Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Quantum electronics.

Статті в журналах з теми "Quantum electronics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Quantum electronics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Mukhammadova, Dilafruz Ahmadovna. "The Role Of Quantum Electronics In Alternative Energy." American Journal of Applied sciences 03, no. 01 (2021): 69–78. http://dx.doi.org/10.37547/tajas/volume03issue01-12.

Повний текст джерела
Анотація:
The article deals with Quantum electronics, as a field of physics that studies methods of amplification and generation of electromagnetic radiation based on the phenomenon of stimulated radiation in nonequilibrium quantum systems, as well as the properties of amplifiers and generators obtained in this way and their application, a description of the structure of the most important lasers is given, physical foundations of quantum electronics, which are reduced primarily to the application of Einstein's theory of radiation to thermodynamically nonequilibrium systems with discrete energy levels. T
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zwanenburg, Floris A., Andrew S. Dzurak, Andrea Morello, et al. "Silicon quantum electronics." Reviews of Modern Physics 85, no. 3 (2013): 961–1019. http://dx.doi.org/10.1103/revmodphys.85.961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

SAKAKI, H. "Quantum Microstructures and Quantum Wave Electronics." Nihon Kessho Gakkaishi 33, no. 3 (1991): 107–18. http://dx.doi.org/10.5940/jcrsj.33.107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guo, Cheng, Jin Lin, Lian-Chen Han, et al. "Low-latency readout electronics for dynamic superconducting quantum computing." AIP Advances 12, no. 4 (2022): 045024. http://dx.doi.org/10.1063/5.0088879.

Повний текст джерела
Анотація:
Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the r
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kharchenko, Sergey B. "APPLICATION OF QUANTUM DOTS IN LED AND SOLAR ELECTRONICS." EKONOMIKA I UPRAVLENIE: PROBLEMY, RESHENIYA 9/7, no. 150 (2024): 35–43. http://dx.doi.org/10.36871/ek.up.p.r.2024.09.07.005.

Повний текст джерела
Анотація:
This article discusses the prospects for using quantum dots in LED and solar electronics. Quantum dots have unique optical and electronic properties that make them a promising material for improving the efficiency, stability, and color rendering of LEDs, as well as for increasing the energy conversion efficiency of solar cells. Current advances in the synthesis and application of quantum dots, the main challenges faced by researchers, and possible solutions are discussed. Examples of successful prototypes and commercial devices based on quantum dots are given. Prospects for further development
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumar, Yogendra. "High-Temperature Superconductivity is the Quantum Leap in Electronics." International Journal of Science and Research (IJSR) 10, no. 6 (2021): 854–62. https://doi.org/10.21275/sr21606211315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Mengxia, Nuri Yazdani, Maksym Yarema, Maximilian Jansen, Vanessa Wood, and Edward H. Sargent. "Colloidal quantum dot electronics." Nature Electronics 4, no. 8 (2021): 548–58. http://dx.doi.org/10.1038/s41928-021-00632-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Taichenachev, Alexey V. "Department of Quantum Electronics." Siberian Journal of Physics 1, no. 1 (2006): 83–84. http://dx.doi.org/10.54238/1818-7994-2006-1-1-83-84.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sinclair, B. D. "Lasers and quantum electronics." Physics Bulletin 37, no. 10 (1986): 412. http://dx.doi.org/10.1088/0031-9112/37/10/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dragoman, M., and D. Dragoman. "Graphene-based quantum electronics." Progress in Quantum Electronics 33, no. 6 (2009): 165–214. http://dx.doi.org/10.1016/j.pquantelec.2009.08.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Rost, Jan-Michael. "Tubes for quantum electronics." Nature Photonics 4, no. 2 (2010): 74–75. http://dx.doi.org/10.1038/nphoton.2009.279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Miller, A., and I. White. "Optical and quantum electronics." Optical and Quantum Electronics 34, no. 5-6 (2002): 621–26. http://dx.doi.org/10.1007/bf02892621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zapol'skiĭ, A. K. "News in quantum electronics." Soviet Journal of Quantum Electronics 22, no. 9 (1992): 873–74. http://dx.doi.org/10.1070/qe1992v022n09abeh003621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Borgarino, Mattia, and Alessandro Badiali. "Quantum Gates for Electronics Engineers." Electronics 12, no. 22 (2023): 4664. http://dx.doi.org/10.3390/electronics12224664.

Повний текст джерела
Анотація:
The design of a solid-state quantum processor is nowadays a hot research topic in microelectronics. Like the logic gates in a classical processor, quantum gates serve as the fundamental building blocks for quantum processors. The main goal of the present paper is to deduce the matrix of the main one- and two-qubit quantum gates from the Schrödinger equation. The mathematical formalism is kept as comfortable as possible for electronics engineers. This paper does not cover topics such as dissipations, state density, coherence, and state purity. In a similar manner, this paper also deals with the
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Simone, Giuseppina. "Will Quantum Topology Redesign Semiconductor Technology?" Nanomaterials 15, no. 9 (2025): 671. https://doi.org/10.3390/nano15090671.

Повний текст джерела
Анотація:
Semiconductors underpin modern technology, enabling applications from power electronics and photovoltaics to communications and medical diagnostics. However, the industry faces pressing challenges, including shortages of critical raw materials and the unsustainable nature of conventional fabrication processes. Recent developments in quantum computing and topological quantum materials offer a transformative path forward. In particular, materials exhibiting non-Hermitian physics and topological protection, such as topological insulators and superconductors, enable robust, energy-efficient electr
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Tang, Haijun, Irfan Ahmed, Pargorn Puttapirat, et al. "Investigation of multi-bunching by generating multi-order fluorescence of NV center in diamond." Physical Chemistry Chemical Physics 20, no. 8 (2018): 5721–25. http://dx.doi.org/10.1039/c7cp08005k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Hinken, J. H., V. Kose, Harold Weinstock, Martin Nisenoff, and Robert L. Fagaly. "Superconductor Electronics: Fundamentals and Microwave Applications; Superconducting Quantum Electronics; Superconducting Electronics." Physics Today 44, no. 2 (1991): 92–94. http://dx.doi.org/10.1063/1.2809995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Cuoco, M., and A. Di Bernardo. "Materials challenges for SrRuO3: From conventional to quantum electronics." APL Materials 10, no. 9 (2022): 090902. http://dx.doi.org/10.1063/5.0100912.

Повний текст джерела
Анотація:
The need for faster and more miniaturized electronics is challenging scientists to develop novel forms of electronics based on quantum degrees of freedom different from electron charge. In this fast-developing field, often referred to as quantum electronics, the metal-oxide perovskite SrRuO3 can play an important role thanks to its diverse physical properties, which have been intensively investigated, mostly for conventional electronics. In addition to being chemically stable, easy to fabricate with high quality and to grow epitaxially onto many oxides—these are all desirable properties also f
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Borgarino, Mattia, and Alessandro Badiali. "Demystifying Quantum Gate Fidelity for Electronics Engineers." Applied Sciences 15, no. 5 (2025): 2675. https://doi.org/10.3390/app15052675.

Повний текст джерела
Анотація:
The implementation of quantum gates by means of microwave cryo-RFICs controlling qubits is a promising path toward scalable quantum processors. Quantum gate fidelity quantifies how well an actual quantum gate produces a quantum state close to the desired ideal one. Regrettably, the literature usually reports on quantum gate fidelity in a highly theoretical way, making it hard for RFIC designers to understand. This paper explains quantum gate fidelity by moving from Shannon’s concept of fidelity and proposing a detailed mathematical proof of a valuable integral formulation of quantum gate fidel
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Aseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev, and Anatoliy Vasilevich Dvurechenskii. "Semiconductor Nanostructures for Modern Electronics." Solid State Phenomena 310 (September 2020): 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.

Повний текст джерела
Анотація:
Modern electronics is based on semiconductor nanostructures in practically all main parts: from microprocessor circuits and memory elements to high frequency and light-emitting devices, sensors and photovoltaic cells. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with ultimately low gate length in the order of tens of nanometers and less is nowadays one of the basic elements of microprocessors and modern electron memory chips. Principally new physical peculiarities of semiconductor nanostructures are related to quantum effects like tunneling of charge carriers, controlled changing
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wang, Haomin, Hui Shan Wang, Chuanxu Ma, et al. "Graphene nanoribbons for quantum electronics." Nature Reviews Physics 3, no. 12 (2021): 791–802. http://dx.doi.org/10.1038/s42254-021-00370-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Devoret, Michel. "New era for quantum electronics." Physics World 14, no. 6 (2001): 27–28. http://dx.doi.org/10.1088/2058-7058/14/6/25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Boyd, Robert W., Michael G. Raymer, and Alexander A. Manenkov. "Fifty years of quantum electronics." Journal of Modern Optics 52, no. 12 (2005): 1635. http://dx.doi.org/10.1080/09500340500164856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Townes *, Charles H. "Early history of quantum electronics." Journal of Modern Optics 52, no. 12 (2005): 1637–45. http://dx.doi.org/10.1080/09500340500164930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Knight, Peter L. "Thirteenth National Quantum Electronics Conference." Journal of Modern Optics 45, no. 6 (1998): 1097. http://dx.doi.org/10.1080/095003498151221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Schubert, Max, Bernd Wilhelmi, and Lorenzo M. Narducci. "Nonlinear Optics and Quantum Electronics." Physics Today 41, no. 2 (1988): 80–82. http://dx.doi.org/10.1063/1.2811321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Teich, M. C., and B. E. A. Saleh. "Branching processes in quantum electronics." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 6 (2000): 1450–57. http://dx.doi.org/10.1109/2944.902200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Ke, San-Huang, Weitao Yang, and Harold U. Baranger. "Quantum-Interference-Controlled Molecular Electronics." Nano Letters 8, no. 10 (2008): 3257–61. http://dx.doi.org/10.1021/nl8016175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Barnett, S. M. "Nonlinear optics and quantum electronics." Optics & Laser Technology 19, no. 4 (1987): 218–20. http://dx.doi.org/10.1016/0030-3992(87)90074-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Knight, Peter. "Nonlinear Optics and Quantum Electronics." Journal of Modern Optics 34, no. 4 (1987): 482. http://dx.doi.org/10.1080/09500348714550481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Ducloy, M. "1996 EPS Quantum Electronics Prize." Europhysics News 26, no. 6 (1995): 135. http://dx.doi.org/10.1051/epn/19952606135b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Sohn, Lydia L. "A quantum leap for electronics." Nature 394, no. 6689 (1998): 131–32. http://dx.doi.org/10.1038/28058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Weinbub, Josef, and Robert Kosik. "Computational perspective on recent advances in quantum electronics: from electron quantum optics to nanoelectronic devices and systems." Journal of Physics: Condensed Matter 34, no. 16 (2022): 163001. http://dx.doi.org/10.1088/1361-648x/ac49c6.

Повний текст джерела
Анотація:
Abstract Quantum electronics has significantly evolved over the last decades. Where initially the clear focus was on light–matter interactions, nowadays approaches based on the electron’s wave nature have solidified themselves as additional focus areas. This development is largely driven by continuous advances in electron quantum optics, electron based quantum information processing, electronic materials, and nanoelectronic devices and systems. The pace of research in all of these areas is astonishing and is accompanied by substantial theoretical and experimental advancements. What is particul
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Siu, Timothy C., Joshua Y. Wong, Matthew O. Hight, and Timothy A. Su. "Single-cluster electronics." Physical Chemistry Chemical Physics 23, no. 16 (2021): 9643–59. http://dx.doi.org/10.1039/d1cp00809a.

Повний текст джерела
Анотація:
This article reviews the scope of inorganic cluster compounds measured in single-molecule junctions. The article explores how the structure and bonding of inorganic clusters give rise to specific quantum transport phenomena in molecular junctions.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Aflatouni, Firooz. "Advancements in Nanotechnology: Revolutionizing Medicine and Electronics." International Journal of Innovative Computer Science and IT Research 1, no. 01 (2025): 1–9. https://doi.org/10.63665/ijicsitr.v1i01.03.

Повний текст джерела
Анотація:
Nanotechnology has become a groundbreaking advancement in modern science, significantly impacting the fields of medicine and electronics. By manipulating materials at the nanoscale (1–100 nm), researchers have developed innovative solutions that enhance precision, efficiency, and functionality in various applications. In medicine, nanoparticles are used for targeted drug delivery, reducing side effects and improving therapeutic outcomes. Nanorobots are being developed for minimally invasive surgeries and precise diagnostics. Furthermore, biosensors enable early disease detection, while regener
Стилі APA, Harvard, Vancouver, ISO та ін.
36

HARRIS, J. S. "FROM BLOCH FUNCTIONS TO QUANTUM WELLS." International Journal of Modern Physics B 04, no. 06 (1990): 1149–79. http://dx.doi.org/10.1142/s0217979290000577.

Повний текст джерела
Анотація:
The early foundations for the electronics revolution were set in Professor Felix Bloch’s Ph. D. dissertation. The fundamental insights of this work are reviewed in light of both their impact on modern electronics, and particularly, their relevance for today’s quantum well engineered devices, and their potential to be tomorrow’s electronics foundation.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Sharma, Pradosh Kumar, Thangam A, Somarouthu V.G.V.A Prasad, Vaishali Mangesh Dhede, and Shadab Ahmad. "OPTIMIZATION OF PROCESSING SPEEDS OF NANO ELECTRONICS CIRCUITS USING DIFFERENTIAL QUANTUM EVOLUTION FOR VLSI APPLICATIONS." ICTACT Journal on Microelectronics 9, no. 4 (2024): 1658–62. https://doi.org/10.21917/ijme.2024.0287.

Повний текст джерела
Анотація:
In Very Large Scale Integration (VLSI) applications, the demand for enhanced processing speeds in nano-electronic circuits has become paramount for meeting the escalating performance expectations of modern electronic devices. With the continuous miniaturization of electronic components, nano-electronics has emerged as a pivotal technology, driving innovation in VLSI circuits. However, the shrinking feature sizes pose challenges related to power consumption and processing speeds. Current methodologies, such as traditional optimization algorithms, struggle to cope with the intricacies of nano-el
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Kern, Michal, Khubaib Khan, Philipp Hengel, and Jens Anders. "Towards Scalable Quantum Sensors: Interface Electronics for Quantum Sensors." Foundations and Trends® in Integrated Circuits and Systems 3, no. 4 (2024): 218–72. https://doi.org/10.1561/3500000015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Surendar Aravindhan. "Quantum Computing in Electronics: A New Era of Ultra-Fast Processing." Communications on Applied Nonlinear Analysis 32, no. 3 (2024): 372–82. http://dx.doi.org/10.52783/cana.v32.1994.

Повний текст джерела
Анотація:
Quantum computing has been predicted to radically change the electronics industry, especially by implementing ultra-fast processing. Different from other types of computers, quantum computers use qubits instead of binary bits since they can be in multiple states at once because of superposition and entanglement. This creates the ability to perform various calculations simultaneously thus introducing exponential increases in the processing capability hence the efficiency of quantum computers. The applicability of the findings to electronics is extensive since it can be applied in cryptography,
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gheisarnejad, Meysam, and Mohammad-Hassan Khooban. "Quantum Power Electronics: From Theory to Implementation." Inventions 8, no. 3 (2023): 72. http://dx.doi.org/10.3390/inventions8030072.

Повний текст джерела
Анотація:
While impressive progress has been already achieved in wide-bandgap (WBG) semiconductors such as 4H-SiC and GaN technologies, the lack of intelligent methodologies to control the gate drivers has prevented exploitation of the maximum potential of semiconductor chips from obtaining the desired device operations. Thus, a potent ongoing trend is to design a fast gate driver switching scheme to upgrade the performance of electronic equipment at the system level. To address this issue, this work proposed a novel intelligent scheme for the control of gate driver switching using the concept of quantu
Стилі APA, Harvard, Vancouver, ISO та ін.
41

CITRIN, D. S. "INTERBAND OPTICAL PROPERTIES OF QUANTUM WIRES: THEORY AND APPLICATION." Journal of Nonlinear Optical Physics & Materials 04, no. 01 (1995): 83–98. http://dx.doi.org/10.1142/s0218863595000057.

Повний текст джерела
Анотація:
The electronic states near the fundamental gap largely determine the most commonly investigated linear and nonlinear optical properties of quantum wires. We first discuss heavy-hole-light-hole band-mixing effects and illustrate the consequences with an application in opto-electronics, namely a quantum-wire-array based polarization modulator. Next, an overview of polariton effects which determine the time scale for excitonic radiative decay is given and comparison with recent experiments made.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Northrop, D. C. "Book Review: Quantum Electronics (3rd Ed.)." International Journal of Electrical Engineering & Education 27, no. 1 (1990): 12. http://dx.doi.org/10.1177/002072099002700102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Krokhin, Oleg N. "The early years of quantum electronics." Physics-Uspekhi 47, no. 10 (2004): 1045–48. http://dx.doi.org/10.1070/pu2004v047n10abeh001907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Seideman, Tamar. "Current-driven dynamics in quantum electronics." Journal of Modern Optics 50, no. 15-17 (2003): 2393–410. http://dx.doi.org/10.1080/09500340308233571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Manenkov, A. A. "EPR and development of quantum electronics." Journal of Physics: Conference Series 324 (October 21, 2011): 012001. http://dx.doi.org/10.1088/1742-6596/324/1/012001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Krokhin, Oleg N. "The early years of quantum electronics." Uspekhi Fizicheskih Nauk 174, no. 10 (2004): 1117. http://dx.doi.org/10.3367/ufnr.0174.200410h.1117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Nimtz, Gu¨nter, and Winfried Heitmann. "Superluminal photonic tunneling and quantum electronics." Progress in Quantum Electronics 21, no. 2 (1997): 81–108. http://dx.doi.org/10.1016/s0079-6727(97)84686-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yokoyama, N., S. Muto, K. Imamura, et al. "Quantum functional devices for advanced electronics." Solid-State Electronics 40, no. 1-8 (1996): 505–11. http://dx.doi.org/10.1016/0038-1101(95)00279-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Grimes, Dale M. "Quantum theory and classical, nonlinear electronics." Physica D: Nonlinear Phenomena 20, no. 2-3 (1986): 285–302. http://dx.doi.org/10.1016/0167-2789(86)90034-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Woerdman, J. P. "EQEC: 2nd European Quantum Electronics Conference." Europhysics News 20, no. 11-12 (1989): 170. http://dx.doi.org/10.1051/epn/19892011170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!