Добірка наукової літератури з теми "Quantum Learning"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quantum Learning".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Quantum Learning"
Dunjko, Vedran. "Quantum learning unravels quantum system." Science 376, no. 6598 (June 10, 2022): 1154–55. http://dx.doi.org/10.1126/science.abp9885.
Повний текст джерелаLamata, Lucas. "Quantum Reinforcement Learning with Quantum Photonics." Photonics 8, no. 2 (January 28, 2021): 33. http://dx.doi.org/10.3390/photonics8020033.
Повний текст джерелаWiebe, Nathan, Ashish Kapoor, and Krysta M. Svore. "Quantum deep learning." Quantum Information and Computation 16, no. 7&8 (May 2016): 541–87. http://dx.doi.org/10.26421/qic16.7-8-1.
Повний текст джерелаBehrman, E. C., J. E. Steck, and M. A. Moustafa. "Learning quantum annealing." Quantum Information and Computation 17, no. 5&6 (April 2017): 460–87. http://dx.doi.org/10.26421/qic17.5-6-6.
Повний текст джерелаBiamonte, Jacob, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. "Quantum machine learning." Nature 549, no. 7671 (September 2017): 195–202. http://dx.doi.org/10.1038/nature23474.
Повний текст джерелаDaoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. "Quantum Reinforcement Learning." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38, no. 5 (October 2008): 1207–20. http://dx.doi.org/10.1109/tsmcb.2008.925743.
Повний текст джерелаAllcock, Jonathan, and Shengyu Zhang. "Quantum machine learning." National Science Review 6, no. 1 (November 30, 2018): 26–28. http://dx.doi.org/10.1093/nsr/nwy149.
Повний текст джерелаBisio, Alessandro, Giacomo Mauro DʼAriano, Paolo Perinotti, and Michal Sedlák. "Quantum learning algorithms for quantum measurements." Physics Letters A 375, no. 39 (September 2011): 3425–34. http://dx.doi.org/10.1016/j.physleta.2011.08.002.
Повний текст джерелаChen, Samuel Yen-Chi, and Shinjae Yoo. "Federated Quantum Machine Learning." Entropy 23, no. 4 (April 13, 2021): 460. http://dx.doi.org/10.3390/e23040460.
Повний текст джерелаLukac, Martin, and Marek Perkowski. "Inductive learning of quantum behaviors." Facta universitatis - series: Electronics and Energetics 20, no. 3 (2007): 561–86. http://dx.doi.org/10.2298/fuee0703561l.
Повний текст джерелаДисертації з теми "Quantum Learning"
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Повний текст джерелаLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
Lukac, Martin. "Quantum Inductive Learning and Quantum Logic Synthesis." PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/2319.
Повний текст джерелаDe, Bonis Gianluca. "Rassegna su Quantum Machine Learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24652/.
Повний текст джерелаPesah, Arthur. "Learning quantum state properties with quantum and classical neural networks." Thesis, KTH, Tillämpad fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252693.
Повний текст джерелаCangini, Nicolò. "Quantum Supervised Learning: Algoritmi e implementazione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17694/.
Повний текст джерелаKiani, Bobak Toussi. "Quantum artificial intelligence : learning unitary transformations." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127158.
Повний текст джерелаCataloged from the official PDF of thesis.
Includes bibliographical references (pages 77-83).
Linear algebra is a simple yet elegant mathematical framework that serves as the mathematical bedrock for many scientific and engineering disciplines. Broadly defined as the study of linear equations represented as vectors and matrices, linear algebra provides a mathematical toolbox for manipulating and controlling many physical systems. For example, linear algebra is central to the modeling of quantum mechanical phenomena and machine learning algorithms. Within the broad landscape of matrices studied in linear algebra, unitary matrices stand apart for their special properties, namely that they preserve norms and have easy to calculate inverses. Interpreted from an algorithmic or control setting, unitary matrices are used to describe and manipulate many physical systems.
Relevant to the current work, unitary matrices are commonly studied in quantum mechanics where they formulate the time evolution of quantum states and in artificial intelligence where they provide a means to construct stable learning algorithms by preserving norms. One natural question that arises when studying unitary matrices is how difficult it is to learn them. Such a question may arise, for example, when one would like to learn the dynamics of a quantum system or apply unitary transformations to data embedded into a machine learning algorithm. In this thesis, I examine the hardness of learning unitary matrices both in the context of deep learning and quantum computation. This work aims to both advance our general mathematical understanding of unitary matrices and provide a framework for integrating unitary matrices into classical or quantum algorithms. Different forms of parameterizing unitary matrices, both in the quantum and classical regimes, are compared in this work.
In general, experiments show that learning an arbitrary dxd² unitary matrix requires at least d² parameters in the learning algorithm regardless of the parameterization considered. In classical (non-quantum) settings, unitary matrices can be constructed by composing products of operators that act on smaller subspaces of the unitary manifold. In the quantum setting, there also exists the possibility of parameterizing unitary matrices in the Hamiltonian setting, where it is shown that repeatedly applying two alternating Hamiltonians is sufficient to learn an arbitrary unitary matrix. Finally, I discuss applications of this work in quantum and deep learning settings. For near term quantum computers, applying a desired set of gates may not be efficiently possible. Instead, desired unitary matrices can be learned from a given set of available gates (similar to ideas discussed in quantum controls).
Understanding the learnability of unitary matrices can also aid efforts to integrate unitary matrices into neural networks and quantum deep learning algorithms. For example, deep learning algorithms implemented in quantum computers may leverage parameterizations discussed here to form layers in a quantum learning architecture.
by Bobak Toussi Kiani.
S.M.
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Rodriguez, Fernandez Carlos Gustavo. "Machine learning quantum error correction codes : learning the toric code /." São Paulo, 2018. http://hdl.handle.net/11449/180319.
Повний текст джерелаBanca:Alexandre Reily Rocha
Banca: Juan Felipe Carrasquilla
Resumo: Usamos métodos de aprendizagem supervisionada para estudar a decodificação de erros em códigos tóricos de diferentes tamanhos. Estudamos múltiplos modelos de erro, e obtemos figuras da eficácia de decodificação como uma função da taxa de erro de um único qubit. Também comentamos como o tamanho das redes neurais decodificadoras e seu tempo de treinamento aumentam com o tamanho do código tórico.
Abstract: We use supervised learning methods to study the error decoding in toric codes ofdifferent sizes. We study multiple error models, and obtain figures of the decoding efficacyas a function of the single qubit error rate. We also comment on how the size of thedecoding neural networks and their training time scales with the size of the toric code
Mestre
Orazi, Filippo. "Quantum machine learning: development and evaluation of the Multiple Aggregator Quantum Algorithm." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25062/.
Повний текст джерелаHnatenko, O. S. "Quantum computing. Quantum information technologies as the basis for future learning platforms." Thesis, ISMA University of Applied Science, Riga, Latvia, 2021. https://openarchive.nure.ua/handle/document/16270.
Повний текст джерелаLow, Richard Andrew. "Pseudo-randonmess and Learning in Quantum Computation." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520259.
Повний текст джерелаКниги з теми "Quantum Learning"
Mike, Hernacki, ed. Quantum business: Achieving success through quantum learning. New York: Dell, 1997.
Знайти повний текст джерелаPattanayak, Santanu. Quantum Machine Learning with Python. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6522-2.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. Machine Learning with Quantum Computers. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83098-4.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. Supervised Learning with Quantum Computers. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9.
Повний текст джерелаSchütt, Kristof T., Stefan Chmiela, O. Anatole von Lilienfeld, Alexandre Tkatchenko, Koji Tsuda, and Klaus-Robert Müller, eds. Machine Learning Meets Quantum Physics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40245-7.
Повний текст джерелаQuantum learning & instructional leadership in practice. Thousand Oaks, CA: Corwin Press, 2007.
Знайти повний текст джерелаGanguly, Santanu. Quantum Machine Learning: An Applied Approach. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7098-1.
Повний текст джерелаPastorello, Davide. Concise Guide to Quantum Machine Learning. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6897-6.
Повний текст джерелаMike, Hernacki, ed. Quantum learning: Unleashing the genius in you. New York, N.Y: Dell Publishing, 1992.
Знайти повний текст джерелаMike, Hernacki, ed. Quantum learning: Unleash the genius within you. London: Piatkus, 1993.
Знайти повний текст джерелаЧастини книг з теми "Quantum Learning"
Stretton, Paul. "Learning from Everything." In Quantum Safety, 91–100. New York: Productivity Press, 2022. http://dx.doi.org/10.4324/9781003175742-8.
Повний текст джерелаDong, Daoyi, Chunlin Chen, and Zonghai Chen. "Quantum Reinforcement Learning." In Lecture Notes in Computer Science, 686–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539117_97.
Повний текст джерелаGanguly, Santanu. "Deep Quantum Learning." In Quantum Machine Learning: An Applied Approach, 403–59. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7098-1_8.
Повний текст джерелаPattanayak, Santanu. "Quantum Deep Learning." In Quantum Machine Learning with Python, 281–306. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6522-2_6.
Повний текст джерелаPattanayak, Santanu. "Quantum Machine Learning." In Quantum Machine Learning with Python, 221–79. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6522-2_5.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Mining, 1–10. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7_913-1.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Mining, 1034–43. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_913.
Повний текст джерелаKunczik, Leonhard. "Quantum Reinforcement Learning—Connecting Reinforcement Learning and Quantum Computing." In Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context, 41–48. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37616-1_4.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. "Machine Learning." In Quantum Science and Technology, 21–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_2.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. "Machine Learning." In Quantum Science and Technology, 23–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83098-4_2.
Повний текст джерелаТези доповідей конференцій з теми "Quantum Learning"
Koutný, Dominik, Laia Ginés, Magdalena Moczała-Dusanowska, Sven Höfling, Christian Schneider, Ana Predojević, and Miroslav Ježek. "Deep Learning of Quantum Entanglement." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qth2a.4.
Повний текст джерелаIranzo, Rosa M. Gil, Mercè Teixidó Cairol, Carina González González, and Roberto García. "Learning Quantum Computing." In Interacción '21: XXI International Conference on Human Computer Interaction. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3471391.3471424.
Повний текст джерелаKudyshev, Zhaxylyk, Simeon Bogdanov, Theodor Isacsson, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. "Machine Learning Assisted Quantum Photonics." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qm6b.3.
Повний текст джерелаWilson, Blake, Yuheng Chen, Sabre Kais, Alexander Kildishev, Vladimir Shalaev, and Alexandra Boltasseva. "Empowering Quantum 2.0 Devices and Approaches with Machine Learning." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qtu2a.13.
Повний текст джерелаBanchi, Leonardo, and Stefano Pirandola. "Supervised Quantum Learning as Quantum Channel Simulation." In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.s4b.5.
Повний текст джерелаBanchi, Leonardo, and Stefano Pirandola. "Supervised Quantum Learning as Quantum Channel Simulation." In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.s4d.6.
Повний текст джерелаNguyen, Tuyen, Incheon Paik, Hiroyuki Sagawa, and Truong Cong Thang. "Quantum Machine Learning with Quantum Image Representations." In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022. http://dx.doi.org/10.1109/qce53715.2022.00142.
Повний текст джерелаLiu, Ding, and Minghu Jiang. "Learning quantum operator by quantum adiabatic computation." In 2014 12th International Conference on Signal Processing (ICSP 2014). IEEE, 2014. http://dx.doi.org/10.1109/icosp.2014.7014970.
Повний текст джерелаQuiroga, David, Prasanna Date, and Raphael Pooser. "Discriminating Quantum States with Quantum Machine Learning." In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021. http://dx.doi.org/10.1109/qce52317.2021.00088.
Повний текст джерелаQuiroga, David, Prasanna Date, and Raphael Pooser. "Discriminating Quantum States with Quantum Machine Learning." In 2021 International Conference on Rebooting Computing (ICRC). IEEE, 2021. http://dx.doi.org/10.1109/icrc53822.2021.00018.
Повний текст джерелаЗвіти організацій з теми "Quantum Learning"
Lukac, Martin. Quantum Inductive Learning and Quantum Logic Synthesis. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2316.
Повний текст джерелаZahorodk, Pavlo V., Yevhenii O. Modlo, Olga O. Kalinichenko, Tetiana V. Selivanova, and Serhiy O. Semerikov. Quantum enhanced machine learning: An overview. CEUR Workshop Proceedings, March 2021. http://dx.doi.org/10.31812/123456789/4357.
Повний текст джерелаTretiak, Sergei, Benjamin Tyler Nebgen, Justin Steven Smith, Nicholas Edward Lubbers, and Andrey Lokhov. Machine Learning for Quantum Mechanical Materials Properties. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1498000.
Повний текст джерелаGuy, Khalil, and Gabriel Perdue. Using Reinforcement Learning to Optimize Quantum Circuits in thePresence of Noise. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1661681.
Повний текст джерелаLiu, Minzhao, Ge Dong, Kyle Felker, Matthew Otten, Prasanna Balaprakash, William Tang, and Yuri Alexeev. Exploration of Quantum Machine Learning and AI Accelerators for Fusion Science. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1840522.
Повний текст джерелаBillari, Francesco C., Johannes Fürnkranz, and Alexia Prskawetz. Timing, sequencing and quantum of life course events: a machine learning approach. Rostock: Max Planck Institute for Demographic Research, October 2000. http://dx.doi.org/10.4054/mpidr-wp-2000-010.
Повний текст джерелаFarhi, Edward, and Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, December 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Повний текст джерелаWachen, John, and Steven McGee. Qubit by Qubit’s Middle School Quantum Camp Evaluation Report for Summer 2021. The Learning Partnership, August 2021. http://dx.doi.org/10.51420/report.2021.5.
Повний текст джерелаPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.
Повний текст джерелаLockheed Martin Quantum Machine Learning. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1826570.
Повний текст джерела