Дисертації з теми "Quantum Learning"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Quantum Learning".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Повний текст джерелаLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
Lukac, Martin. "Quantum Inductive Learning and Quantum Logic Synthesis." PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/2319.
Повний текст джерелаDe, Bonis Gianluca. "Rassegna su Quantum Machine Learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24652/.
Повний текст джерелаPesah, Arthur. "Learning quantum state properties with quantum and classical neural networks." Thesis, KTH, Tillämpad fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252693.
Повний текст джерелаCangini, Nicolò. "Quantum Supervised Learning: Algoritmi e implementazione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17694/.
Повний текст джерелаKiani, Bobak Toussi. "Quantum artificial intelligence : learning unitary transformations." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127158.
Повний текст джерелаCataloged from the official PDF of thesis.
Includes bibliographical references (pages 77-83).
Linear algebra is a simple yet elegant mathematical framework that serves as the mathematical bedrock for many scientific and engineering disciplines. Broadly defined as the study of linear equations represented as vectors and matrices, linear algebra provides a mathematical toolbox for manipulating and controlling many physical systems. For example, linear algebra is central to the modeling of quantum mechanical phenomena and machine learning algorithms. Within the broad landscape of matrices studied in linear algebra, unitary matrices stand apart for their special properties, namely that they preserve norms and have easy to calculate inverses. Interpreted from an algorithmic or control setting, unitary matrices are used to describe and manipulate many physical systems.
Relevant to the current work, unitary matrices are commonly studied in quantum mechanics where they formulate the time evolution of quantum states and in artificial intelligence where they provide a means to construct stable learning algorithms by preserving norms. One natural question that arises when studying unitary matrices is how difficult it is to learn them. Such a question may arise, for example, when one would like to learn the dynamics of a quantum system or apply unitary transformations to data embedded into a machine learning algorithm. In this thesis, I examine the hardness of learning unitary matrices both in the context of deep learning and quantum computation. This work aims to both advance our general mathematical understanding of unitary matrices and provide a framework for integrating unitary matrices into classical or quantum algorithms. Different forms of parameterizing unitary matrices, both in the quantum and classical regimes, are compared in this work.
In general, experiments show that learning an arbitrary dxd² unitary matrix requires at least d² parameters in the learning algorithm regardless of the parameterization considered. In classical (non-quantum) settings, unitary matrices can be constructed by composing products of operators that act on smaller subspaces of the unitary manifold. In the quantum setting, there also exists the possibility of parameterizing unitary matrices in the Hamiltonian setting, where it is shown that repeatedly applying two alternating Hamiltonians is sufficient to learn an arbitrary unitary matrix. Finally, I discuss applications of this work in quantum and deep learning settings. For near term quantum computers, applying a desired set of gates may not be efficiently possible. Instead, desired unitary matrices can be learned from a given set of available gates (similar to ideas discussed in quantum controls).
Understanding the learnability of unitary matrices can also aid efforts to integrate unitary matrices into neural networks and quantum deep learning algorithms. For example, deep learning algorithms implemented in quantum computers may leverage parameterizations discussed here to form layers in a quantum learning architecture.
by Bobak Toussi Kiani.
S.M.
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Rodriguez, Fernandez Carlos Gustavo. "Machine learning quantum error correction codes : learning the toric code /." São Paulo, 2018. http://hdl.handle.net/11449/180319.
Повний текст джерелаBanca:Alexandre Reily Rocha
Banca: Juan Felipe Carrasquilla
Resumo: Usamos métodos de aprendizagem supervisionada para estudar a decodificação de erros em códigos tóricos de diferentes tamanhos. Estudamos múltiplos modelos de erro, e obtemos figuras da eficácia de decodificação como uma função da taxa de erro de um único qubit. Também comentamos como o tamanho das redes neurais decodificadoras e seu tempo de treinamento aumentam com o tamanho do código tórico.
Abstract: We use supervised learning methods to study the error decoding in toric codes ofdifferent sizes. We study multiple error models, and obtain figures of the decoding efficacyas a function of the single qubit error rate. We also comment on how the size of thedecoding neural networks and their training time scales with the size of the toric code
Mestre
Orazi, Filippo. "Quantum machine learning: development and evaluation of the Multiple Aggregator Quantum Algorithm." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25062/.
Повний текст джерелаHnatenko, O. S. "Quantum computing. Quantum information technologies as the basis for future learning platforms." Thesis, ISMA University of Applied Science, Riga, Latvia, 2021. https://openarchive.nure.ua/handle/document/16270.
Повний текст джерелаLow, Richard Andrew. "Pseudo-randonmess and Learning in Quantum Computation." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520259.
Повний текст джерелаIreson, Gren. "Students' understanding of quantum phenomena." Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/7381.
Повний текст джерелаSentís, Herrera Gael. "Dealing with ignorance: universal discrimination, learning and quantum correlations." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/134830.
Повний текст джерелаDiscriminating the state of a quantum system among a number of options is one of the most fundamental operations in quantum information theory. A primal feature of quantum theory is that, when two possible quantum states are nonorthogonal, no conceivable measurement of the system can determine its state with certainty. Quantum indeterminism so demands a probabilistic approach to the task of discriminating between quantum states. The usual setting considers that the possible states of the system are known. In this thesis, I analyze the role of the prior information available in facing a quantum state discrimination problem, and consider scenarios where the information regarding the possible states is incomplete. In front of a complete ignorance of the possible states' identity, I discuss a quantum programmable discrimination machine for qubit states that accepts this information as input programs using a quantum encoding, rather than just as a classical description. This \classical" ignorance is taken into account in the design, and, as a consequence, the machine is not case-speci c but it is able to handle discrimination tasks between any pair of possible qubits, once conveniently programmed through quantum inputs. The optimal per- formance of programmable machines is studied in detail for general qubit states when several copies of the states are provided, in the main schemes of unambiguous and minimum-error discrimination as well as in the more general scheme of discrimination with an error margin. Then, this type of automation in discrimination tasks is taken further. By realizing a programmable machine as a device that is trained through quantum information to perform a speci c task, I propose a quantum learning machine for classifying qubit states that does not require a quantum memory to store the qubit programs. I prove that such learning machine classi es the state of a qubit with the minimum-error rate that quantum mechanics permits, thus allowing for several optimal uses of the machine without the need of retraining. A similar learning scheme is also discussed for coherent states of light. I present it in the context of the readout of a classical memory by means of classically correlated coherent signals, when these are produced by an imperfect source and hence their state has some uncertainty associated. I show that the retrieval of information stored in the memory can be carried out more accurately when fully general quantum measurements are used. Finally, I analyse the mathematical structure of generalized quantum measurements, ubiquitous in all the topics covered in this thesis. I pro- pose a constructive and e cient algorithm to decompose any given quantum measurement into a statistically equivalent convex combination of simpler (extremal) measurements, which are in principle less costly to implement in a laboratory. Being able to compute this type of measurement decomposi- tions becomes useful in practical situations, where often a minimum-resources perspective prevails.
Sadaghiani, Homeyra R. "Conceptual and mathematical barriers to students learning quantum mechanics." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1123878116.
Повний текст джерелаTitle from first page of PDF file. Document formatted into pages; contains xvii, 321 p.; also includes graphics (some col.). Includes bibliographical references. Available online via OhioLINK's ETD Center
Spada, Roberta. "The second quantum revolution: designing a teaching-learning activity on the quantum manifesto to futurize science education." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18360/.
Повний текст джерелаSriarunothai, Theeraphot [Verfasser]. "Multi-qubit gates and quantum-enhanced deliberation for machine learning using a trapped-ion quantum processor / Theeraphot Sriarunothai." Siegen : Universitätsbibliothek der Universität Siegen, 2019. http://d-nb.info/1177366320/34.
Повний текст джерелаRavaioli, Giovanni. "Learning and accepting quantum physics. Re-analysis of a teaching proposal." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11220/.
Повний текст джерелаNuuman, Sinan. "Quantum reinforcement learning for dynamic spectrum access in cognitive radio networks." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/15617/.
Повний текст джерелаSnook, Michael. "Quantum Resistant Authenticated Key Exchange from Ideal Lattices." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1470757378.
Повний текст джерелаMills, Matthew. "A multipolar polarisable force field method from quantum chemical topology and machine learning." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/a-multipolar-polarisable-force-field-method-from-quantum-chemical-topology-and-machine-learning(3fb1e55c-0d4c-4d11-932b-71706bdbeb8b).html.
Повний текст джерелаPérez, Salinas Adrián. "Algorithmic strategies for seizing quantum computing." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/673255.
Повний текст джерелаLa computación cuántica es una tecnología emergente con potencial para resolver problemas hoy impracticables. Para ello son necesarios ordenadores capaces de mantener sistemas cuánticos y controlarlos con precisión. Sin embargo, construir estos ordenadores es complejo y a corto plazo solo habrá ordenadores pequeños afectados por el ruido y sujetos a ruido (NISQ). Para aprovechar los ordenadores NISQ se exploran algoritmos que requieran pocos recursos cuánticos mientras proporcionan soluciones aproximadas a los problemas que enfrentan. En esta tesis se estudian dos propuestas para algoritmos NISQ: re-uploading y unary. Cada estrategia busca tomar ventaja de diferentes características de la computación cuántica para superar diferentes obstáculos. Ambas estrategias son generales y aplicables en diversos escenarios. En primer lugar, re-uploading está diseñado como un puente entre la computación cuántica y el aprendizaje automático (Machine Learning). Aunque no es el primer intento de aplicar la cuántica al aprendizaje automático, re-uploading tiene ciertas características que lo distinguen de otros métodos. En concreto, re-uploading consiste en introducir datos en un algoritmo cuántico en diferentes puntos a lo largo del proceso. Junto a los datos se utilizan también parámetros optimizables clásicamente que permiten al circuito aprender cualquier comportamiento. Los resultados mejoran cuantas más veces se introducen los datos. El re-uploading cuenta con teoremas matemáticos que sustentan sus capacidades, y ha sido comprobado con éxito en diferentes situaciones tanto simuladas como experimentales. La segunda estrategia algorítmica es unary. Consiste en describir los problemas utilizando solo parte del espacio de computación disponible dentro del ordenador. Así, las capacidades computacionales del ordenador no son óptimas, pero a cambio las operaciones necesarias para una cierta tarea se simplifican. Los resultados obtenidos son resistentes al ruido, y mantienen su significado, y se produce una compensación entre eficiencia y resistencia a errores. Los ordenadores NISQ se ven beneficiados de esta situación para problemas pequeños. En esta tesis, unary se utiliza para resolver un problema tíıpico de finanzas, incluso obteniendo ventajas cuánticas en un problema aplicable al mundo real. Con esta tesis se espera contribuir al crecimiento de los algoritmos disponibles para ordenadores cuánticos NISQ y allanar el camino para las tecnologías venideras.
Eisenhart, Andrew. "Quantum Simulations of Specific Ion Effects in Organic Solvents." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1626356392775228.
Повний текст джерелаWu, Jiaxin. "Topics in Cold Atoms Related to Quantum Information Processing and A Machine Learning Approach to Condensed Matter Physics." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156320039156199.
Повний текст джерелаMori, Yuto. "Path optimization with neural network for sign problem in quantum field theories." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263466.
Повний текст джерелаTingley, Michael Alan. "Towards the Quantum Machine: Using Scalable Machine Learning Methods to Predict Photovoltaic Efficacy of Organic Molecules." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12553271.
Повний текст джерелаWyderka, Nikolai [Verfasser], and Otfried [Gutachter] Gühne. "Learning from correlations: what parts of quantum states tell about the whole / Nikolai Wyderka ; Gutachter: Otfried Gühne." Siegen : Universitätsbibliothek der Universität Siegen, 2020. http://d-nb.info/1211819973/34.
Повний текст джерелаR, V. Saraswathy. "Zero-Knowledge Proof for Knowledge of RLWE (Ring-Learning with Errors) Secret Keys." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1521192556946491.
Повний текст джерелаAlsayigh, Saed A. "New Password Authenticated Key Exchange Based on the Ring Learning with Errors." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1468337264.
Повний текст джерелаZhang, Wei. "Many-Body Localization in Disordered Quantum Spin Chain and Finite-Temperature Gutzwiller Projection in Two-Dimensional Hubbard Model:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108695.
Повний текст джерелаThe transition between many-body localized states and the delocalized thermal states is an eigenstate phase transition at finite energy density outside the scope of conventional quantum statistical mechanics. We apply support vector machine (SVM) to study the phase transition between many-body localized and thermal phases in a disordered quantum Ising chain in a transverse external field. The many-body eigenstate energy E is bounded by a bandwidth W=Eₘₐₓ-Eₘᵢₙ. The transition takes place on a phase diagram spanned by the energy density ϵ=2(Eₘₐₓ-Eₘᵢₙ)/W and the disorder strength ẟJ of the spin interaction uniformly distributed within [-ẟJ, ẟJ], formally parallel to the mobility edge in Anderson localization. In our study we use the labeled probability density of eigenstate wavefunctions belonging to the deeply localized and thermal regimes at two different energy densities (ϵ's) as the training set, i.e., providing labeled data at four corners of the phase diagram. Then we employ the trained SVM to predict the whole phase diagram. The obtained phase boundary qualitatively agrees with previous work using entanglement entropy to characterize these two phases. We further analyze the decision function of the SVM to interpret its physical meaning and find that it is analogous to the inverse participation ratio in configuration space. Our findings demonstrate the ability of the SVM to capture potential quantities that may characterize the many-body localization phase transition. To further investigate the properties of the transition, we study the behavior of the entanglement entropy of a subsystem of size L_A in a system of size L > L_A near the critical regime of the many-body localization transition. The many-body eigenstates are obtained by exact diagonalization of a disordered quantum spin chain under twisted boundary conditions to reduce the finite-size effect. We present a scaling theory based on the assumption that the transition is continuous and use the subsystem size L_A/ξ as the scaling variable, where ξ is the correlation length. We show that this scaling theory provides an effective description of the critical behavior and that the entanglement entropy follows the thermal volume law at the transition point. We extract the critical exponent governing the divergence of ξ upon approaching the transition point. We again study the participation entropy in the spin-basis of the domain wall excitations and show that the transition point and the critical exponent agree with those obtained from finite size scaling of the entanglement entropy. Our findings suggest that the many-body localization transition in this model is continuous and describable as a localization transition in the many-body configuration space. Besides the many-body localization transition driven by disorder, We also study the Coulomb repulsion and temperature driving phase transitions. We apply a finite-temperature Gutzwiller projection to two-dimensional Hubbard model by constructing a "Gutzwiller-type" density matrix operator to approximate the real interacting density matrix, which provides the upper bound of free energy of the system. We firstly investigate half filled Hubbard model without magnetism and obtain the phase diagram. The transition line is of first order at finite temperature, ending at 2 second order points, which shares qualitative agreement with dynamic mean field results. We derive the analytic form of the free energy and therefor the equation of states, which benefits the understanding of the different phases. We later extend our approach to take anti-ferromagnetic order into account. We determine the Neel temperature and explore its interesting behavior when varying the Coulomb repulsion
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Johansson, Alexander. "Performance analysis of lattice based post-quantum secure cryptography with Java." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-164306.
Повний текст джерелаBauer, Carsten [Verfasser], Simon [Gutachter] Trebst, and Achim [Gutachter] Rosch. "Simulating and machine learning quantum criticality in a nearly antiferromagnetic metal / Carsten Bauer ; Gutachter: Simon Trebst, Achim Rosch." Köln : Universitäts- und Stadtbibliothek Köln, 2020. http://d-nb.info/1228071888/34.
Повний текст джерелаLi, Zhenwei. "On-the-fly machine learning of quantum mechanical forces and its potential applications for large scale molecular dynamics." Thesis, King's College London (University of London), 2014. http://kclpure.kcl.ac.uk/portal/en/theses/onthefly-machine-learning-of-quantum-mechanical-forces-and-its-potential-applications-for-large-scale-molecular-dynamics(2a2f33a6-fa0c-44e3-8689-f4cf3f1c9198).html.
Повний текст джерелаMa, Yunpu [Verfasser], and Volker [Akademischer Betreuer] Tresp. "Learning with relational knowledge in the context of cognition, quantum computing, and causality / Yunpu Ma ; Betreuer: Volker Tresp." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1219852333/34.
Повний текст джерелаMaxwell, Peter. "FFLUX : towards a force field based on interacting quantum atoms and kriging." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/fflux-towards-a-force-field-based-on-interacting-quantum-atoms-and-kriging(72a8462a-6907-4f3d-82da-4c182e5a644d).html.
Повний текст джерелаRosca, Georgiana-Miruna. "On algebraic variants of Learning With Errors." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN063.
Повний текст джерелаLattice-based cryptography relies in great parts on the use of the Learning With Errors (LWE) problemas hardness foundation. This problem is at least as hard as standard worst-case lattice problems, but the primitives based on it usually have big key sizes and slow algorithms. Polynomial Learning With Errors (PLWE), dual Ring Learning With Errors (dual-RLWE) and primal Ring Learning WithErrors (primal-RLWE) are variants of LWE which make use of extra algebraic structures in order to fix the above drawbacks. The PLWE problem is parameterized by a polynomial f, while dual-RLWE andprimal-RLWE are defined using the ring of integers of a number field. These problems, which we call algebraic, also enjoy reductions from worst-case lattice problems, but in their case, the lattices involved belong to diverse restricted classes. In this thesis, we study relationships between algebraic variants of LWE.We first show that for many defining polynomials, there exist (non-uniform) reductions betweendual-RLWE, primal-RLWE and PLWE that incur limited parameter losses. These results could be interpretedas a strong evidence that these problems are qualitatively equivalent.Then we introduce a new algebraic variant of LWE, Middle-Product Learning With Errors (MP-LWE). We show that this problem is at least as hard as PLWE for many defining polynomials f. As a consequence,any cryptographic system based on MP-LWE remains secure as long as one of these PLWE instances remains hard to solve.Finally, we illustrate the cryptographic relevance of MP-LWE by building a public-key encryption scheme and a digital signature scheme that are proved secure under the MP-LWE hardness assumption
Johansson, Anders. "Uniformity in physics courses and student diversity : A study of learning to participate in physics." Licentiate thesis, Uppsala universitet, Fysikundervisningens didaktik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267308.
Повний текст джерелаLinn, Hanna. "Detecting quantum speedup for random walks with artificial neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289347.
Повний текст джерелаSlumpvandringar på grafer är essensiella i viktiga algoritmer för att lösa olika problem, till exempel SAT, booleska uppfyllningsproblem (the satisfiability problem). Genom att göra slumpvandringar snabbare går det att förbättra dessa algoritmer. Kvantversionen av slumpvandringar, kvantvandringar, har visats vara snabbare än klassiska slumpvandringar i specifika fall, till exempel på vissa linjära grafer. Det går att analysera, analytiskt eller genom att simulera vandringarna på grafer, när kvantvandringen är snabbare än slumpvandingen. Problem uppstår dock när graferna blir större, har fler noder samt fler kanter. Det finns inga kända generella regler för vad en godtycklig graf, som inte har några explicita symmetrier, borde uppfylla för att främja kvantvandringen. Simuleringar kommer bara besvara frågan för ett enda fall. De kommer inte att ge några generella regler för vilka egenskaper grafer borde ha. Artificiella neuronnät (ANN) har tidigare används som hjälpmedel för att upptäcka när kvantvandringen är snabbare än slumpvandingen på grafer. Då jämförs tiden det tar i genomsnitt att ta sig från startnoden till slutnoden. Dock är det inte säkert att få kvantacceleration för vandringen om initialtillståndet för kvantvandringen är helt i startnoden. I det här projektet undersöker vi om det går att få en större kvantacceleration hos kvantvandringen genom att starta den i superposition med en extra nod. Vi föreslår olika sätt att lägga till den extra noden till grafen och sen väljer vi en för att använda i resen av projektet. De superpositionstillstånd som undersöks är två av stabilisatortillstånden och två magiska tillstång. Valen av dessa tillstånd är inspirerat av Gottesmann- Knill satsen. Enligt satsen så kan en algoritm som startar i ett magiskt tillstånd ha en exponetiell uppsnabbning, men att starta i någon stabilisatortillstånden inte kan ha det. Detta givet att grindarna som används i algoritmen är från Cliffordgruppen samt att alla mätningar är i Paulibasen. I projektet visar vi att det är möjligt att träna en ANN så att den kan klassificera grafer utifrån vilken kvantvandring, med olika initialtillstånd, som var snabbast. Artificiella neuronnätet kan klassificera linjära grafer och slumpmässiga grafer bättre än slumpen. Vi visar också att faltningsnätverk med en djupare arkitektur än tidigare föreslaget för uppgiften är bättre på att klassificera grafer än innan. Våra resultat banar vägen för en automatiserad forskning i nya kvantvandringsbaserade algoritmer.
Fiderer, Lukas J. [Verfasser], and Daniel [Akademischer Betreuer] Braun. "New Concepts in Quantum Metrology : Dynamics, Machine Learning, and Bounds on Measurement Precision / Lukas J. Fiderer ; Betreuer: Daniel Braun." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1212025334/34.
Повний текст джерелаDomert, Daniel. "Explorations of University Physics in Abstract Contexts : From de Sitter Space to Learning Space." Doctoral thesis, Uppsala universitet, Fysikundervisningen didaktik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7265.
Повний текст джерелаSlovinscki, Luciano. "O experimento da borracha quântica : uso de analogias para o entendimento do quântico pelo clássico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/169564.
Повний текст джерелаStudies about Teaching Physics in Brazil, supported by official documents in Education and by the necessity, increasingly noticeable, of curriculum update, indicate and promote a greater articulation of topics of Modern and Contemporary Physics (MCP) in High School physics classes. Based on this overview, this work suggests an educational proposal underpinned by David Ausubel’s Meaningful Learning theoretical framework to present a qualitative approach of fundamental principles of Quantum Mechanics, from a historical perspective and supported by scientific facts that preceded Erwin Schrödinger's interpretation of quantum theory. The concepts delivered to the students were based on six postulates of Quantum Mechanics and went through a process of didactic transposition according to Yves Chevallard's theory, in a way to adapt the content to students level of knowledge. According to Ausubel’s theory, the decisive factor for learning depends on what the student already knows, and thus the meetings were based, whenever possible, on analogies between the quantum and the classical approach. To reach the learning objectives, we used a wide range of real and virtual experiments. The use of computational simulations proved to be a valuable tool to support teaching. The quantum eraser experiment, in particular, central figure of this didactic proposal, allowed the demonstration and discussion of all the addressed concepts. Results showed that most of students could assimilate what was intended to be taught, suggesting meaningful learning. The project was implemented in the Military College of Porto Alegre to a group of 36 students, mostly from the third year of high school, during the second semester of 2016.
Österberg, Viktor. "Using Machine Learning to Develop a Quantum-Accurate Inter-Atomic Potential for Large Scale Molecular Dynamics Simulations of Iron under Earth’s Core Conditions." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298848.
Повний текст джерелаMätningar av järns smälttemperatur under påfrestningar jämförbara med desom tros gälla i jordens kärna överensstämmer ej. För att försöka bestämma stabiliteten av relevanta gitter krävs simulationer av enorma mängder partiklar. I denna tes tränas en maskininlärd modell att återge resultat från Täthetsfunktionalteori. Olika maskininlärningsmodeller jämförs. Den tränade modellen används sedan i Molekyldynamik-simulationer av relevanta gitter som är förstora för Täthetsfunktionalteori.
Zauleck, Julius Philipp Paul [Verfasser], and Regina de [Akademischer Betreuer] Vivie-Riedle. "Improving grid based quantum dynamics : from the inclusion of solvents to the utilization of machine learning / Julius Philipp Paul Zauleck ; Betreuer: Regina de Vivie-Riedle." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1151818461/34.
Повний текст джерелаGriebeler, Adriane. "Inserção de tópicos de física quântica no ensino médio através de uma unidade de ensino potencialmente significativa." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/61844.
Повний текст джерелаIt has become a challenge to high school teachers to include contents of quantum physics in the school curriculum not only for the lack of due preparation but for the scarcity of incentive. In spite of available educational resources, teachers seldom feel ready to approach such contents in the classroom. Furthermore, the present high school curriculum as well as the National High School Exam (ENEM) do not seem to encourage the teaching of quantum physics. Nevertheless, because of the relevance of quantum physics and the dissemination of its mystical versions with their social representations, it is necessary to continue attempting at contributing to make this insertion possible in the near future. In this sense, a teaching unit on topics of quantum physics was developed with the purpose of motivating the students ’ interest and curiosity. David Ausubel’s theory of meaningful learning was used a its theoretical framework, so as to facilitate the occurrence of meaningful learning of the chosen contents of quantum physics based on the students’ prior knowledge about the subject. The proposal was developed in agreement with the steps of the Potentially Meaningful Teaching Units – PMTU (Moreira, 2011), according to which the first step was to make a survey of the students’ prior knowledge followed by a general presentation of the contents. From there on, each topic received a more specific/extensive treatment aiming at progressive differentiation and integrative reconciliation. The concepts involved in this study were quantization, uncertainty, state, and superposition of states and they were presented according to the PMTU’s steps. Implementation of this proposal occurred in four different classes of the 3rd year of high school at the State School E.M. Carlos Antonio Kluwe, Bagé, RS, Brazil, from October to December of 2011. These four classes, named A, B, C, and D, were divided into two groups. The first one, formed by classes A and B, started their activities on the October 10, 2011, while the second group, classes C and D, started them on October 31, 2011. The activities performed by the students, such as mind maps and concept maps drawn in pairs, as well as their comparison were qualitatively analysed. There are also shown free-choice works the students produced, as well as the newspaper that each of the classes put together. In addition, some of the students’ comments on their own development regarding the concepts approached in this proposal are presented. The analysis based on obtained results suggested evidence of the occurrence of meaningful learning, which is the aim of a PMTU. Furthermore, some comments that might indicate a fair receptivity to the proposal are also set forth since they seem to encourage new implementations of this proposal.
Glasser, Ivan [Verfasser], Ignacio [Akademischer Betreuer] Cirac, Nora [Gutachter] Brambilla, and Ignacio [Gutachter] Cirac. "Tensor networks, conformal fields and machine learning: applications in the description of quantum many-body systems / Ivan Glasser ; Gutachter: Nora Brambilla, Ignacio Cirac ; Betreuer: Ignacio Cirac." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1173899057/34.
Повний текст джерелаPronobis, Wiktor Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] [Müller, Alexandre [Gutachter] Tkatchenko, and Manfred [Gutachter] Opper. "Towards more efficient and performant computations in quantum chemistry with machine learning / Wiktor Pronobis ; Gutachter: Klaus-Robert Müller, Alexandre Tkatchenko, Manfred Opper ; Betreuer: Klaus-Robert Müller." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1208764470/34.
Повний текст джерелаPronobis, Wiktor [Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] Müller, Alexandre [Gutachter] Tkatchenko, and Manfred [Gutachter] Opper. "Towards more efficient and performant computations in quantum chemistry with machine learning / Wiktor Pronobis ; Gutachter: Klaus-Robert Müller, Alexandre Tkatchenko, Manfred Opper ; Betreuer: Klaus-Robert Müller." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1208764470/34.
Повний текст джерелаAugust, Moritz [Verfasser], Thomas [Akademischer Betreuer] Huckle, José Miguel [Gutachter] Hernández-Lobato, Steffen J. [Gutachter] Glaser, and Thomas [Gutachter] Huckle. "Tensor networks and machine learning for approximating and optimizing functions in quantum physics / Moritz August ; Gutachter: José Miguel Hernández-Lobato, Steffen J. Glaser, Thomas Huckle ; Betreuer: Thomas Huckle." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1175091804/34.
Повний текст джерелаHilger, Thaís Rafaela. "Representações sociais da física quântica." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/17743.
Повний текст джерелаA preliminary study regarding possible social representations of quantum physics among students from different social groups is described. Based on an initial survey on word associations to the expression "quantum physics" a questionnaire was constructed including a test of written concept associations (WCA) and a test of numerical concept association (NCA). This questionnaire was answered by 494 students, divided into three groups: physics undergraduate students, high school students, and undergraduate students from subjects other than physics. Data was analysed using the multidimensional scaling technique which provided spatial diagrams that reflect the conceptual structure shared by the investigated social groups. In the theoretical framework of the meaningful learning and social representations theories it was possible to gather evidences of the existence or not of social representations which may act as subsumers in the learning of physics together with other representations that constitute the mental representational ecology of the learners. Some of these representations might be an effect of information provided by books, movies and other media. This media disseminate information regarding scientific - or almost scientific concepts - and influence people's knowledge. Given that previous knowledge is the main variable influencing the acquisition of knew knowledge it is important to investigate the social representations resulting from this dissemination of information. Research findings suggest the existence of social representations about quantum physics shared by some of the subjects and groups studied. Specially in the case of high school students some evidence was obtained about the existence of social representations that should be more explored in future studies.
Rocha, Carlos Raphael. "Sobre o ensino do conceito de estado em cursos introdutórios de mecânica quântica." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/15281.
Повний текст джерелаA study, developed in three stages, designed to analyze the main difficulties in understanding two important concepts of Quantum Mechanics (QM) is presented. The main concepts of this study are: quantum state and linear superposition. The three stages of this research are: elaboration, implementation and evaluation of a pedagogical proposal in three short-term courses in educational meetings in the states of Rio Grande do Sul and Santa Catarina; elaboration and presentation of a 18 hours course at the University of Vale do Rio dos Sinos, in São Leopoldo, RS; revision of the material presented in the before mentioned course and presentation of a 20 hours course at the Federal University of Rio Grande do Sul, in Porto Alegre, RS. In the light of Ausubel’s meaningful learning and Vergnaud’s conceptual fields theories, problem-situations were designed seeking the promotion of meaningful learning of the contents presented in the different stages of the research. The formulations of the Stern-Gerlach experiment and the double-slit experiment seemed to motivate the students to learn and were good examples of application of the quantum concepts of the state of the quantum system, linear superposition of states, the collapse of the state vector, the possible values of measurement results and the probability of obtaining the measurement results. Research findings suggest that these experiments facilitated the comprehension of much of these concepts. The inclusion of contemporary topics (Quantum Entanglement and Quantum Cryptography) motivated the students for the learning of the very first principles of QM. The interest on the proposal showed during the short-term courses was very high, a point in favor of this activity, although the short period of contact with the contents presented did not allow the verification of meaningful learning. Although the used approach seemed to be a good way to introduce QM to the students, some other essential concepts need more studies, such as the linear operator and the time evolution of quantum systems.
Hilger, Thaís Rafaela. "Representações sociais de conceitos de física moderna e contemporânea." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/79586.
Повний текст джерелаIn the perspective of the meaningful learning theory, previous knowledge, or subsumers, are indispensable for cognitive anchoring. Social representations, together with other ideas that compose the learner’s mental representation ecology, might be relevant regarding what is to be learned since they act as subsumers. Some of these ideas might have been influenced by the diffusion media, that help to disseminate scientific concepts – or almost cientifick – and might influence people’s knowledge. That’s why it is necessary to investigate the meaning assigned to these concepts in the construction of social representations. Under the frameworks of meaningful learning and social representations theories a research study was carried out with the following objectives: 1) from the social representations identified in the master’s degree study, regarding Quantum Mechanics, to construct a Potentially Meaningful Teaching Until (PMTU) to deal with this subject and to investigate the possibility of changing such representations; 2) to identify possible social representations about other concepts of Modern an Contemporary Physiscs that might act as subsuming concepts in meaningful learning. To reach these objectives the research was divided into two work fronts: the first one provides some continuation to the study carried out in the master’s degree about the concepts of Quantum Physics, looking for a conceptual evolution, through the use of mental and conceptual maps using during the teaching process, and the second one deals with the research of the other concepts that might be target of social representations, through word association questionnaires, to reach a large audience such as, for exemple, high school students, college students, citizens of a given region that share the same culture, etc. Research findings suggest the existance of possible social representations about the chosen topics and also the possibility of a representational change of them using a didactical proposal to teach Quantum Mechanics.
Perea, Ospina Jose Dario [Verfasser], Salvador León [Akademischer Betreuer] Cabanillas, and Christoph J. [Gutachter] Brabec. "Solubility and Miscibility of Organic Semiconductors for Efficient and Stable Organic Solar Cells Investigated via Machine Learning and Quantum Chemistry Methods / Jose Dario Perea Ospina ; Gutachter: Christoph J. Brabec ; Betreuer: Salvador León Cabanillas." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1184575215/34.
Повний текст джерела