Добірка наукової літератури з теми "Radiative simulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Radiative simulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Radiative simulation":

1

Guseva, A. A., and I. S. Grigor’Ev. "Mathematical simulation of aircraft engine jet exhausts radiation." Journal of «Almaz – Antey» Air and Space Defence Corporation, no. 4 (December 30, 2018): 30–36. http://dx.doi.org/10.38013/2542-0542-2018-4-30-36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper deals with the problems of mathematical simulation of aircraft engine jet exhausts radiation, the simulation being carried out by means of shader subroutines for the concurrent computation of the radiative transfer equation on the video card resources. The combination of an analytical model of an isobaric jet and ray tracing of computation of the radiative transfer equation allows us to develop a flexible model of aircraft jet radiation, the model taking into account the main parameters of streams in the jet and in the co-current flow, the spectral lines of the radiating components, and provides real-time computation. For the graphic implementation of the model, the OpenGL standard is used
2

Henrion, Lucca, Michael C. Gross, Sebastian Ferreryo Fernandez, Chandan Paul, Samuel Kazmouz, Volker Sick, and Daniel C. Haworth. "Characterization of radiative heat transfer in a spark-ignition engine through high-speed experiments and simulations." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 (2019): 61. http://dx.doi.org/10.2516/ogst/2019030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A combined experimental and Large-Eddy Simulation (LES) study of molecular radiation is presented for combustion in a homogeneous pre-mixed spark-ignition engine. Molecular radiation can account for ~10% of the engine heat loss and could have a noticeable impact on the local conditions within the combustion chamber. The Transparent Combustion Chamber (TCC) engine, a single-cylinder two-valve research engine with a transparent liner and piston for optical access, was used for this study. High-speed infrared emission spectroscopy and radiative post-processing of LES calculations have been performed to gain insight into the timescales and magnitude of radiative emissions of molecular gases during the combustion process. Both the measurements and simulations show significant Cycle-to-Cycle Variations (CCV) of radiative emission. There is agreement in the instantaneous radiative spectrum of experiment and simulation, but the crank-angle development of the radiative spectrum shows disagreement. The strengths and limitations of the optical experiments and radiative simulations are seen in the results and suggest pathways for future efforts in characterizing the influence of molecular radiation. In particular, focusing on the relative changes of the spectral features will be important as they contain information about the thermochemical properties of the gas mixture.
3

Shi, Xiangjun, Chunhan Li, Lijuan Li, Wentao Zhang, and Jiaojiao Liu. "Estimating the CMIP6 Anthropogenic Aerosol Radiative Effects with the Advantage of Prescribed Aerosol Forcing." Atmosphere 12, no. 3 (March 21, 2021): 406. http://dx.doi.org/10.3390/atmos12030406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The prescribed anthropogenic aerosol forcing recommended by Coupled Model Intercomparison Project Phase 6 (CMIP6) was implemented in an atmospheric model. With the reduced complexity of anthropogenic aerosol forcing, each component of anthropogenic aerosol effective radiative forcing (ERF) can be estimated by one or more calculation methods, especially for instantaneous radiative forcing (RF) from aerosol–radiation interactions (RFari) and aerosol–cloud interactions (RFaci). Simulation results show that the choice of calculation method might impact the magnitude and reliability of RFari. The RFaci—calculated by double radiation calls—is the definition-based Twomey effect, which previously was impossible to diagnose using the default model with physically based aerosol–cloud interactions. The RFari and RFaci determined from present-day simulations are very robust and can be used as offline simulation results. The robust RFari, RFaci, and corresponding radiative forcing efficiencies (i.e., the impact of environmental properties) are very useful for analyzing anthropogenic aerosol radiative effects. For instance, from 1975 to 2000, both RFari and RFaci showed a clear response to the spatial change of anthropogenic aerosol. The global average RF (RFari + RFaci) has enhanced (more negative) by ~6%, even with a slight decrease in the global average anthropogenic aerosol, and this can be explained by the spatial pattern of radiative forcing efficiency.
4

Mashayekhi, R., P. Irannejad, J. Feichter, and A. A. Bidokhti. "Implementation of a new aerosol HAM model within the Weather Research and Forecasting (WRF) modeling system." Geoscientific Model Development Discussions 2, no. 2 (July 1, 2009): 681–707. http://dx.doi.org/10.5194/gmdd-2-681-2009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A new coupled system of aerosol HAM model and the Weather, Research and Forecasting (WRF) model is presented in this paper. Unlike the current aerosol schemes used in WRF model, the HAM is using a "pseudomodal" approach for the representation of the particle size distribution. The aerosol components considered are sulfate, black carbon, particulate organic matter, sea salt and mineral dust. The preliminary model results are presented for two different 6-day simulation periods from 22 to 28 February 2006 as a winter period and 6 to 12 May 2006 as a mild period. The mean shortwave radiation and thermal forcing were calculated from the model simulations with and without aerosols feedback for two simulation periods. A negative radiative forcing and cooling of the atmosphere were found mainly over the regions of high emission of mineral dust. The absorption of shortwave radiation by black carbon caused warming effects in some regions with positive radiative forcing. The simulated daily mean sulfate mass concentration showed a rather good agreement with the measurements in the European EMEP network. The diurnal variation of the simulated hourly PM10 mass concentration at Tehran was also qualitatively close to the observations in both simulation periods. The model captured diurnal cycle and the magnitude of the observed PM10 concentration during most of the simulation periods. The differences between the observed and simulated PM10 concentration resulted mostly from limitation of the model in simulating the clouds and precipitation, transport errors and uncertainties in the particulate emission rates. The inclusion of aerosols feedback in shortwave radiation scheme improved the simulated daily mean shortwave radiation fluxes in Tehran for both simulation periods.
5

Markowski, Paul M., and Jerry Y. Harrington. "A Simulation of a Supercell Thunderstorm with Emulated Radiative Cooling beneath the Anvil." Journal of the Atmospheric Sciences 62, no. 7 (July 1, 2005): 2607–17. http://dx.doi.org/10.1175/jas3497.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This note reports the preliminary results of an ongoing numerical study designed to investigate what effects, if any, radiative transfer processes can have on the evolution of convective storms. A pair of idealized three-dimensional simulations are conducted to demonstrate the potential dynamical importance of shortwave radiation reductions within the large shadows cast by storms. One of the simulations (the control) is run without surface physics and radiation. In the other simulation, radiative cooling due to cloud shading is emulated by prescribing a cooling rate to the skin temperature at any grid point at which cloud water was present overhead. The imposed skin cooling rate is consistent with past observations. Low-level air temperatures are coupled to the skin cooling in this second simulation by the inclusion of surface sensible heat fluxes using simple bulk aerodynamic drag laws (latent and soil heat fluxes are not included). Significant differences are observed between the two simulated storms, particularly in the evolution of the vertical vorticity field and gust fronts. The storm simulated with emulated cloud shading develops substantially weaker low-level rotation than the storm in the control simulation.
6

Mechem, David B., Yefim L. Kogan, Mikhail Ovtchinnikov, Anthony B. Davis, K. Franklin Evans, and Robert G. Ellingson. "Multidimensional Longwave Forcing of Boundary Layer Cloud Systems." Journal of the Atmospheric Sciences 65, no. 12 (December 1, 2008): 3963–77. http://dx.doi.org/10.1175/2008jas2733.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The importance of multidimensional (MD) longwave radiative effects on cloud dynamics is evaluated in an eddy-resolving model (ERM)—the two-dimensional analog to large-eddy simulation (LES)—framework employing multidimensional radiative transfer [Spherical Harmonics Discrete Ordinate Method (SHDOM)]. Simulations are performed for a case of unbroken, marine boundary layer stratocumulus and a broken field of trade cumulus. “Snapshot” calculations of MD and independent pixel approximation (IPA; 1D) radiative transfer applied to simulated cloud fields show that the total radiative forcing changes only slightly, although the MD effects significantly modify the spatial structure of the radiative forcing. Simulations of each cloud type employing MD and IPA radiative transfer, however, differ little. For the solid cloud case, relative to using IPA, the MD simulation exhibits a slight reduction in entrainment rate and boundary layer total kinetic energy (TKE) relative to the IPA simulation. This reduction is consistent with both the slight decrease in net radiative forcing and a negative correlation between local vertical velocity and radiative forcing, which implies a damping of boundary layer eddies. Snapshot calculations of the broken cloud case suggest a slight increase in radiative cooling, although few systematic differences are noted in the interactive simulations. This result is attributed to the fact that radiative cooling is a relatively minor contribution to the total energetics. For the cloud systems in this study, the use of IPA longwave radiative transfer is sufficiently accurate to capture the dynamical behavior of boundary layer clouds. Further investigations are required to generalize this conclusion for other cloud types and longer time integrations.
7

Baró, Rocío, Laura Palacios-Peña, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, et al. "Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models." Atmospheric Chemistry and Physics 17, no. 15 (August 11, 2017): 9677–96. http://dx.doi.org/10.5194/acp-17-9677-2017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol–radiation interactions (ARIs) and indirect effects, resulting from aerosol–cloud–radiation interactions (ACIs). Online coupled meteorology–chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July–August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.
8

Ma, Xu, Tiejun Wang, and Lei Lu. "A Refined Four-Stream Radiative Transfer Model for Row-Planted Crops." Remote Sensing 12, no. 8 (April 18, 2020): 1290. http://dx.doi.org/10.3390/rs12081290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In modeling the canopy reflectance of row-planted crops, neglecting horizontal radiative transfer may lead to an inaccurate representation of vegetation energy balance and further cause uncertainty in the simulation of canopy reflectance at larger viewing zenith angles. To reduce this systematic deviation, here we refined the four-stream radiative transfer equations by considering horizontal radiation through the lateral “walls”, considered the radiative transfer between rows, then proposed a modified four-stream (MFS) radiative transfer model using single and multiple scattering. We validated the MFS model using both computer simulations and in situ measurements, and found that the MFS model can be used to simulate crop canopy reflectance at different growth stages with an accuracy comparable to the computer simulations (RMSE < 0.002 in the red band, RMSE < 0.019 in NIR band). Moreover, the MFS model can be successfully used to simulate the reflectance of continuous (RMSE = 0.012) and row crop canopies (RMSE < 0.023), and therefore addressed the large viewing zenith angle problems in the previous row model based on four-stream radiative transfer equations. Our results demonstrate that horizontal radiation is an important factor that needs to be considered in modeling the canopy reflectance of row-planted crops. Hence, the refined four-stream radiative transfer model is applicable to the real world.
9

Yamaguchi, Takanobu, and David A. Randall. "Cooling of Entrained Parcels in a Large-Eddy Simulation." Journal of the Atmospheric Sciences 69, no. 3 (March 1, 2012): 1118–36. http://dx.doi.org/10.1175/jas-d-11-080.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The relative importance, for cloud-top entrainment, of the cooling rates due to longwave radiation, evaporation, and mixing was assessed through analysis of the results produced by a Lagrangian parcel-tracking model (LPTM) incorporated into a large-eddy simulation model. The LPTM predicts each parcel’s trajectory over time, using the resolved velocity simulated by the host model. An LPTM makes it possible to identify entrained parcels; this is almost impossible to do in an observational study. A nocturnal stratocumulus cloud was simulated over 4h using a 5-m horizontal grid spacing and a 2.5-m vertical grid spacing. At the start of the last hour of the simulation, over 40 million parcels were placed near the top of the inversion layer and then tracked. Parcel histories were analyzed to identify entrained parcels. Entrainment occurs in cloud holes, which occur in dry regions of sinking air. Entrainment into the mixed layer is regulated by buoyancy, which requires parcels to be precooled in the inversion layer, prior to entrainment. A mixing fraction analysis was used to separate the cooling due to longwave radiation, evaporation, and mixing. Results show that radiative and evaporative cooling are of comparable importance, but that mixing is by far the dominant cooling mechanism. The radiative cooling rate is strongly inhomogeneous, and only weak radiative cooling is found in regions of entrainment. Therefore, the entrained parcels experience less than the horizontal-mean radiative cooling. Although radiative cooling maintains the boundary layer turbulence, its direct effect on buoyancy of entrained parcels is modest.
10

Shang, J. S., and S. T. Surzhikov. "Nonequilibrium radiative hypersonic flow simulation." Progress in Aerospace Sciences 53 (August 2012): 46–65. http://dx.doi.org/10.1016/j.paerosci.2012.02.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Radiative simulation":

1

Ramamoorthy, Babila. "Numerical simulation of radiative heat transfer." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/ramamoorthy.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gonzales, Matthias. "Contribution à l'étude numérique de l'hydrodynamique radiative : Des expériences de chocs radiatifs aux jets astrophysiques." Paris 11, 2006. https://tel.archives-ouvertes.fr/tel-00110290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'hydrodynamique radiative est le domaine dans lequel gaz et rayonnement interagissent dynamiquement. Ses champs d'application sont très vastes, de l'astrophysique à la fusion par confinement inertiel. Lors de cette thèse, un code numérique parallèle tridimensionnel d'hydrodynamique radiative baptisé HERACLES a été développé. Il s'appuie sur le modèle M1 qui permet de traiter un rayonnement à forte anisotropie. De nombreux tests ont validé HERACLES sur une grande variété de conditions physiques, dont le régime semi-transparent et la diffusion des photons, ses résultats étant comparables aux codes Monte-Carlo. Il a ensuite été utilisé dans deux thématiques. La première concerne les chocs radiatifs, phénomènes astrophysiques reproduits sur Terre grâce aux lasers de puissance. HERACLES a mis en évidence l'influence de différents paramètres sur l'évolution d’un tel choc : le rapport de la largeur du canal de propagation sur le libre parcours moyen de photons, l'albédo des parois. . . Il a ensuite contribué à l’analyse d’une expérience réalisée avec le laser PALS. Il a permis de reproduire la courbe de décélération du précurseur observée dans l'expérience ainsi que la transmission du diagnostic transverse. La seconde thématique concerne les jets générés par les étoiles en formation et interagissant avec le nuage moléculaire environnant. Les opacités du milieu interstellaire montrant qu’une partie significative du rayonnement est absorbée, nous avons mené les premières simulations d’un jet tenant compte du transfert radiatif. Elles ont montré que le jet pouvait être fortement comprimé et que le transfert radiatif semble donc pouvoir jouer un rôle important dans sa propagation
Radiation-hydrodynamics deals with the dynamical interaction between gas and radiation. Its applications lie from astrophysics to inertial confinement fusion. During this thesis, a 3D parallel radiation-hydrodynamics code called HERACLES has been developed. It relies upon the M1 model which can deal with anisotropic radiation field. Various tests have validated HERACLES upon a large variety of physical conditions, including semi-transparent regime and photon diffusion, its results being similar to those of Monte-Carlo codes. It has then been applied to two domains. The first one dealt with radiative shocks, astrophysical phenomena reproduced on Earth thanks to high-power lasers. HERACLES has shown the influence of different parameters upon the radiative shock evolution: ratio propagation canal width over photon mean free path, walls albedo… Then, it has contributed to analyze an experiment conducted at the PALS laser facility. It has reproduced the observed precursor slowdown and the transmission of the transverse diagnostic. The second domain dealt with the jets generated by forming stars and interacting with their ambient molecular cloud. Since the interstellar medium opacities imply that a significant part of radiation is absorbed, we conducted the first jets simulations including radiation-hydrodynamics. They showed that the jets can be highly compressed and that radiative transfer could then play an important role in the jets propagation
3

Schäfer, Matthias. "Moment methods for radiative transfer modeling, simulation and optimization." München Verl. Dr. Hut, 2008. http://d-nb.info/988229439/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vadez, Vincent. "Simplification géométrique pour la simulation thermique radiative de satellites." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le cycle de vie d'un satellite comprend la phase de lancement, la mise en orbite, le fonctionnement avec déploiement des panneaux solaires (manœuvres, positions de sécurité), et la mise en orbite de fin de vie. Le satellite gravite dans un environnement hostile, exposé à des variations thermiques de très grandes amplitudes, avec des alternances de phases d'éclipses et éclairées. La survie du satellite est liée à la température de ses composants, dont la variation doit être contrôlée dans des intervalles de sécurité. Dans ce contexte, la simulation thermique du satellite pour sa conception est cruciale pour anticiper le réel de son fonctionnement. Les échanges radiatifs sont indispensables au satellite à la fois pour la génération d'énergie à partir de rayonnements solaires et de l'albédo, et pour la régulation thermique des équipements. Un bon fonctionnement consiste à assurer une réfrigération des composants exposés aux rayonnements, et à l'inverse un réchauffement des composants non exposés. Pour donner un ordre de grandeur, les amplitudes externes vont de -150 à +150 degrés Celsius, et les équipements électroniques internes ont une amplitude de sécurité entre -50 et +50, avec une marge de sécurité de 10 degrés. En phase d'éclipse où le rayonnement est bien plus faible, le réchauffement est assuré par l'énergie accumulée en phase exposée, combinée à des caloducs.Dans cette thèse, l'objectif est d'avancer les connaissances sur les méthodes de calcul de la simulation thermique radiative des satellites. Pour ce faire, deux approches sont considérées. La première approche consiste en l'établissement d'un calcul de référence pour des grandeurs gouvernant la simulation thermique radiative: les facteurs de vue. Étant soumise à des contraintes temporelles, cette méthode repose sur une structure de données hiérarchique permettant un calcul progressif des facteurs de vue afin d'optimiser le compromis entre temps dédié aux calculs et précision souhaitée. Par soucis de précision, une étape de prédiction est ajoutée pour garantir une meilleure convergence vers la valeur de référence.La seconde approche, également motivée par des contraintes de temps de calculs, a pour objectif la réduction du modèle géométrique d'une pièce mécanique ou d'un engin spatial tout en étant fidèle à la simulation numérique. Afin de rendre la décimation informée de la physique, un prétraitement réalisant une analyse de sensibilité est effectué. Pour accentuer la préservation de la simulation physique, le coût géométrique d'un opérateur de simplification est couplé à un facteur déduit des écarts de simulation entre modèle de référence et modèle réduit
The life cycle of a satellite includes the launch phase, the positioning on the desiredorbit, different maneuvers (deployment of solar panels and safety position), and finallyplacing the satellite on the junk orbit. The satellite gravitates in a hostile environment,exposed to thermal variations of very large amplitude, alternating sun exposure andeclipse phases. The survival of the satellite depends on the temperature of its components, the variation of which must be monitored within safety intervals. In this context, the thermal simulation of the satellite for its design is crucial to anticipate the reality of its operation. Radiative thermal simulation is essential for anticipating the generation of energy from solar and albedo radiation, and for regulating temperatures of on-board equipments. Ideal operation consists in providing appropriate cooling for components exposed to radiation, and conversely, heating of unexposed components. As an order of magnitude, the external temperature ranges from -150 to +150 degrees Celsius, and the internal electronic equipment has a safe range between -50 and +50, with a safety margin of 10 degrees. In the eclipse phase where the radiation is significantly lower, heating is provided by the energy accumulated during the exposed phase, combined with heat pipes for thermal regulation.In this thesis, the objective is to advance the knowledge on radiative thermal simulation calculation methods for satellites. To this end, two approaches are considered. Thefirst approach consists in establishing a reference calculation of a quantity governing radiative thermal simulation: view factors. Being subject to time constraints, this methodis based on a hierarchical data structure enabling progressive computation of view factors, in order to offer a satisfactory tradeoff between time dedicated to computationsand desired accuracy. For the sake of accuracy, a prediction step is added to guaranteea better convergence towards the reference value.The second approach, also motivated by time constraints, aims at reducing the geometric model of a mechanical part or a spacecraft while being faithful to the numericalsimulation. In order to render the decimation physics-informed, a preprocessing step relying on a sensitivity analysis is carried out. To better preserve the physical simulation,the geometric cost of a simplification operator is coupled to a factor deduced from thesimulation deviation between the reference model and the reduced model
5

Goncalves, Dos santos Rogério. "Large Eddy simulations of turbulent combustion including radiative heat transfer." Châtenay-Malabry, Ecole centrale de Paris, 2008. http://www.theses.fr/2008ECAP1052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La combustion est actuellement l’un des principaux moyens de convertir l’énergie. Elle reste cependant un phénomène complexe, où des écoulements turbulents, des réactions chimiques, la présence de plusieurs phases et différentes formes de transfert de chaleur peuvent interagir. Mieux comprendre ces interactions est essentiel pour l’amélioration des systèmes actuels de combustion et dans le développement de leurs successeurs. Le but de cette thèse est d’étudier l’interaction entre la combustion turbulente et le rayonnement thermique à l’aide de la simulation numérique en trois dimensions. Pour cela nous utilisons un outil informatique appelé CORBA pour faire communiquer un code dédié à la simulation aux grandes échelles (ou LES, pour Large Eddy Simulation en anglais) de la combustion avec un autre code qui calcule le rayonnement thermique. Cette technique permet l’échange de données entre les codes sans modifier les caractéristiques et la structure de chacun de ces codes. De plus il possible de profiter des temps caractéristiques différents de chaque phénomène physique pour optimiser les calculs sur des calculateurs à architecture massivement parallèle. Dans un premier temps, des simulations bidimensionnelles d’une flamme turbulente prémélangée propane/air stabilisée en aval d’un dièdre ont été réalisées. Après le changement du code de rayonnement pour un code tridimensionnel, la même configuration, du dièdre, a été simulée en 3D. Un maillage avec plus de 4. 7 millions de cellules pour le code de combustion (AVBP) et un autre avec plus de 3. 3 millions de cellules pour le code de rayonnement (DOMASIUM) ont été utilisés. Les résultats montre un changement dans les champs
The combustion is one of the principal ways to produced energy used nowadays, it is also a complex phenomenon, where the turbulent flow, chemical reactions, different phases and different heat transfer phenomena can interact. Better understanding of these interactions is essential to improve the actual combustion system and to developed the new ones. The goal of this thesis is to study the interaction of the turbulent combustion with the thermal radiation by the use of three-dimensional numerical simulation. For that, using a computational tool named CORBA, a code for the combustion Large Eddy Simulation (LES) was coupled with a radiative heat transfer code. This technique allows the exchange of information between the two codes without big changes in their structure, then it is possible to take advantages of the different characteristic time from each phenomenon in a high performance parallel computational environment. In a first time, two-dimensional simulation of a turbulent propane/air premixed flame stabilized downstream a triangular flame holder has been realised. After the changing of the twodimensional radiation code for another three-dimensional one, the same configuration was simulated in 3D. A mesh with more than 4. 7 millions cells for the combustion code (AVBP) and more than 3. 3 millions cells for the radiation code (DOMASIUM) are used. Results show a changing in the temperature and species fields, as well as in the flame dynamics when the thermal radiation was taken into account, with a minor intensity in the three-dimensional simulations. This method, also, shows that it is possible to perform 3D complex simulations in a industrial acceptable time
6

Sjöström, Stina. "Numerical exploration of radiative-dynamic interactions in cirrus." Thesis, Uppsala University, Department of Earth Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

An important factor in forecast models today is cirrus clouds, but not much are known about their dynamics which makes them hard to parameterize. In this study a new theory was derived to enable a more correct way to describe the interplay between radiative heating and dynamical motions in these clouds. This hypothesis was tested by performing three dimensional simulations of cirrus clouds, using the University of Utah Large Eddy Simulator (UULES). Eleven clouds of varying initial radius and ice water mixing ratio were examined, with the aim of finding a pattern in their dynamical features. The model was set up without short wave radiation from the sun, and without any precipitation affecting the clouds, leaving only terrestrial heating and atmospheric cooling to create motions in the clouds. Two categories of initial dynamics could be seen:

• Isentropic adjustment: The isentropes within the cloud are adjusting to the environment due to rising of the cloud. Causes horizontal spreading through continuity.

• Density current: A dominating initial feature is spreading in small mixed layers at the cloud top and bottom. Caused by the density difference between the cloud and its environment.

An interesting phenomenon showing up in the simulations was mammatus clouds, which were visible in two of the cases. The only instability available to create these clouds was the radiative heating difference, which does not agree with present theories for how they form.

Two dimensionless numbers S and C were derived to describe the nature of the spreading motions and convection in the cloud. Both these numbers agreed with results.


Cirrusmoln har en viktig roll i dagens prognosmodeller, men är svåra att parametrisera på ett bra sätt eftersom man inte har tillräcklig kunskap om deras dynamik och utveckling. I denna studie togs en ny teori fram för att göra det möjligt att på ett mer korrekt sätt beskriva samspelet mellan strålningsuppvärmning och dynamiska rörelser i dessa moln. Hypotesen testades sedan genom att utföra tredimensionella simuleringar av cirrus moln med hjälp av University of Utah Large Eddy Simulator (UULES). Elva moln med varierande initiella radier och isvatteninnehåll undersöktes, med målet att finna ett mönster i dynamik och utveckling. UULES ställdes in så att miljön där molnen simulerades varken innehöll kortvågsstrålning från solen eller nederbörd. Således fanns det bara en resterande faktor för att skapa rörelser i molnen; skillnaden i den infraröda strålningsuppvärmningen mellan molntopp och molnbas. Två kategorier av initiella rörelser uppstod i molnen:

• Justering av isotroper: Molnen stiger i höjd vilket gör att isotroperna inuti dem justeras till omgivningen. Detta orsakar horisontell spridning genom kontinuitet.

• Densitets ström: Horisontell spridning av molnen koncentrerad till mixade skikt i de övre och undre delarna. Orsakas av skillnad i densitet mellan moln och omgivning.

Ett intressant fenomen som visade sig i två av simuleringarna var mammatusmoln. Den enda instabiliteten tillgänglig för att skapa dessa moln var skillnaden i strålningsuppvärmning mellan molntopp och -bas. Detta stämmer inte överrens med nuvarande teorier för hur dessa moln skapas.

Två dimensionslösa tal, S och C togs fram för att indikera vilken av de initiella rörelserna som dominerar i molnet, samt vilken typ av konvektion som dominerar. Båda dessa tal stämde väl överrens med resultat.

7

Gung, Tza-Jing. "Radar range profile simulation of isolated trees with radiative transfer theory." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Jin. "Radiation Monte Carlo approcah dedicated to the coupling with LES reactive simulation." Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00594229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Radiative transfer plays an important role in turbulent combustion and should be incorporatedin numerical simulations. However, as combustion and radiation are characterized bydifferent time scales and different spatial and chemical treatments, and the complexity of theturbulent combustion flow, radiation effect is often neglected or roughly modelled. Couplinga large eddy simulation combustion solver and a radiation solver through a dedicated languageCORBA is investigated. Four formulations of Monte Carlo method (Forward Method,Emission Reciprocity Method, Absorption Reciprocity Method and Optimized ReciprocityMethod) employed to resolve RTE have been compared in a one-dimensional flame testcase using three-dimensional calculation grids with absorbing and emitting medium in orderto validate the Monte Carlo radiative solver and to choose the most efficient model forcoupling. In order to improve the performance of Monte Carlo solver, two techniques havebeen developed. After that, a new code dedicated to adapt the coupling work has beenproposed. Then results obtained using two different RTE solvers (Reciprocity Monte Carlomethod and Discrete Ordinate Method) applied to a three-dimensional turbulent reactingflow stabilized downstream of a triangular flame holder with a correlated-k distributionmodel describing the real gas medium spectral radiative properties are compared not onlyin terms of physical behavior of the flame but also in computational performance (storagerequirement, CPU time and parallelization efficiency). Finally, the impact of boundary conditionstaking into account the actual wall emissivity and temperature has been discussed.
9

Chapman, David D. "A Monte-Carlo-based simulation of jet exhaust nozzle thermal radiative signatures." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-10062009-020132/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Yi 1960. "A MONTE CARLO SIMULATION OF NEAR INFRARED RADIATION TRANSFER IN CLOUDS." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Radiative simulation":

1

Norman, John M. Final report on research on NASA grant entitled plant architecture, growth and radiative transfer for terrestrial and space environments, Feb. 1, 1989 - Jan. 31, 1993. [Washington, DC: National Aeronautics and Space Administration, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Guijun. Nong tian fu she chuan shu ji li yu yao gan cheng xiang mo ni. 8th ed. Beijing Shi: Qi xiang chu ban she, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mizer, Sue. Radiation therapy simulation workbook. Oxford: Pergamon Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Buckalew, William H. Cobalt-60 simulation of LOCA radiation effects. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Buckalew, William H. Cobalt-60 simulation of LOCA radiation effects. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Randall, David A. Analysis of the diurnal cycle of precipitation and its relation to cloud radiative forcing using TRMM products: Annual progress report, for the period 7/1/97 through 6/30/98 : grant #NAG5-4749. [Washington, DC: National Aeronautics and Space Administration, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Eckstein, Wolfgang. Computer simulation of ion-solid interactions. Berlin: Springer-Verlag, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, J. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations. Norfolk, Va: Institute for Computational and Applied Mechanics, Old Dominion University, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nieves, L. A. The economic costs of radiation-induced health effects: Estimation and simulation. Washington, DC: Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kling, Andreas, Fernando J. C. Baräo, Masayuki Nakagawa, Luis Távora, and Pedro Vaz, eds. Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Radiative simulation":

1

Beckers, Pierre, and Benoit Beckers. "Radiative Simulation Methods." In Solar Energy at Urban Scale, 205–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118562062.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kersch, Alfred, and William J. Morokoff. "Modeling of Radiative Heat Transfer." In Transport Simulation in Microelectronics, 145–73. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9080-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fouquart, Y. "Radiative Transfer in Climate Models." In Physically-Based Modelling and Simulation of Climate and Climatic Change, 223–83. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3041-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kersch, A., and W. Morokoff. "Radiative Heat Transfer with Quasi Monte Carlo Methods." In Simulation of Semiconductor Devices and Processes, 373–76. Vienna: Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-6657-4_92.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pereira, E. J. N., J. M. G. Martinho, and M. N. Berberan-Santos. "Radiative Transport in Multiple Scattering Media." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 577–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_92.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gokhale, Maya, Janette Frigo, Christine Ahrens, Justin L. Tripp, and Ron Minnich. "Monte Carlo Radiative Heat Transfer Simulation on a Reconfigurable Computer." In Field Programmable Logic and Application, 95–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30117-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jun, Kong, and Ding Yihui. "Numerical Simulation of the Effect of Radiative Processes on the Development of Tropical Cyclones." In Atmospheric Radiation, 250–58. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Greffet, J. J., J. B. Thibaud, L. Roux, P. Mareschal, and N. Vukadinovic. "Scattering by a Thin Slab: Comparison Between Radiative Transfer and Electromagnetic Simulation." In Waves and Imaging through Complex Media, 299–305. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0975-1_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yuejuan, Chen, and H. L. Kuo. "Calculated Distribution of the Radiative Heating Rate Over the Qinghai-Xizang Plateau in a Numerical Simulation." In Atmospheric Radiation, 92–98. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zarco-Tejada, Pablo J., John R. Miller, and Gina H. Mohammed. "Remote Sensing of Solar-Induced Chlorophyll Fluorescence from Vegetation Hyperspectral Reflectance and Radiative Transfer Simulation." In From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems, 233–69. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-1620-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Radiative simulation":

1

Selcuk, Nevin, Ahmet B. Uygur, Isil Ayranci, and Tanil Tarhan. "TRANSIENT SIMULATION OF RADIATING FLOWS." In RADIATIVE TRANSFER - IV. Fourth International Symposium on Radiative Transfer. New York: Begellhouse, 2004. http://dx.doi.org/10.1615/ichmt.2004.rad-4.320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Perez, P., A. de Lataillade, Mouna El Hafi, and R. Fournier. "OPTIMIZED NET EXCHANGE MONTE CARLO SIMULATION OF FLAMES RADIATION." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Quan, Haiyong, and Zhixiong Guo. "SIMULATION OF WHISPERING-GALLERY-MODE RESONANCE FOR OPTICAL MINIATURE BIOSENSOR." In RADIATIVE TRANSFER - IV. Fourth International Symposium on Radiative Transfer. New York: Begellhouse, 2004. http://dx.doi.org/10.1615/ichmt.2004.rad-4.290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yan, Zhenghua, Bengt Sunden, and Michael A. Delichatsios. "Analysis of Flame Radiative Heat Transfer Using Large Eddy Simulation." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A series of comprehensive large eddy simulations of non-premixed turbulent hydrocarbon flames of different sizes in a typical fire scenario have been carried out to compute the flame radiative heat transfer. In the simulation, considerations include the modelling of sub-grid turbulence, turbulent combustion, soot formation, thermal radiation and interactive heat transfer inside solid walls, etc. The instantaneous thermal radiation was calculated using the discrete transfer method with the radiation property evaluated by both an approximated fast narrow band model and an integral model. Simulation was validated against experimental data. Flame radiation heat transfer was compared for flames of different sizes. The effect of thermal radiation property evaluation model on calculation of radiation and the role of thermal radiation in total heat transfer are analyzed.
5

Ren, Tao, Michael F. Modest, and Somesh Roy. "Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Radiative heat transfer is studied numerically for reacting swirling flow in an industrial gas turbine burner operating at a pressure of 15 bar. The reacting field characteristics are computed by Reynolds-averaged Navier-Stokes (RANS) equations using the k-ε model with the partially stirred reactor (PaSR) combustion model. The GRI-Mech 2.11 mechanism, which includes nitrogen chemistry, is used to demonstrate the the ability of reducing NOx emissions of the combustion system. A Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model is employed to accurately account for the radiation effects. CO2, H2O and CO are assumed to be the only radiatively participating species and wall radiation is considered as well. Optically thin and PMC-gray models are also employed to show the differences between the simplest radiative calculation models and the most accurate radiative calculation model, i.e., PMC-LBL, for the gas turbine burner. It was found that radiation does not significantly alter the temperature level as well as CO2 and H2O concentrations. However, it has significant impacts on the NOx levels at downstream locations.
6

Guo, Zhixiong, Janice Aber, Bruce Garetz, and Sunil Kumar. "PULSE LASER RADIATION TRANSFER: MONTE CARLO SIMULATION AND COMPARISON WITH EXPERIMENT." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Falcitelli, M., Sauro Pasini, and Leonardo Tognotti. "THERMOFLUIDODYNAMIC SIMULATION OF PRACTICAL COMBUSTION SYSTEMS AND PREDICTION OF NOX BY REACTOR NETWORK ANALYSIS." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tomic, Stanko. "Radiative and non-radiative processes in intermediate band solar cells." In 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2012. http://dx.doi.org/10.1109/nusod.2012.6316542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anderson, Gail P., Alexander Berk, Prabhat K. Acharya, Michael W. Matthew, Lawrence S. Bernstein, James H. Chetwynd, Jr., H. Dothe, et al. "MODTRAN4 version 2: radiative transfer modeling." In Aerospace/Defense Sensing, Simulation, and Controls, edited by Sylvia S. Shen and Michael R. Descour. SPIE, 2001. http://dx.doi.org/10.1117/12.437035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Poitou, Damien, Jorge Amaya, Mouna El Hafi, and Benedicte Cuenot. "COUPLING RADIATION MODELLING WITH TURBULENT COMBUSTION IN LARGE EDDY SIMULATION." In RADIATIVE TRANSFER - VI. Proceedings of the 6th International Symposium on Radiative Transfer. New York: Begellhouse, 2010. http://dx.doi.org/10.1615/ichmt.2010.rad-6.520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Radiative simulation":

1

Arvo, James. Analysis and Simulation of Radiative Transfer in the Presence of Non-Lambertian Surfaces. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada384770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guler, Hayg. Contribution to the G0 violation of parity experience: calculation and simulation of radiative corrections and the background noise study; Contribution a l'experience G0 de violation de la parite : calcul et simulation des corrections radiatives et etude du bruit de fond. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/955403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Parks, Don, Randall Ingemanson, Eric Salberta, Paul Steen, and John Thompson. Advanced Simulator Power Flow Technology/Advanced Radiation Simulation. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada305391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fan, Jianhua, Zhiyong Tian, Simon Furbo, Weiqiang Kong, and Daniel Tschopp. Simulation and design of collector array units within large systems. IEA SHC Task 55, October 2019. http://dx.doi.org/10.18777/ieashc-task55-2019-0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Solar radiation data is necessary for the design of solar heating systems and used to estimate the thermal performance of solar heating plants. Compared to global irradiance, the direct beam component shows much more variability in space and time. The global radiation split into beam and diffuse radiation on collector plane is important for the evaluation of the performance of different collector types and collector field designs.
5

Kollman, Craig. Rare event simulation in radiation transport. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10172053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kiv, A. E., T. I. Maximova, and V. N. Soloviov. MD Simulation of the Ion-Stimulated Relaxation in Silicon Surface Layers. [б. в.], June 2000. http://dx.doi.org/10.31812/0564/1278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thus it was established that ion bombardment of silicon surface in the energy region of the threshold of elastic displacement of atoms might allow to improve structural characteristics of surface lavers and to decrease the relaxation time. Energy dependencies of radiation induced processes show a possibility to improve the real staicture of Silicon surface and to accelerate the long-term surface relaxation in microelectronic technology.
7

Parks, Donal, Phil Coleman, Randy Ingermanson, Paul Steen, and John Thompson. Advanced Simulator Power Flow Technology/Advanced Radiation Simulation Volume 2: MHD Modeling of POS and Power Flow. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada377780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jacobs, Patrick W. M., Арнольд Юхимович Ків, Володимир Миколайович Соловйов, and Tatyana N. Maximova. Radiation-stimulated processes in Si surface layers. Transport and Telecommunication Institute, 1999. http://dx.doi.org/10.31812/0564/1023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Molecular dynamics computer simulations have been performed to study the character o disordering of atom configurations in Si surface layers. The relaxation of free Si surface was investigated. The main structural parameters were calculated, such as a distribution of angle between chemical bonds, the density of dangling bonds, structural peculiarities of Si surface layers and radiation effects. It was concluded that Si surface at real conditions is a disordered phase similar to a-Si
9

Sullivan, John P. GPS Radiation Instrument Modeling and Simulation (Project w14_gpsradiation). Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1188181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Boyd, Lain D. Monte Carlo Simulation of Radiation in Hypersonic Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada414031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії