Дисертації з теми "Quasi Linear Equation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-45 дисертацій для дослідження на тему "Quasi Linear Equation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Zhu, Rongchan [Verfasser]. "SDE and BSDE on Hilbert spaces: applications to quasi-linear evolution equations and the asymptotic properties of the stochastic quasi-geostrophic equation / Rongchan Zhu. Fakultät für Mathematik." Bielefeld : Universitätsbibliothek Bielefeld, Hochschulschriften, 2012. http://d-nb.info/1021059471/34.
Повний текст джерелаRakesh, Arora. "Fine properties of solutions for quasi-linear elliptic and parabolic equations with non-local and non-standard growth." Thesis, Pau, 2020. http://www.theses.fr/2020PAUU3021.
Повний текст джерелаIn this thesis, we study the fine properties of solutions to quasilinear elliptic and parabolic equations involving non-local and non-standard growth. We focus on three different types of partial differential equations (PDEs).Firstly, we study the qualitative properties of weak and strong solutions of the evolution equations with non-standard growth. The importance of investigating these kinds of evolutions equations lies in modeling various anisotropic features that occur in electrorheological fluids models, image restoration, filtration process in complex media, stratigraphy problems, and heterogeneous biological interactions. We derive sufficient conditions on the initial data for the existence and uniqueness of a strong solution of the evolution equation with Dirichlet type boundary conditions. We establish the global higher integrability and second-order regularity of the strong solution via proving new interpolation inequalities. We also study the existence, uniqueness, regularity, and stabilization of the weak solution of Doubly nonlinear equation driven by a class of Leray-Lions type operators and non-monotone sub-homogeneous forcing terms. Secondly, we study the Kirchhoff equation and system involving different kinds of non-linear operators with exponential nonlinearity of the Choquard type and singular weights. These type of problems appears in many real-world phenomena starting from the study in the length of the string during the vibration of the stretched string, in the study of the propagation of electromagnetic waves in plasma, Bose-Einstein condensation and many more. Motivating from the abundant physical applications, we prove the existence and multiplicity results for the Kirchhoff equation and system with subcritical and critical exponential non-linearity, that arise out of several inequalities proved by Adams, Moser, and Trudinger. To deal with the system of Kirchhoff equations, we prove new Adams, Moser and Trudinger type inequalities in the Cartesian product of Sobolev spaces.Thirdly, we study the singular problems involving nonlocal operators. We show the existence and multiplicity for the classical solutions of Half Laplacian singular problem involving exponential nonlinearity via bifurcation theory. To characterize the behavior of large solutions, we further study isolated singularities for the singular semi linear elliptic equation. We show the symmetry and monotonicity properties of classical solution of fractional Laplacian problem using moving plane method and narrow maximum principle. We also study the nonlinear fractional Laplacian problem involving singular nonlinearity and singular weights. We prove the existence, uniqueness, non-existence, optimal Sobolev and Holder regularity results via exploiting the C^1,1 regularity of the boundary, barrier arguments and approximation method
Mokrane, Abdelhafid. "Existence de solutions pour certains problèmes quasi linéaires elliptiques et paraboliques." Paris 6, 1986. http://www.theses.fr/1986PA066086.
Повний текст джерелаMaach, Fatna. "Existence pour des systèmes de réaction-diffusion ou quasi linéaires avec loi de balance." Nancy 1, 1994. http://www.theses.fr/1994NAN10121.
Повний текст джерелаJonsson, Karl. "Two Problems in non-linear PDE’s with Phase Transitions." Licentiate thesis, KTH, Matematik (Avd.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223562.
Повний текст джерелаQC 20180222
Drogoul, Audric. "Méthode du gradient topologique pour la détection de contours et de structures fines en imagerie." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4063/document.
Повний текст джерелаThis thesis deals with the topological gradient method applied in imaging. Particularly, we are interested in object detection. Objects can be assimilated either to edges if the intensity across the structure has a jump, or to fine structures (filaments and points in 2D) if there is no jump of intensity across the structure. We generalize the topological gradient method already used in edge detection for images contaminated by Gaussian noise, to quasi-linear models adapted to Poissonian or speckled images possibly blurred. As a by-product, a restoration model based on an anisotropic diffusion using the topological gradient is presented. We also present a model based on an elliptical linear PDE using an anisotropic differential operator preserving edges. After that, we study a variational model based on the topological gradient to detect fine structures. It consists in the study of the topological sensitivity of a cost function involving second order derivatives of a regularized version of the image solution of a PDE of Kirchhoff type. We compute the topological gradients associated to perforated and cracked 2D domains and to cracked 3D domains. Many applications performed on 2D and 3D blurred and Gaussian noisy images, show the robustness and the fastness of the method. An anisotropic restoration model preserving filaments in 2D is also given. Finally, we generalize our approach by the study of the topological sensitivity of a cost function involving the m − th derivatives of a regularization of the image solution of a 2m order PDE
Qi, Yuan-Wei. "The blow-up of quasi-linear parabolic equations." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253381.
Повний текст джерелаFurlan, Marco. "Structures contrôlées pour les équations aux dérivées partielles." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED008/document.
Повний текст джерелаThe thesis project has various possible directions: a) Improve the understanding of the relations between the theory of Regularity Structures developed by M.Hairer and the method of Paracontrolled Distributions developed by Gubinelli, Imkeller and Perkowski, and eventually to provide a synthesis. This is highly speculative and at the moment there are no clear path towards this long term goal. b) Use the theory of Paracontrolled Distributions to study different types of PDEs: transport equations and general hyperbolic evolution equation, dispersive equations, systems of conservation laws. These PDEs are not in the domain of the current methods which were developed mainly to handle parabolic semilinear evolution equations. c) Once a theory of transport equation driven by rough signals have been established it will become possible to tackle the phenomena of regularization by transport noise which for the moment has been studied only in the context of transport equations driven by Brownian motion, using standard tools of stochastic analysis. d) Renormalization group (RG) techniques and multi-scale expansions have already been used both to tackle PDE problems and to define Euclidean Quantum Field Theories. Paracontrolled Distributions theory can be understood as a kind of mul- tiscale analysis of non-linear functionals and it would be interesting to explore the interplay of paradifferential techniques with more standard techniques like cluster expansions and RG methods
Samarawickrama-Kuruppuge, Paduma E. "On the Reducibility of Systems of Quasi-Periodic Linear Functional Differential Equations." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1556815414015887.
Повний текст джерелаMoraes, Elisandra de Fátima Gloss de. "Existencia e concentração de soluções para equações de Schrodinger quase-lineares." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307292.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-15T15:20:37Z (GMT). No. of bitstreams: 1 Moraes_ElisandradeFatimaGlossde_D.pdf: 1261630 bytes, checksum: 516f800553b6eff1f3462fe4be134e8a (MD5) Previous issue date: 2010
Resumo: Neste trabalho, estudamos questões relacionadas com existência e concentração de soluções positivas para algumas classes de problemas elípticos quase-lineares. Na obtenção de nossos resultados usamos um método variacional que permite estudar soluções do tipo "singlepeak" e "multiple-peak" para uma classe bem geral de não linearidades que não satisfazem necessariamente a condição clássica de Ambrosetti-Rabinowitz bem como nenhuma hipótese de monotonicidade. Problemas deste tipo aparecem em vários modelos da física e biologia, onde a presença de pequenos parâmetros de difusão ocorre naturalmente. Na Física de Plasmas, por exemplo, surgem no estudo de ondas estacionárias para certas classes de problemas envolvendo equações de Schrödinger quase-lineares
Abstract: In this work we study questions related with existence and concentration of positive solutions for some classes of quasilinear elliptic problems. To obtain our results we use a variational method that allows us to study solutions of the "single-peak" and "multiple-peak" type for a more general class of nonlinearities which do not satisfy necessarily the Ambrosetti-Rabinowitz condition and monotonicity hypothesis. Problems of this type appear in several models of physics and biology where the presence of small parameters of difusion occurs naturally. In plasma physics for example, they arise in the study of stationary waves for certain classes of quasilinear Schrödinger equations
Doutorado
Analise
Doutor em Matemática
Silva, Kênio Alexsom de Almeida 1979. "Auto-adjunticidade não-linear e leis de conservação para equações evolutivas sobre superfícies regulares." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306724.
Повний текст джерелаTese (doutorado) ¿ Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-21T22:59:33Z (GMT). No. of bitstreams: 1 Silva_KenioAlexsomdeAlmeida_D.pdf: 5129062 bytes, checksum: 0bae8b75b0ea90b8799bc1dd7496d766 (MD5) Previous issue date: 2013
Resumo: Nesta tese estudamos o conceito novo de equações diferenciais não - linearmente auto-adjuntas para duas classes gerais de equações evolutivas de segunda ordem quase lineares. Uma vez que essas equações não provêm de um problema variacional, não podemos obter leis de conservação via o Teorema de Noether. Por isto aplicamos tal conceito e o Novo Teorema sobre Leis de Conservação de Nail H. Ibragimov, o qual possibilita-nos a determinação de leis de conservação para qualquer equação diferencial. Obtivemos em ambas as classes, equações não - linearmente auto-adjuntos e leis de conservação para alguns casos particularmente importantes: a) as equações do fluxo de Ricci geométrico, do fluxo de Ricci 2D, do fluxo de Ricci modificada e a equação do calor não-linear, na primeira classe; b) as equações do fluxo geométrico hiperbólico e do fluxo geométrica hiperbólica modificada, na segunda classe de equações evolutivas
Abstract: In this thesis we study the new concept of nonlinear self-adjoint deferential equations for two general classes of quasilinear 2D second order evolution equations. Since these equations do not come from a variational problem, we cannot obtain conservation laws via the Noether's Theorem. Therefore we apply this concept and the New Conservation Theorem of Nail H. Ibragimov, which enables one to establish the conservation laws for any deferential equation. We obtain in classes, nonlinear self-adjoint equations and conservation laws for important particular cases: a) the Ricci flow geometric equation, Ricci flow 2D equation, the modified Ricci flow equation and the nonlinear heat equation in the first class; b) the hyperbolic geometric flow equation and the modified hyperbolic geometric flow equation in the second class of evolution equations
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Ali, Zakaria Idriss. "Existence result for a class of stochastic quasilinear partial differential equations with non-standard growth." Diss., University of Pretoria, 2010. http://hdl.handle.net/2263/29519.
Повний текст джерелаDissertation (MSc)--University of Pretoria, 2010.
Mathematics and Applied Mathematics
unrestricted
Steinbrecher, Andreas. "Numerical solution of quasi-linear differential-Algebraic equations and industrial simulation of multibody systems." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980015936.
Повний текст джерелаErnst, Oliver G. "Minimal and orthogonal residual methods and their generalizations for solving linear operator equations." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:swb:105-3293998.
Повний текст джерелаPefferly, Robert J. "Finite difference approximations of second order quasi-linear elliptic and hyperbolic stochastic partial differential equations." Thesis, University of Edinburgh, 2001. http://hdl.handle.net/1842/11244.
Повний текст джерелаErnst, Oliver G. "Minimal and orthogonal residual methods and their generalizations for solving linear operator equations." Doctoral thesis, [S.l. : s.n.], 2000. https://tubaf.qucosa.de/id/qucosa%3A22355.
Повний текст джерелаRodrigues, Letícia Faleiros Chaves [UNESP]. "Estabilidade de equações de diferenças quase lineares." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/94368.
Повний текст джерелаO objetivo principal deste trabalho é estudar a estabilidade de equações de diferen- ças do tipo quase lineares utilizando o Método de Linearização, visando sua aplicação na análise de modelos na área de Biologia e Economia
The main objective of this work is to study the stability of almost linear di erence equations, by using the Linearization Method, in order to use in the analysis of some models in Biology and Economy
Rodrigues, Letícia Faleiros Chaves. "Estabilidade de equações de diferenças quase lineares /." Rio Claro, 2013. http://hdl.handle.net/11449/94368.
Повний текст джерелаBanca: Renata Zotin Fomes de Oliveira
Banca: Antônio Carlos da Silva Filho
Resumo: O objetivo principal deste trabalho é estudar a estabilidade de equações de diferenças do tipo quase lineares utilizando o Método de Linearização, visando sua aplicação na análise de modelos na área de Biologia e Economia
Abstract: The main objective of this work is to study the stability of almost linear di erence equations, by using the Linearization Method, in order to use in the analysis of some models in Biology and Economy
Mestre
Taha, Abdel-Kaddous. "Solutions periodiques et quasi-periodiques d'une equation de duffing non autonome a double excitation periodique." Toulouse, INSA, 1987. http://www.theses.fr/1987ISAT0002.
Повний текст джерелаSevero, Uberlandio Batista. "Estudo de uma classe de equações de Schrodinger quase-lineares." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307293.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-09T00:03:49Z (GMT). No. of bitstreams: 1 Severo_UberlandioBatista_D.pdf: 985878 bytes, checksum: 9d6e8a161a83e2812687d6ed4364bda1 (MD5) Previous issue date: 2007
Resumo: Neste trabalho, estudamos questões relacionadas à existência, multiplicidade e comportamento de concentração de soluções do tipo onda estacionária, para uma classe de equações de Schrödinger quase-lineares, as quais modelam fenômenos físicos, por exemplo, na F³sica de Plasmas. Na obtenção de nossos resultados, usamos métodos variacionais, tais como, teoremas do tipo mini-max, bem como, teoria de regularidade de equações elípticas de segunda ordem
Abstract: In this work, we study questions related to existence, multiplicity and concentration behavior of standing waves, for a class of quasilinear Schrödinger equations, arising, for example, in Plasma Physics. To obtain our results, we use variational methods, such as, minimax theorems and also regularity theory of elliptic equations of second order
Doutorado
Analise
Doutor em Matemática
Naceur, Nahed. "Une méthode de décomposition de domaine pour la résolution numérique d’une équation non-linéaire." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0149.
Повний текст джерелаThe subject of this thesis is to present a theoretical analysis and a numerical resolution of a type of quasi-linear elliptic and parabolic equations. These equations present an important role to model phenomena in population dynamics and chemical reactions. We started this thesis with the theoretical study of a quasi-linear elliptical equation for which we demonstrated the existence of a weak non-negative solution under more general hypotheses than those considered in previous works. Then we inspired a new method based on Newton’s method and the domain decomposition method without and with overlapping. Then, we recalled some theoretical aspects concerning the existence, the uniqueness and the regularity of the solution of a parabolic equation called Fujita equation. We also recalled results about the existence of the global solution and the maximum time of existence in the case of blow-up. In order to calculate a numerical approximation of the solution of this type of equation, we introduced a finite element discretization in the space variable and a Crank-Nicholson scheme for the time discretization. To solve the discrete nonlinear problem we implemented a Newton’s method coupled with a domain decomposition method. We have shown that the method is well posed. Another type of parabolic equation known as the Chipot-Weissler equation has also been treated. First, we recalled theoretical results concerning this equation. Then, based on the numerical methods studied previously, a numerical approximation of the solution of this equation was calculated. In the last section of each chapter of this thesis we presented numerical simulations illustrating the performance of the algorithms studied and its compatibility with the theory
Odland, Tove. "On Methods for Solving Symmetric Systems of Linear Equations Arising in Optimization." Doctoral thesis, KTH, Optimeringslära och systemteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166675.
Повний текст джерелаI denna avhandling betraktar vi matematiska egenskaper hos metoder för att lösa symmetriska linjära ekvationssystem som uppkommer i formuleringar och metoder för en mängd olika optimeringsproblem. I första och tredje artikeln (Paper A och Paper C), undersöks kopplingen mellan konjugerade gradientmetoden och kvasi-Newtonmetoder när dessa appliceras på strikt konvexa kvadratiska optimeringsproblem utan bivillkor eller ekvivalent på ett symmet- risk linjärt ekvationssystem med en positivt definit symmetrisk matris. Vi ställer upp villkor på kvasi-Newtonmatrisen och uppdateringsmatrisen så att sökriktningen som fås från motsvarande kvasi-Newtonmetod blir parallell med den sökriktning som fås från konjugerade gradientmetoden. I den första artikeln (Paper A), härleds villkor på uppdateringsmatrisen baserade på ett tillräckligt villkor för att få ömsesidigt konjugerade sökriktningar. Dessa villkor på kvasi-Newtonmetoden visas vara ekvivalenta med att uppdateringsstrategin tillhör Broydens enparameterfamilj. Vi tar också fram en ett-till-ett överensstämmelse mellan Broydenparametern och skalningen mellan sökriktningarna från konjugerade gradient- metoden och en kvasi-Newtonmetod som använder någon väldefinierad uppdaterings- strategi från Broydens enparameterfamilj. I den tredje artikeln (Paper C), ger vi tillräckliga och nödvändiga villkor på en kvasi-Newtonmetod så att nämnda ekvivalens med konjugerade gradientmetoden er- hålls. Mängden kvasi-Newtonstrategier som uppfyller dessa villkor är strikt större än Broydens enparameterfamilj. Vi visar också att denna mängd kvasi-Newtonstrategier innehåller ett oändligt antal uppdateringsstrategier där uppdateringsmatrisen är en sym- metrisk matris av rang ett. I den andra artikeln (Paper B), används ett ramverk för icke-normaliserade Krylov- underrumsmetoder för att lösa symmetriska linjära ekvationssystem. Dessa ekvations- system kan sakna lösning och matrisen kan vara indefinit/singulär. Denna typ av sym- metriska linjära ekvationssystem uppkommer i en mängd formuleringar och metoder för optimeringsproblem med bivillkor. I fallet då det symmetriska linjära ekvations- systemet saknar lösning ger vi ett certifikat för detta baserat på en projektion på noll- rummet för den symmetriska matrisen och karaktäriserar en minimum-residuallösning. Vi härleder även en minimum-residualmetod i detta ramverk samt ger explicita rekur- sionsformler för denna metod. I fallet då det symmetriska linjära ekvationssystemet saknar lösning så karaktäriserar vi en minimum-residuallösning av minsta euklidiska norm.
QC 20150519
Filho, NarcÃlio Silva de Oliveira. "Regularidade para equaÃÃes quase lineares em conjuntos singulares degenerados." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14681.
Повний текст джерелаCoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
We will study a new universal gradient continuity estimate for solutions to quasi-linear equations with varying coefficients at singular set of degeneracy: S(u) := {X : Du(X) = 0}. Ourmain theorem reveals that along S(u), u is asymptotic as regular as solutions to constant coefficient equations. In particular, along the critical set S(u),u enjoys a modulus of continuity much superior than the possibly low, continuity feature of the coefficients. The results are new even in the context of linear elliptic equations, where it is herein shown that H^1- weak solutions to div (a(X,Du))= 0 with aij elliptic and dinicontinuous are actually C ^{1,1^{-}} along S(u). The results and insights of this work foster a new understanding os smoothness properties of solutions to degenerate or singular equations, beyond typical elliptic regularity estimates, precisely where the diffusion attributes of the equation collapse.
Neste trabalho estudaremos uma nova estimativa universal para a continuidade do gradiente de soluÃÃes para equaÃÃes quase lineares com coeficientes variÃveis em conjuntos singulares degenerados que serÃo denotados por S(u) := {X : Du(X) = 0} . O resultado principal deste trabalho revela que ao longo de S(u), u à assintoticamente tÃo regular quanto as soluÃÃes das equaÃÃes com coeficientes constantes. Em particular, ao longo do conjunto S(u), Du tem um mÃdulo de continuidade superior a baixa caracterÃstica de continuidade de seus coeficientes. Os resultados sÃo novos e mesmo no contexto de equaÃÃes diferenciais lineares onde se mostra que soluÃÃes H^1- fracas da equaÃÃo div(a(X, Du)) = 0 com os aij elÃpicos e Dini-ContÃnuos sÃo realmente C ^{1,1^{-}} ao longo de S(u). Os resultados e as perspectivas deste trabalho promovem um novo entendimento sobre as propriedades suavidade de soluÃÃes para equaÃÃes singulares, ou degeneradas, alÃm de estimativas tÃpicas sobre regularidade elÃpticas, precisamente onde temos os atributos de difusÃo do equaÃÃo do colapso.
Akanda, Md Abdus Salam. "A generalized estimating equations approach to capture-recapture closed population models: methods." Doctoral thesis, Universidade de Évora, 2014. http://hdl.handle.net/10174/18297.
Повний текст джерелаRampasso, Giane Casari. "Soluções quase periódicas para equações diferenciais funcionais /." São José do Rio Preto, 2015. http://hdl.handle.net/11449/127744.
Повний текст джерелаBanca: German Jesus Lozada Cruz
Banca: Sandro Marcos Guzzo
Resumo: O objetivo deste trabalho e encontrar soluções fracas quase peri odicas para equações diferenciais que podem ser escritas na forma u0(t) = Au(t) + f(u(t); t); t 2 R; onde A e o gerador in nitesimal de um C0 - semigrupo exponencialmente est avel, X e um espa co de Banach e f : X R ! X e uma função apropriada. Para isto, estudaremos as principais propriedades da teoria de semigrupos de operadores lineares limitados e da teoria de fun c~oes quase peri odicas. Al em disso, apresentaremos resultados que garantem a existência e a unicidade de solução para o problema de Cauchy abstrato, utilizando como ferramenta, a teoria de semigrupos
Abstract: The purpose of this work is to nd almost periodic mild solutions for di erential equations that can be written in the form u0(t) = Au(t) + f(u(t); t); t 2 R; where A is the in nitesimal generator of a exponentially stable C0 - semigroup, X is a Banach space and f : X R ! X is an appropriate function. For this, we will study the main properties of the theory of semigroup of bounded linear operators and the theory of almost periodic functions. Moreover, we will present results that ensure the existence and uniqueness of solution for the abstract Cauchy problem, using as a tool, the semigroup theory
Mestre
Venezuela, Maria Kelly. ""Modelos lineares generalizados para análise de dados com medidas repetidas"." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-07072006-122612/.
Повний текст джерелаIn this work, we consider the generalized estimation equations developed by Liang and Zeger (1986) focusing the theory of estimating functions presented by Godambe (1991). These estimation equations are an extension of generalized linear models (GLMs) to the analysis of repeated measurements. We present an iterative procedure to estimate the regression parameters as well as hypothesis testing of these parameters. For the residual analysis, we generalize to repeated measurements some diagnostic methods available for GLMs. The half-normal probability plot with a simulated envelope is useful for diagnosing model inadequacy and detecting outliers. To obtain this plot, we consider an algorithm for generating a set of nonnegatively correlated variables having a specified correlation structure. Finally, the theory is applied to real data sets.
Hitomi, Eduardo Eizo Aramaki 1989. "Equações parabólicas quase lineares e fluxos de curvatura média em espaços euclidianos." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306218.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T03:06:43Z (GMT). No. of bitstreams: 1 Hitomi_EduardoEizoAramaki_M.pdf: 5800906 bytes, checksum: 04b93921a20d8ab0f71d4977b9e93e73 (MD5) Previous issue date: 2015
Resumo: Nesta dissertação realizamos um estudo sobre o fluxo de curvatura média em espaços Euclidianos sob as perspectivas analítica e geométrica. Tratamos inicialmente da existência e regularidade de soluções em tempos pequenos de equações parabólicas quase lineares de segunda ordem em variedades Riemannianas, o que é essencial para garantirmos a existência de uma solução suave em tempo pequeno do fluxo de curvatura média. Em uma segunda parte, passamos a alguns resultados sobre o comportamento no intervalo maximal de existência de uma solução suave da hipersuperfície em evolução, por meio de equações das componentes geométricas associadas e de Princípios de Máximo. Próximo desse tempo maximal, analisamos a formação de singularidades do Tipo I por meio da Fórmula de Monotonicidade de Huisken e de rescalings, e do Tipo II por meio de uma técnica de blow-up devida a Hamilton. Em especial, reservamos o caso de curvas a um capítulo a parte e apresentamos resultados clássicos da teoria de curve-shortening flows
Abstract: In this dissertation we study the mean curvature flow in Euclidean spaces from the analytic and geometric point of view. We deal initially with short-time existence and regularity of a solution for second order quasilinear parabolic equations on Riemannian manifolds, which is essential to guarantee the short-time existence of a smooth solution to the mean curvature flow. In a second part, we present some results concerning the behavior of the evolving hypersurface close to the maximal time of existence of a smooth solution, by means of Maximum Principles and evolution equations of the associated geometric components. Close to this maximal time, we analyse the formation of singularities of Type I by means of rescalings and Huisken's Monotonicity Formula, and of Type II by means of a blow-up technique due to Hamilton. In particular, we reserve the case of curves to a separate chapter, where we present some classical results in curve-shortening flow theory
Mestrado
Matematica
Mestre em Matemática
Gambera, Laura Rezzieri. "Soluções quase automórficas para equações diferenciais abstratas de segunda ordem /." São José do Rio Preto, 2016. http://hdl.handle.net/11449/137973.
Повний текст джерелаBanca: Sérgio Leandro Nascimento Neves
Banca: Márcia Cristina Anderson Braz Federson
Resumo: Neste trabalho estudamos a existência de solução fraca quase automórfica para equações diferenciais abstratas de segunda ordem descritas na forma x'(t) = Ax(t) + f(t, x(t)), t real, onde x(t) pertence a X para todo t real, X é um espaço de Banach, A : D(A) C X -> X é o gerador infinitesimal de uma família cosseno fortemente contínua de operadores lineares limitados em X e f : R x X -> X é uma função apropriada
Abstract: In this work we study the existence of an almost automorphic mild solution to second order abstract differential equations given by x'(t) = Ax(t) + f(t, x(t)), t real, where x(t) lies in X for all t real, X is a Banach space, A : D(A) C X ->X is the infinitesimal generator of a strongly continuous cosine family of bounded linear operators on X and f : R x X -> X is an appropriate function
Mestre
Mendonça, Luziane Ferreira de. "Aceleração quase-Newton para problemas de minimização com restrições." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306668.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-06T05:45:54Z (GMT). No. of bitstreams: 1 Mendonca_LuzianeFerreirade_D.pdf: 3091539 bytes, checksum: 7c40c0932b2056dbe8dfb8e1f7da8401 (MD5) Previous issue date: 2006
Resumo: Sistemas de Otimalidade (ou Sistemas KKT) são sistemas formados pelas condições primais-duais estacionárias para a solução de problemas de otimização. Sob hipóteses adequadas (condições de qualificação), os minimizadores locais de um problema de minimização satisfarão as equações e inequações KKT; entretanto, infelizmente, muitos outros pontos estacionários (incluindo maximizadores) também são soluções desse sistema não linear. Por essa razão, os métodos destinados à resolução de problemas de programação não-linear fazem uso constante da estrutura de minimização, e o uso simples de métodos destinados à resolução de sistemas não-lineares podem gerar soluções espúrias. Todavia, caso o método destinado à resolução do sistema KKT tenha um ponto inicial situado na região de atração para um minimizador, esse método pode vir a ser muito eficiente. Neste trabalho, os métodos quase-Newton para a resolução de sistemas não-lineares são usados como aceleradores de algoritmos de programação não-linear (Lagrangiano Aumentado) com restrições de igualdade, desigualdade e caixa. Utilizamos como acelerador o método simétrico inverso de correção de posto um (ISR1), o qual realiza reínicios periódicos e faz uso das estruturas esparsas das matrizes para armazenamento. São demonstrados resultados de convergência e são realizados vários experimentos numéricos que comprovam a eficiência desta estratégia para problemas de minimização com restrições de igualdade, e indicam outros caminhos para problemas de minimização com restrições gerais (igualdade, desigualdade e caixa)
Abstract: Optimality (or KKT) systems arise as primal-dual stationarity conditions for constrained optimization problems. Under suitable constraint qualifications, local minimizers satisfy KKT equations but, unfortunately, many other stationary points (including, perhaps, maximizers) may solve these nonlinear systems too. For this reason, nonlinear-programming solvers make strong use of the minimization structure and the naive use of nonlinear-system solvers in optimization may lead to spurious solutions. Nevertheless, in the basin of attraction of a minimizer, nonlinear-system solvers may be quite efficient. In this work quasi-Newton methods for solving nonlinear systems are used as accelerators of nonlinear-programming (augmented Lagrangian) algorithms. A periodically-restarted memoryless symmetric rank-one (SRI) correction method is introduced for that purpose. Convergence results are given. For problems with only equality constraints, numerical experiments that confirm that the acceleration is effective are presented. A bunch of problems with equalities, inequalities and box constraints is tested and several comments and suggestions for further work are presented
Doutorado
Doutor em Matemática Aplicada
Anjos, Hudson Umbelino dos. "Soluções para uma Classe de Equações de Schrödinger Quase Lineares via Método de Nehari." Universidade Federal da Paraíba, 2010. http://tede.biblioteca.ufpb.br:8080/handle/tede/7460.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this dissertation, we study existence of both one-sign and nodal positive solutions (with exactly two nodal domains) for a class of quasilinear Schrödinger equations, which model physic phenomena, for example, in plasma physics. To obtain the results, it was used, mainly, the Nehari method, as well as, regularity theory of elliptic and Concentration-Compactness Principle.
Nesta dissertação, estudamos a existência de soluções positivas e mudando de sinal (tendo exatamente dois domínios nodais) para uma classe de equações de Schrödinger quase lineares, as quais modelam fenômenos físicos, por exemplo, em Física dos Plasmas. Na obtenção dos resultados, foi usado, principalmente, o método de Nehari, bem como teoria de regularidade elíptica e o Princípio de Concentração-Compacidade de P. L. Lions.
Melo, Alison Marcelo Van Der Laan 1985. "Comportamento assintótico de uma classe de soluções da equação de meios porosos." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305903.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Cientifica
Made available in DSpace on 2018-08-16T14:07:09Z (GMT). No. of bitstreams: 1 Melo_AlisonMarceloVanDerLaan_M.pdf: 595460 bytes, checksum: f3496cc25c882ea841e02b15bffe5256 (MD5) Previous issue date: 2010
Resumo: Observação: O resumo, na íntegra poderá ser visualizado no texto completo da tese digital
Abstract: Note: The complete abstract is available with the full electronic digital thesis or dissertations
Mestrado
Matematica
Mestre em Matemática
Fromm, Alexander. "Theory and applications of decoupling fields for forward-backward stochastic differential equations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2015. http://dx.doi.org/10.18452/17115.
Повний текст джерелаThis thesis deals with the theory of so called forward-backward stochastic differential equations (FBSDE) which can be seen as a stochastic formulation and in some sense generalization of parabolic quasi-linear partial differential equations. The thesis consist of two parts: In the first we develop the theory of so called decoupling fields for general multidimensional fully coupled FBSDE in a Brownian setting. The theory consists of uniqueness and existence results for decoupling fields on the so called the maximal interval. It also provides tools to investigate well-posedness and regularity for particular problems. In total the theory is developed for three different classes of FBSDE: In the first Lipschitz continuity of the parameter functions is required, which at the same time are allowed to be random. The other two classes we investigate are based on the theory developed for the first one. In both of them all parameter functions have to be deterministic. However, two different types of local Lipschitz continuity replace the more restrictive Lipschitz continuity of the first class. In the second part we apply these techniques to three different problems: In the first application we demonstrate how well-posedness of FBSDE in the so called non-degenerate case can be investigated. As a second application we demonstrate the solvability of a system, which provides a solution to the so called Skorokhod embedding problem (SEP) via FBSDE. The solution to the SEP is provided for the case of general non-linear drift. The third application provides solutions to a complex FBSDE from which optimal trading strategies for a problem of utility maximization in incomplete markets are constructed. The FBSDE is solved in a relatively general setting, i.e. for a relatively general class of utility functions on the real line.
Li, Daoji. "Empirical likelihood and mean-variance models for longitudinal data." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/empirical-likelihood-and-meanvariance-models-for-longitudinal-data(98e3c7ef-fc88-4384-8a06-2c76107a9134).html.
Повний текст джерелаLi, Ji. "Analyse mathématique de modèles d'intrusion marine dans les aquifères côtiers." Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0378/document.
Повний текст джерелаThe theme of this thesis is the analysis of mathematical models describing saltwater intrusion in coastal aquifers. The simplicity of sharp interface approach is chosen : there is no mass transfer between fresh water and salt water (respectively between the saturated zone and the area dry). We compensate the mathematical difficulty of the analysis of free interfaces by a vertical averaging process allowing us to reduce the 3D problem to system of pde's defined on a 2D domain Ω. A second model is obtained by combining the approach of 'sharp interface' in that with 'diffuse interface' ; this approach is derived from the theory introduced by Allen-Cahn, using phase functions to describe the phenomena of transition between fresh water and salt water (respectively the saturated and unsaturated areas). The 3D problem is then reduced to a strongly coupled system of quasi-linear parabolic equations in the unconfined case describing the evolution of the DEPTHS of two free surfaces and elliptical-parabolic equations in the case of confined aquifer, the unknowns being the depth of salt water/fresh water interface and the fresh water hydraulic head. In the first part of the thesis, the results of global in time existence are demonstrated showing that the sharp-diffuse interface approach is more relevant since it allows to establish a mor physical maximum principle (more precisely a hierarchy between the two free surfaces). In contrast, in the case of confined aquifer, we show that both approach leads to similar results. In the second part of the thesis, we prove the uniqueness of the solution in the non-degenerate case. The proof is based on a regularity result of the gradient of the solution in the space Lr (ΩT), r > 2, (ΩT = (0,T) x Ω). Then we are interest in a problem of identification of hydraulic conductivities in the unsteady case. This problem is formulated by an optimization problem whose cost function measures the squared difference between experimental hydraulic heads and those given by the model
Mayol, Serra Catalina. "Dinàmica no lineal de sistemes làsers: potencials de Lyapunov i diagrames de bifurcacions." Doctoral thesis, Universitat de les Illes Balears, 2002. http://hdl.handle.net/10803/9430.
Повний текст джерела1) Als làsers de classe A, la dinàmica determinista s'ha interpretat com el moviment damunt el potencial de Lyapunov. En la dinàmica estocàstica s'obté un flux sostingut per renou per a la fase del camp elèctric.
2) Per als làsers de classe A amb senyal injectat, s'ha descrit el conjunt de bifurcacions complet i s'ha determinat el conjunt d'amplituds i freqüències en el quals el làser respon
ajustant la seva freqüència a la del camp extern.
3) S'ha obtingut un potencial de Lyapunov pels làsers de classe B, només vàlid en el cas determinista, que inclou els termes de saturació de guany i d'emissió espontània.
4) S'ha realitzat un estudi del conjunt de bifurcacions parcial al voltant del règim tipus II de la singularitat Hopf--sella--node en un làser de classe B amb senyal injectat.
5) S'han identificat les respostes òptimes pels làsers de semiconductor sotmesos a modulació periòdica externa. S'han obtingut les corbes que donen la resposta màxima per cada tipus de resonància en el pla definit per l'amplitud relativa de modulació i la freqüència de modulació.
In this work we have studied the dynamics of both class A and class B lasers in terms of Lyapunov potentials. In the case of an injected signal or when some laser parameters are modulated, and more complex behaviour is expected, the bifurcation set is studied. The main results are the following:
1) For class A lasers, the deterministic dynamics has been interpreted as a movement on the potential landscape. In the stochastic dynamics we have found a noise sustained flow for the phase of the electric field.
2) For class A lasers with an injected signal, we have been able to describe the whole bifurcation set of this system and to determine the set of amplitudes frequencies for which the laser responds adjusting its frequency to that of the external field.
3) In the case of class B lasers, we have obtained a Lyapunov potential only valid in the deterministic case, including spontaneous emission and gain saturation terms. The fixed point corresponding to the laser in the on state has been interpreted as a minimum in this potential. Relaxation to this minimum is reached through damped oscillations.
4) We have performed a study of the partial bifurcation set around the type II regime of the Hopf-saddle-node singularity in a class B laser with injected signal.
5) We have identified the optimal responses of a semiconductor laser subjected to an external periodic modulation. The lines that give a maximum response for each type of resonance are obtained in the plane defined by the relative amplitude modulation and frequency modulation.
Luo, Tingjian. "Existence non existence et multiplicité d'ondes stationnaires normalisées pour quelques équations non linéaires elliptiques." Phd thesis, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-01061670.
Повний текст джерелаBringmann, Philipp. "Adaptive least-squares finite element method with optimal convergence rates." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22350.
Повний текст джерелаThe least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
Cruz, Janisson Fernandes Dantas da. "Semigrupos, Automorficidade e Ergodicidade para equações de evolução semilineares." Universidade Federal de Sergipe, 2013. https://ri.ufs.br/handle/riufs/5823.
Повний текст джерелаIn this work, we first develop a brief theoretical approach of semigroups of bounded linear operators, culminating on Hille-Yosida Theorem. Then we used the extrapolation theory to study su cient conditions to obtain existence and uniqueness of Almost Automorphic and Pseudo-Almost Automorphic mild solutions, through the Banach's Fixed Point Theorem for the semilinear evolution equation x(t) = Ax(t) + f(t; x(t)); t E R, where A : D(A) X ! X is a Hille-Yosida operator of negative type and not necessary dense domain on the Banach space X.
Neste trabalho, desenvolvemos inicialmente uma breve abordagem te orica dos semigrupos de operadores lineares limitados, culminando no Teorema de Hille-Yosida. Em seguida, usamos a teoria de extrapolação a fim de estudar condições suficientes para obtermos a existência e a unicidade de soluções brandas Quase Automórficas e Pseudo-quase Automórficas, por meio do Teorema do Ponto Fixo de Banach, para a equação de evolução semilinear x(t) = Ax(t) + f(t; x(t)); t E R, onde A : D(A) X ! X é um operador de Hille-Yosida de tipo negativo e dom ínio não necessariamente denso, definido no espaço de Banach X.
Wei, Tzer-jen, and 魏澤人. "Bridge Principle of Quasi-Linear Elliptic Equation." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/73891523393028840490.
Повний текст джерела國立臺灣大學
數學系
86
This paper give some Bridge Principle of Quasi-Linear PDE, like Bridge Principle which was often used on minimal surface or harmonic map.In this Paper , We have two theorem about in which condition, the PDE , domain , and the soution will have Bridge Principle.The first Theorem is for general Quasi-Linear and can applied to minimal surface but need much strong condition.The Second Theorem is for special type of PDE but only need weaker condition.
Ling, Liao Wan, and 廖婉伶. "The Composite Assessment in the Quasi-experiment Research of The One-Variable Linear Equation for Middle School Students." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/77029166803593176773.
Повний текст джерела國立臺中教育大學
數學教育學系在職進修教學碩士學位班
99
This research discusses Composite Assessment in the teaching application. Firstly,the Middle School Students taught the One-Variable Linear Equation in the Composite Assessment will be discussed in difference situation of their learning attitudes and learning achievement.In addition, the experiment group’s learning feeling are also investigated. This research adopts the Quasi-experiment design. The teacher is the researcher.Two classes at a junior high school which is in Taichung were selected as the research sample for this study.One class is the experiment group adopting the Composite Assessmen and the other is the control group adopting the traditional teaching. The research period lasted for five weeks.At the end of the experiment,Compared with two group of students in of the One-Variable Linear Equation difference situation of their learning attitudes and learning achievement.Furthermore,the research results are proceed with quantitative and qualitative modes by analysing learning journals,feedback schedulesand interviews.The research results are as follows: 1. Difference situation of learning attitudes. The experiment group and the control group in their learning attitudes have not reached the level of significance. However, the learning attitudes posttests,the experiment higher group have reached the level of significance.The average score of the first measured in experiment mediocre group achievers perform better than the latter measured. 2. Difference situation of learning achievement. The experiment group and the control group in their learning achievement have not reached the level of significance.However, when sitting for the learning achievement posttests, the experiment higher, mediocre and low group achievers perform better than the control group. 3. The feeling aspect of the the experiment group In view of the Composite Assessment in the teaching. The majority of the experiment group have expressed that they liked the experimental teaching of composite assessment.And Majority experimen group students agreed that such a teaching approach can be adopted more often in the future.
Steinbrecher, Andreas [Verfasser]. "Numerical solution of quasi-linear differential-Algebraic equations and industrial simulation of multibody systems / vorgelegt von Andreas Steinbrecher." 2006. http://d-nb.info/980015936/34.
Повний текст джерела"A stable manifold theorem for the gradient flow of geometric variational problems associated with a quasi-linear parabolic equations." Thesis, 1991. http://hdl.handle.net/2237/6587.
Повний текст джерелаNaito, Hisashi, and 久資 内藤. "A stable manifold theorem for the gradient flow of geometric variational problems associated with a quasi-linear parabolic equations." Thesis, 1991. http://hdl.handle.net/2237/6587.
Повний текст джерелаSotáková, Martina. "Zobecněné odhadovací rovnice (GEE)." Master's thesis, 2020. http://www.nusl.cz/ntk/nusl-434538.
Повний текст джерелаLanger, Stefan. "Preconditioned Newton methods for ill-posed problems." Doctoral thesis, 2007. http://hdl.handle.net/11858/00-1735-0000-0006-B396-D.
Повний текст джерела