants. Resultats previs del Grup de Recerca
en Nutrigenòmica mostren que una dosi oral aguda d'un extracte de procianidines de llavor
de raïm (GSPE) reprimeix l'expressió de les metal·lotioneïnes (MT), proteïnes lligadores de
zinc, a fetge de rates, i tanmateix incrementa l'expressió del receptor nuclear orfe small
heterodimer partner.(SHP/Nr0b2) (Del Bas et al., 2005). Igualment, es va demonstrar que les
procianidines actuen com a coactivadors transcripcionals del receptor nuclear d'àcids biliars
Farnesoid X Receptor (FXR), el qual es responsable de la sobre-expressió de SHP causada
per GSPE a cèl·lules hepàtiques, i de l'efecte hipotrigliceridèmic de les prociandines effect
(Del Bas et al., 2008; Del Bas et al., 2009).
Els objectius d'aquesta Tesi van ser determinar si les catequines i procianidines
interaccionen amb el zinc, avaluar el seu efecte sobre l'homeòstasi del zinc en cèl·lules
hepàtiques -incloent l'efecte sobre l'expressió de genes MT, utilitzats aquí com a
biomarcadors de l'activitat de les procianidines a cèl·lules hepàtiques-, i disseccionar els
mecanismes pels quals les procianidines afecten l'homeòstasi del zinc, en particular
confirmar si els gens MT són dianes de SHP i FXR.
Els resultats obtinguts mostren que GSPE, així com diverses catequines i procianidines
pures, incloent-hi el flavonoid del te verd (-)-epigallocatechin-3-gallate (EGCG), lliguen
cations de zinc en solució amb una afinitat més gran que el quelant específic de zinc
Zinquin. En cèl·lules d'hepatocarcinoma humanes HepG2, GSPE inhibeix l'acumulació
intracel·lular de zinc i contraresta els efectes tòxics de dosis elevades de zinc sobre la
viabilitat cel·lular. GSPE reprimeix l'expressió de gens de MTs i d'exportadors de zinc mentre
que estimula l'expressió d'importadors de zinc. L'expressió dels importadors de zinc de la
xarxa Trans-Golgi és estimulada per GSPE. A més a més, GSPE bloqueja la inducció de
l'expressió de MTs per la citoquina proinflamatoria IL-6, pel generador de ROS tBOOH, per
l'agonista de receptors de glucocorticoids dexametasona, i pels metalls coure i zinc.
EGCG reprodueix els efectes de GSPE sobre l'homeòstasi del zinc en HepG2, reprimint
l'expressió de MTs i d'exportadors de zinc, estimulant l'expressió d'importadors de zinc, i
UNIVERSITAT ROVIRA I VIRGILI
EFFECTS OF DIETARY CATECHINS AND PROANTHOCYANIDINS ON ZINC HOMEOSTASIS IN HEPATIC CELLS
Isabel Maria Quesada
ISBN:978-84-694-1258-9/DL:T-322-2011
inhibint l'acumulació de zinc intracel·lular i la toxicitat de dosis elevades de zinc. La
procinidina dimèrica B1 i la trimèrica C1 es comporten tenen efectes contraris als de GSPE i
EGCG pel que fa a l'expressió de MT i l'acumulació de zinc total en cèl·lules HepG2.
Pel que fa al zinc làbil citoplasmàtic, la minúscula fracció del total del zinc cel·lular que
modula múltiples vies metabòliques i senyalitzadores, tant GSPE com EGCG i C1 eleven en
gran manera els nivells de zinc làbil detectable per Zinquin a cèl·lules HepG2.
Experiments amb ratolins KO per SHP o per FXR han demonstrat que GSPE reprimeix
l'expressió postprandrial de gens MT a fetge per una via que no depen de SHP però que és
depenent de FXR. A més, l'àcid biliar CDCA, un lligand fisiològic i activador de FXR,
reprimeix l'expressió de gens MT a cèl·lules HepG2. Per tant, els gens MT són diana de FXR
i, conseqüentment, FXR apareix com un receptor nuclear que modula l'homeòstasi del zinc.
Per explicar aquests resultats, proposem que catequines i procianidines poden actuar tant
com a segrestadors de zinc -evitant la seva entrada a la cèl·lula a través dels transportadors
de zinc de membrana plasmàtica-, com d'ionòfors de zinc -cotransportant cations zinc a
través de la bicapa lipídica i incrementant així els nivells de zinc làbil citoplasmàtic. La
repressió de gens MT induïda per l'activació de FXR per GSPE podria també contribuir a
l'increment de zinc làbil, en impedir que els cations zinc siguin segrestats per apo-tioneïna
sintetitzada de novo.
Donat el paper del zinc làbil com a modulador de múltiples víes de senyalització i
metabòlics, formulem la hipòtesi que la quelació extracel·lular de cations de zinc i l'elevació
de zinc làbil citoplasmàtic són mecanismes subjacents a l'activitat biològica de catequines i
procianidines i, per tant, que les vies metabòliques i de senyalització afectades pel zinc làbil,
ho seràn també per aquests flavonoids.
Effects of dietary catechins and proanthocyanidins on zinc homeostasis in
hepatic cells.
Catechins and their polymers procyanidins are health-promoting flavonoids found in edible
vegetables and fruits. They act as antioxidants by scavenging reactive oxygen species and
by chelating the redox-active metals iron and copper. They also behave as signaling
molecules, modulating multiple cell signaling and metabolic pathways and gene expression,
including that of antioxidant enzymes. Previous results of the Nutrigenomics Reseach Group
showed that an oral acute dose of a grape-seed procyanidin extract (GSPE) represses the
expression of the zinc-binding protein metallothionein (MT) genes in rat liver, and enhances
the expression of the orfan nuclear receptor small heterodimer partner (SHP/Nr0b2) (Del Bas
et al., 2005). In addition, it was shown that procyanidins act as transcriptional coactivators of
the nuclear bile acid receptor Farnesoid X Receptor (FXR), which in turns upregulates SHP
expression, thereby exerting an hypotrygliceridemic effect (Del Bas et al., 2008; Del Bas et
al., 2009).
The objectives of this Ph.D. Thesis were to determine whether catechins and procyanidins
interact with the redox-inactive metal zinc, to evaluate their effect on zinc homeostasis in
hepatic cells -including the expression of MT genes, used here as a biomarkers of
procyanidin activity in hepatic cells-, and to disect the mechanisms by which procyanidins
affect cellular zinc homeostasis, in particular to asses whether MT genes are targets of SHP
and FXR.
Our results show that GSPE, as well as individual catechins and procyanidins tested,
including the green tea flavonoid (-)-epigallocatechin-3-gallate (EGCG), bind zinc cations in
solution with higher affinity than the zinc-specific chelator Zinquin. In human
hepatocarcinoma HepG2 cells, GSPE inhibits intracellular zinc accumulation and counteracts
the toxic effects of excess zinc on cell viability. At the mRNA expression level, GSPE
downregulates MTs and zinc-efflux transporters while upregulating zinc-influx transporters.
Zinc importers of the Trans-Golgi network are upregulated by GSPE. In addition, GSPE
blocks the induction of MTs expression by the proinflammatory cytokine IL-6, the ROS
generator tBOOH, the glucocorticoid receptor agonist dexamethasone, and the metals
copper and zinc.
EGCG reproduces the major effects of GSPE on zinc homeostasis in HepG2, downreguling
the expression of MTs and zinc-efflux transporters, while upregulating the expression of zincinflux
transporters, concomitantly inhibiting intracellular zinc accumulation and the toxicity of high zinc doses. Procyanidin dimer B1 and trimer C1 behave opposite to GSPE and EGCG
with regard to MT expression and intracellular zinc accumulation in HepG2 cells.
Concerning cytoplasmic labile zinc, the tiny fraction of total cellular zinc that modulates
signaling and metabolic pathways, we found that GSPE, EGCG and trimeric procyanidin C1
greatly elevate Zinquin-detectable labile zinc in HepG2 cells.
Experiments with SHP-null and FXR-null mice demonstrate that GSPE downregulates
postprandial expression of MT genes in the liver, in a SHP-independent but FXR-dependent
manner. In addition, chenodeoxycholic acid, a physiological ligand and activator of FXR,
represses the expression of MT genes in HepG2 cells. Thus, MT genes are targets of FXR
and, consequently, FXR is revealed as a modulator of zinc homeostasis.
To explain these results, we postulate that catechins and procyanidis may act both as
sequestrants of zinc -thereby impeding the entrance of zinc cations to the cell through
plasma membrane zinc transporters-, and as zinc ionophores -thereby cotransporting zinc
cations through the lipid bilayer and increasing the levels of cytoplasmic labile zinc.
Repression of MT expression by procyanidin-activated FXR might also contribute to the
increment of the labile pool of zinc, by hindering the sequestration of zinc-cations by de novo
synthesized apo-thionein.
Given the role of labile zinc as modulator of multiple intracellular signaling and metabolic
pathways, we forward the hypothesis that extracellular complexation of zinc cations and
subsequent elevation of cytoplasmic labile zinc may be relevant mechanisms underlying the
health-promoting activity of catechins and procyanidins and, therefore, that the signaling and
metabolic pathways modulated by labile zinc will be aslo a target of these flavonoids.
González, Quilen Carlos Alberto. "Impact of Proanthocyanidins on Intestinal Dysfunction Induced by Nutritional or Chemical Agents." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669807.
Повний текст джерелаEl tracto intestinal es un sitio de interacción con microorganismos y factores ambientales potencialmente dañinos. En este sentido, un alto consumo de componentes mayoritarios de la dieta occidental como la fructosa y las grasas saturadas se ha asociado con la disfunción intestinal (disrupción de la función de barrera e inflamación) y la entrada de endotoxinas bacterianas con efecto proinflamatorio en la circulación. Adicionalmente, una alta concentración de endotoxina en plasma (endotoxemia metabólica) se vincula con el síndrome metabólico. Así, el intestino está emergiendo como un blanco terapéutico para la prevención y tratamiento de enfermedades. Las proantocianidinas (PACs) son compuestos fenólicos naturales con potente efecto antiinflamatorio en la mucosa intestinal, de acuerdo con evidencia preclínica. Por consiguiente, la administración de PACs es prometedora como estrategia terapéutica complementaria, pero su eficacia debe ser confirmada en humanos. El principal objetivo de la presente tesis doctoral fue evaluar el impacto de un extracto de PACs de la pepita de uva (GSPE) en modelos preclínicos de disfunción intestinal y explorar su efectividad en el humano. Encontramos que una dieta estilo occidental (dieta de cafetería) induce disfunción intestinal en ratas y que la alteración de permeabilidad en el colon contribuye en gran medida a la endotoxemia metabólica. Estos efectos fueron atribuidos parcialmente a altas concentraciones luminales de fructosa y pudieron ser revertidos con dosis farmacológicas de GSPE in vivo. Por último, contrastamos estos resultados con evidencia derivada de un modelo humano ex vivo de disfunción colónica. En este modelo pudimos replicar la reducción de permeabilidad y el mejoramiento del estado inflamatorio reportados in vivo. En conclusión, la administración de GSPE puede mejorar la disfunción intestinal y la endotoxemia metabólica asociada. Las dosis efectivas en humanos son probablemente farmacológicas y tendrán que ser establecidas en estudios clínicos posteriores.
The intestinal tract is a site of interaction with microorganisms and potentially detrimental environmental factors. The high intake of fructose and saturated fats typical of the Western diet has been associated with intestinal dysfunction (disruption of barrier function and inflammation) and an increased influx of proinflammatory bacterial endotoxins into the systemic circulation. In turn, high concentrations of plasma endotoxins (metabolic endotoxemia) are a precursor to the onset of metabolic syndrome. In view of the above, the intestine is emerging as a target for disease prevention and therapy. Proanthocyanins (PACs) are naturally occurring phenolic compounds with remarkable anti-inflammatory properties in the intestinal mucosa, according to preclinical studies. Thus, PAC administration is a promising adjunctive therapeutic strategy for the treatment of intestinal dysfunction, but its efficacy in humans is yet to be confirmed. The main objective of this doctoral thesis was to evaluate the impact of a grape-seed PAC extract (GSPE) on a rat and cell culture-based model of intestinal dysfunction and to investigate its effectiveness in humans. We found that a long-term Western-style diet (cafeteria diet) induces intestinal dysfunction in rats, and that alterations in the permeability of the colon largely contribute to metabolic endotoxemia. These effects are partially driven by high luminal concentrations of fructose and could be effectively reversed in vivo by pharmacological doses of GSPE. Lastly, we compared these findings with evidence derived from an ex vivo human model of chemically-induced colonic dysfunction in which we were able to replicate the reduction of intestinal permeability and the amelioration of inflammatory status by means of GSPE found in vivo. In conclusion, the administration of GSPE results in the overall improvement of intestinal dysfunction and associated metabolic endotoxemia. Effective doses in humans are probably pharmacological and will have to be determined in clinical trials.
Stringano, Elisabetta. "Analysis of sainfoin (Onobrychis viciifolia) proanthocyanidins by complementary and newly developed techniques." Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.553034.
Повний текст джерелаКниги з теми "Proanthocyanidols"
Goldman, Bob. OPCs (Oligomeric Proanthocyanidins): Harvesting nature's anti-aging bounty. [United States?]: R. Goldman, 2002.
Знайти повний текст джерелаSchwitters, Bert. OPC in Practice: The Hidden Story of Proanthocyanidins. Alfa Omega Editrice, 1993.
Знайти повний текст джерелаSullivan, Ingrid. Proanthocyanidins: Food Sources, Antioxidant Properties and Health Benefits. Nova Science Publishers, Incorporated, 2015.
Знайти повний текст джерелаЧастини книг з теми "Proanthocyanidols"
Ebrahimnejad, Hadi, Torsten Burkholz, and Claus Jacob. "Flavanols and Proanthocyanidins." In Recent Advances in Redox Active Plant and Microbial Products, 211–32. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8953-0_8.
Повний текст джерелаPorter, Lawrence J. "Flavans and proanthocyanidins." In The Flavonoids, 23–55. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2911-2_2.
Повний текст джерелаPorter, Lawrence J. "Flavans and proanthocyanidins." In The Flavonoids, 21–62. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2913-6_2.
Повний текст джерелаKarchesy, Joseph J., Youngsoo Bae, Linda Chalker-Scott, Richard F. Helm, and L. Yeap Foo. "Chromatography of Proanthocyanidins." In Chemistry and Significance of Condensed Tannins, 139–51. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-7511-1_9.
Повний текст джерелаSteynberg, Jan P., E. Vincent Brandt, Matthiam J. H. Hoffman, Richard W. Hemingway, and Daneel Ferreira. "Conformations of Proanthocyanidins." In Plant Polyphenols, 501–20. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3476-1_29.
Повний текст джерелаBladé, Cinta, Anna Arola-Arnal, Anna Crescenti, Manuel Suárez, Francisca I. Bravo, Gerard Aragonès, Begoña Muguerza, and Lluís Arola. "Proanthocyanidins and Epigenetics." In Handbook of Nutrition, Diet, and Epigenetics, 1933–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-55530-0_16.
Повний текст джерелаBladé, Cinta, Anna Arola-Arnal, Anna Crescenti, Manuel Suárez, Francisca I. Bravo, Gerard Aragonès, Begoña Muguerza, and Lluís Arola. "Proanthocyanidins and Epigenetics." In Handbook of Nutrition, Diet, and Epigenetics, 1–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-31143-2_16-1.
Повний текст джерелаHu, Hanbo, and Donald Armstrong. "Isotonic oligomeric proanthocyanidins." In Oxidative Stress and Antioxidant Protection, 403–14. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118832431.ch26.
Повний текст джерелаHemingway, R. W. "Biflavonoids and Proanthocyanidins." In Natural Products of Woody Plants, 571–651. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74075-6_17.
Повний текст джерелаOliveira, Joana, Nuno Mateus, and Victor de Freitas. "Flavanols: Catechins and Proanthocyanidins." In Natural Products, 1753–801. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-22144-6_58.
Повний текст джерелаТези доповідей конференцій з теми "Proanthocyanidols"
Zhang, Yun, Katherine Weh, Connor Howard, Kiran Lagisetty, Dyke McEwen, Jules Lin, Rishindra M. Reddy, et al. "Abstract 1418: Proanthocyanidins enhance chemotherapy-induced esophageal adenocarcinoma cell death." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1418.
Повний текст джерелаImran, BI, M. Karonen, and JP Salminen. "Modification of oligomeric and polymeric proanthocyanidins via oxidation in alkaline conditions." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399908.
Повний текст джерелаChen, Jie, Ruobin Zhang, Liming Wang, and Mengbin Mo. "Effect of pulsed electric fields on proanthocyanidins in young red wine." In 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2009. http://dx.doi.org/10.1109/icpadm.2009.5252311.
Повний текст джерелаWeh, Katherine M., Bridget A. Tripp, Jennifer L. Clarke, Amy B. Howell, Jules Lin, David G. Beer, Andrew C. Chang, and Laura A. Kresty. "Abstract 279: Cranberry proanthocyanidins mitigate reflux-induced transporter dysregulation in esophageal adenocarcinoma." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-279.
Повний текст джерелаThilakarathna, Wasitha, and H. P. Vasantha Rupasinghe. "Abstract 314: Highly polymeric grape seed proanthocyanidins: A call for establishing the safe dose." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-314.
Повний текст джерелаZeyzus-Johns, Bree, Amy Exum, Amy B. Howell, and Laura A. Kresty. "Abstract B67: In vitro and in vivo inhibitory effects of cranberry proanthocyanidins against esophageal adenocarcinoma." In Abstracts: AACR International Conference on Frontiers in Cancer Prevention Research‐‐ Nov 7-10, 2010; Philadelphia, PA. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1940-6207.prev-10-b67.
Повний текст джерелаToden, Shusuke, and Ajay Goel. "Abstract 4311: Oligomeric proanthocyanidins inhibit Hippo-YAP pathway and prevent colorectal cancer stem cell formation." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-4311.
Повний текст джерелаSymma, N., J. Sendker, F. Petereit, M. Letzel, and A. Hensel. "Transferring petrochemical methods to pharmacognosy: a novel screening system for oligomeric proanthocyanidins using Kendrick mass defect." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399937.
Повний текст джерелаBystrom, Laura M., Luis Andres Lara-Martinez, Bernardo Gomel, Burak Isal, Hongliang Zong, Sabrina Martinez, Catherine Neto, Stefano Rivella, and Monica L. Guzman. "Abstract 1232: A-type proanthocyanidins selectively target acute myeloid leukemia cells in vitro and in vivo." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1232.
Повний текст джерелаRavindranathan, Preethi, Divya Pasham, Uthra Balaji, Shusuke Toden, and Ajay Goel. "Abstract 2682: Global transcriptomic profiling reveals anticancer role of oligomeric proanthocyanidins from grape seeds in colorectal cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2682.
Повний текст джерелаЗвіти організацій з теми "Proanthocyanidols"
Delehanty, J. B., B. J. Johnson, T. E. Hickey, T. Pons, and F. S. Ligler. Plant Proanthocyanidins Bind to and Neutralize Bacterial Lipopolysaccharides. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada517872.
Повний текст джерела