Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Rainbow.

Статті в журналах з теми "Rainbow"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Rainbow".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hayes, John W. "Competition for Spawning Space Between Brown (Salmo trutta) and Rainbow Trout (S. gairdneri) in a Lake Inlet Tributary, New Zealand." Canadian Journal of Fisheries and Aquatic Sciences 44, no. 1 (1987): 40–47. http://dx.doi.org/10.1139/f87-005.

Повний текст джерела
Анотація:
Effect of interference competition for spawning space on spawning success of brown (Salmo trutta) and rainbow trout (S. gairdneri) was studied in the main spawning tributary of Lake Alexandrina, New Zealand. Competition was mediated through redd superimposition and severely limited the spawning success of both species. Overall spawning success, from egg deposition to fry emergence, was 2.1% for rainbow trout and 0.2% for brown trout and was dependent on time of spawning. Brown trout spawned from April to June and rainbow trout spawned from April to October. Brown trout and early spawning rainb
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LIU, Hongjun. "Scholarly Study of Hong (Rainbow) in the Ming and Qing Dynasties." Cultura 19, no. 1 (2022): 87–99. http://dx.doi.org/10.3726/cul012022.0007.

Повний текст джерела
Анотація:
Abstract: This paper focuses on how Chinese intellectuals discussed and researched rainbows in late Ming and early Qing Dynasty. Many of them considered the rainbow as a phenomenon that occurred under certain conditions of sunshine and raindrops, which could be described with terms related to qi () of yin/yang (/). Some of them had the knowledge of duplicating rainbows by “spraying water opposite to the sun”. There were also popular conceptions that rainbow was a sign of salaciousness and rainbow could siphon water, both of which had a long history in Chinese context. Scholars also discussed o
Стилі APA, Harvard, Vancouver, ISO та ін.
3

LIU, Hongjun. "Scholarly Study of Hong (Rainbow) in the Ming and Qing Dynasties." Cultura 17, no. 2 (2020): 87–99. http://dx.doi.org/10.3726/cul022020.0007.

Повний текст джерела
Анотація:
Abstract: This paper focuses on how Chinese intellectuals discussed and researched rainbows in late Ming and early Qing Dynasty. Many of them considered the rainbow as a phenomenon that occurred under certain conditions of sunshine and raindrops, which could be described with terms related to qi <graphic href="CUL2020k_87_fig0001.jpg"/> of yin/yang <graphic href="CUL2020k_87_fig0002.jpg"/>. Some of them had the knowledge of duplicating rainbows by “spraying water opposite to the sun”. There were also popular conceptions that rainbow was a sign of salaciousness and rainbow could sip
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huntala, Melisa, Muhammad Rezky Friesta Payu, and Nisky Imansyah Yahya. "Total Rainbow Connection Number Of Shackle Product Of Antiprism Graph (〖AP〗_3)." Jurnal Matematika, Statistika dan Komputasi 20, no. 1 (2023): 1–9. http://dx.doi.org/10.20956/j.v20i1.24833.

Повний текст джерела
Анотація:
Function if is said to be k total rainbows in , for each pair of vertex there is a path called with each edge and each vertex on the path will have a different color. The total connection number is denoted by trc defined as the minimum number of colors needed to make graph to be total rainbow connected. Total rainbow connection numbers can also be applied to graphs that are the result of operations. The denoted shackle graph is a graph resulting from the denoted graph where t is number of copies of G. This research discusses rainbow connection numbers rc and total rainbow connection trc(G) usi
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cervantes-Ojeda, J., M. Gómez-Fuentes, D. González-Moreno, and M. Olsen. "Rainbow Connectivity Using a Rank Genetic Algorithm: Moore Cages with Girth Six." Journal of Applied Mathematics 2019 (March 3, 2019): 1–7. http://dx.doi.org/10.1155/2019/4073905.

Повний текст джерела
Анотація:
Arainbowt-coloringof at-connected graphGis an edge coloring such that for any two distinct verticesuandvofGthere are at leasttinternally vertex-disjoint rainbow(u,v)-paths. In this work, we apply a Rank Genetic Algorithm to search for rainbowt-colorings of the family of Moore cages with girth six(t;6)-cages. We found that an upper bound in the number of colors needed to produce a rainbow 4-coloring of a(4;6)-cage is 7, improving the one currently known, which is 13. The computation of the minimum number of colors of a rainbow coloring is known to be NP-Hard and the Rank Genetic Algorithm showe
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maleeva, G. A. "Analysis of partial key recovery attack on multivariate cryptographic transformations using rank systems." Radiotekhnika, no. 209 (June 24, 2022): 64–70. http://dx.doi.org/10.30837/rt.2022.2.209.06.

Повний текст джерела
Анотація:
The Rainbow signature scheme, proposed by Ding and Schmidt in 2005, is one of the oldest and most studied signature schemes in multidimensional cryptography. The Rainbow, based on the unbalanced Oil and Vinegar signature scheme, has the necessary cryptocurrency since 1999 with the right parameters. Interest in multivariate cryptography has increased in the last decade, as it is considered to be quantum-stable.
 Cryptanalysis of the Rainbow and its predecessors was actively developed in the early 2000s. Attacks from this era include the MinRank attack, the HighRank attack, the Bill-Gilbert
Стилі APA, Harvard, Vancouver, ISO та ін.
7

WERRETT, SIMON. "Wonders never cease: Descartes's Météores and the rainbow fountain." British Journal for the History of Science 34, no. 2 (2001): 129–47. http://dx.doi.org/10.1017/s0007087401004319.

Повний текст джерела
Анотація:
This essay argues that the material culture of the Renaissance garden played an important role in the development of Cartesian mathematical and mechanical philosophy. Garden machinery such as Salomon and Isaac de Caus's automata and grottoes provided a model from which Descartes drew his clockwork conceptions of nature and the human body. This machinery was also crucial in the Cartesian explanation of the rainbow. Not simply an exercise in intellectual curiosity, Descartes's geometrical description of the rainbow in Discourse Eight of the Météores was a direct response to the engineers of arti
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zheng, Yuan, Kexun Shen, Xianghe Wang, and Xing-Xing Yao. "Rainbows in Different Refractive Indices." Physics Teacher 61, no. 5 (2023): 351. http://dx.doi.org/10.1119/5.0086915.

Повний текст джерела
Анотація:
The rainbow is a natural optical scattering and dispersion phenomenon that reveals the visible spectral composition of sunlight in the shape of an arc. People are instinctively attracted by its colorful appearance and curved shape. Hence, there are many serious studies about the rainbow with a long history. Recently, several simple experiments, adopting glass balls, acrylic spheres, spherical flasks, or sessile water drops, have been devised to demonstrate how the rainbow is formed. These works demonstrate the colors and shapes of the rainbow well and explain how the dispersive spectrum is pro
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stefanini, L., D. Ramaccia, A. Toscano, and F. Bilotti. "Temporal rainbow scattering at boundary-induced time interfaces." Applied Physics Letters 122, no. 5 (2023): 051701. http://dx.doi.org/10.1063/5.0132798.

Повний текст джерела
Анотація:
Since the dawn of modern optics and electromagnetics, the optical prism is one of the most fascinating optical elements for refracting light. Exploiting its frequency dispersive behavior, a prism is able to refract different frequencies in different directions, realizing polychromatic light rainbows. Recently, thanks to their engineerable electromagnetic response, metamaterials have been exploited for achieving novel refractive scattering processes, going beyond the classical prism effects. In this Letter, we report on a rainbow-like scattering process taking place at the interface of a bounda
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Telecki, Igor, Petar Belicev, Srdjan Petrovic, and Nebojsa Neskovic. "Focusing properties of a square electrostatic rainbow lens doublet." Nuclear Technology and Radiation Protection 30, no. 4 (2015): 239–48. http://dx.doi.org/10.2298/ntrp1504239t.

Повний текст джерела
Анотація:
This is a study on the properties of a square electrostatic rainbow lens doublet. The said optical element consists of two square electrostatic rainbow lenses with the second lens axially rotated for 45 degrees with respect to the first one. The propagation of a proton beam with a kinetic energy of 10 keV through the doublet is in the focus of our analysis. The potential of the electrodes of both lenses is 2 kV. The electrostatic potential and the electric field components of the lens doublet are calculated using a 3-D computer code based on the method of moments. Spatial and angular distribut
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sarapik, Virve. "Rainbow, colours and science mythology." Folklore: Electronic Journal of Folklore 06 (1998): 7–19. http://dx.doi.org/10.7592/fejf1998.06.rainbow.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ratia, Katri. "“Respect the Stick!”." Journal of Festive Studies 5 (November 13, 2023): 131–49. http://dx.doi.org/10.33823/jfs.2023.5.1.124.

Повний текст джерела
Анотація:
Rainbow Gatherings are one of the earliest forerunners of transformative events, with a history spanning five decades. These noncommercial, cocreated, and inclusive meetings have a global spread, offering radical alternatives to social organization and political processes. This essay examines the alternative political model of Rainbow Gatherings through the lens of material culture studies. The analysis follows an object biography of the ritual artifact known as the Talking Stick, central to Rainbow’s political practices, and explores the meaning of the object in material, symbolic, and instru
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kaptiol, Ye Yu. "Analysis of the RAINBOW post-quantum electronic signature algorithm state and attacks on it for the period of the NIST PQC third round completion." Radiotekhnika, no. 209 (June 24, 2022): 87–92. http://dx.doi.org/10.30837/rt.2022.2.209.09.

Повний текст джерела
Анотація:
The paper identifies and analyzes attacks aimed at cryptanalysis of the Rainbow post-quantum electronic signature algorithm and the state of this electronic signature within the framework of the NIST PQC competition and as a whole. The Rainbow electronic signature as a candidate in the third round of the NIST PQC was examined in detail for the possibility of cryptanalysis. The possibility to use this quantitative attack on the Rainbow electronic signature and the complexity of such an attack depends on the possibility to use this electronic signature in the post-quantum period. Also during the
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ćosić, Marko, Srđan Petrović, and Nebojša Nešković. "Quantum Rainbows in Positron Transmission through Carbon Nanotubes." Atoms 7, no. 1 (2019): 16. http://dx.doi.org/10.3390/atoms7010016.

Повний текст джерела
Анотація:
Here we report the results of the theoretical investigation of the transmission of channeled positrons through various short chiral single walled carbon nanotubes (SWCNT). The main question answered by this study is “What are the manifestations of the rainbow effect in the channeling of quantum particles that happens during the channeling of classical particles?” To answer this question, the corresponding classical and quantum problems were solved in parallel, critically examined, and compared with each other. Positron energies were taken to be 1 MeV when the quantum approach was necessary. Th
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Verde, Francesco. "L’iride e la Trinità: Osservazioni sulle fonti di Basilio, Epistula 38,5." Zeitschrift für Antikes Christentum / Journal of Ancient Christianity 22, no. 3 (2018): 383–99. http://dx.doi.org/10.1515/zac-2018-0036.

Повний текст джерела
Анотація:
Abstract The focus of this contribution is to examine the section 5 (Courtonne) of Basil’s Letter 38 devoted to the rainbow considered as a physical metaphor of the Trinity. The main purpose is to scrutinize the likely ancient pagan sources of Basil’s description of rainbow’s formation. The present article concludes by pointing out that the sources used by Basil could be traced back to Aristotle’s Meteorology and the Stoics (especially Posidonius), without denying an Epicurean influence too. The most interesting point is that the author of the letter seems to occasionally modify the ancient so
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Baran, Dominika. "'Rainbow plague' or 'rainbow allies'?" Gender and Language 16, no. 3 (2022): 286–307. http://dx.doi.org/10.1558/genl.21097.

Повний текст джерела
Анотація:
The anti-genderism register, which demonises the LGBTQ+ community as promoters of so-called 'gender ideology', has spread in recent decades across right wing populist discourses around the world. In Poland, it is an important resource in right wing constructions of national identity, which appeal to a historicised account of Poland as the guardian of European Christianity. However, there is also a counternarrative that envisions Poland as a progressive member of the European Union with secular politics and respect for diversity in all its forms. In this context, the Polish lexeme tecza 'rainbo
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Gettelman, Andrew. "Rainbows and climate change: a tutorial on climate model diagnostics and parameterization." Geoscientific Model Development 16, no. 17 (2023): 4937–56. http://dx.doi.org/10.5194/gmd-16-4937-2023.

Повний текст джерела
Анотація:
Abstract. Earth system models (ESMs) must represent processes below the grid scale of a model using representations (parameterizations) of physical and chemical processes. As a tutorial exercise to understand diagnostics and parameterization, this work presents a representation of rainbows for an ESM: the Community Earth System Model version 2 (CESM2). Using the “state” of the model, basic physical laws, and some assumptions, we generate a representation of this unique optical phenomenon as a diagnostic output. Rainbow occurrence and its possible changes are related to cloud occurrence and rai
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Maretha, Ayu Nanie, Muhammad Mahfuzh Shiddiq, and Na'imah Hijriati. "BILANGAN RAINBOW CONNECTION PADA GRAF-H." EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN 15, no. 1 (2021): 13. http://dx.doi.org/10.20527/epsilon.v15i1.3174.

Повний текст джерела
Анотація:
Pada teori graf terdapat konsep pewarnaan yaitu pewarnaan sisi dan pewarnaan titik. Apabila ada dua titik yang terhubung oleh lintasan rainbow maka pewarnaan sisi graf disebut rainbow connected. Bilangan rainbow connection yang dinotasikan dengan rc(G) adalah bilangan terkecil dari warna yang dibutuhkan agar terbentuk graf bersifat rainbow connected. Pewarnaan titik pada graf disebut rainbow connected jika sebarang dua titik pada graf berwarna titik dihubungkan oleh lintasan rainbow vertex. Bilangan rainbow vertex connection yang dinotasikan dengan rvc(G) adalah bilangan terkecil dari warna ya
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Fadillah, Fadillah, Lyra Yulianti, and Syafrizal Sy. "RAINBOW CONNECTION NUMBER PADA GRAF (3K6 ∗ W6, v)." Jurnal Matematika UNAND 7, no. 3 (2019): 43. http://dx.doi.org/10.25077/jmu.7.3.43-46.2018.

Повний текст джерела
Анотація:
Misalkan G = (V, E) adalah graf terhubung tak trivial. Definisikan pewarnaan c : E(G) → {1, 2, · · · , k} untuk suatu k ∈ N, dimana sisi yang bertetangga boleh diberi warna yang sama. Misalkan terdapat titik u dan v di G. Suatu lintasan-(u, v) di G dikatakan sebagai lintasan rainbow (rainbow path) jika semua sisi dalam lintasan-(u, v) tersebut memiliki warna yang berbeda. Graf G dikatakan bersifat rainbow connected terhadap pewarnaan c jika G memuat lintasan rainbow untuk setiap dua titik u dan v di G, sementara c dikatakan sebagai pewarnaan rainbow (rainbow coloring) dari G. Jika terdapat k w
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Adawiyah, R., I. I. Makhfudloh, Dafik Dafik, RM Prihandini, and AC Prihandoko. "ON RAINBOW ANTIMAGIC COLORING OF SNAIL GRAPH(S_n ), COCONUT ROOT GRAPH (Cr_(n,m) ), FAN STALK GRAPH (Kt_n ) AND THE LOTUS GRAPH(Lo_n )." BAREKENG: Jurnal Ilmu Matematika dan Terapan 17, no. 3 (2023): 1543–52. http://dx.doi.org/10.30598/barekengvol17iss3pp1543-1552.

Повний текст джерела
Анотація:
Rainbow antimagic coloring is a combination of antimagic labeling and rainbow coloring. Antimagic labeling is labeling of each vertex of the graph with a different label, so that each the sum of the vertices in the graph has a different weight. Rainbow coloring is part of the rainbow-connected edge coloring, where each graph has a rainbow path. A rainbow path in a graph is formed if two vertices on the graph do not have the same color. If the given color on each edge is different, for example in the function it is colored with a weight , it is called rainbow antimagic coloring. Rainbow antimag
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Retnowardani, Dwi Agustin, Brian Juned Septory, Kamal Dliou, and Audia Dwi Retno Wulandari. "Rainbow Antimagic Coloring pada Graf Hasil Operasi Join pada Graf Broom." ESTIMATOR : Journal of Applied Statistics, Mathematics, and Data Science 1, no. 1 (2023): 19–27. http://dx.doi.org/10.31537/estimator.v1i1.1180.

Повний текст джерела
Анотація:
Misalkan adalah graf terhubung dengan himpunan titik dan himpunan sisi . Fungsi bijektif dari ke himpunan adalah pelabelan titik graf . Fungsi bijektif disebut rainbow antimagic labeling jika untuk setiap dua sisi dan dalam lintasan , dengan dan . Rainbow antimagic coloring adalah pewarnaan graf dengan rainbow antimagic labeling. Jadi, setiap rainbow antimagic labeling merupakan pewarnaan pelangi graf dengan bobot sisi adalah warna sisi . Rainbow antimagic connection number pada graf adalah jumlah warna terkecil dari semua rainbow antimagic coloring graf , dinotasikan dengan . Pada penelitian
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Muchlian, Melvi. "BILANGAN RAINBOW CONNECTION UNTUK BEBERAPA GRAF THORN." Jurnal Matematika UNAND 5, no. 3 (2016): 65. http://dx.doi.org/10.25077/jmu.5.3.65-76.2016.

Повний текст джерела
Анотація:
Abstrak. Misalkan G = (V (G);E(G)) adalah suatu graf terhubung tak trivial. Denisipewarnaan c : E(G) ! f1; 2; ; kg; k 2 N, dimana dua sisi yang bertetangga bolehberwarna sama. Suatu lintasan u 􀀀 v path P di G dinamakan rainbow path jika tidakterdapat dua sisi di P yang berwarna sama. Graf G disebut rainbow connected jikasetiap dua titik yang berbeda di G dihubungkan oleh rainbow path. Pewarnaaan sisiyang menyebabkan G bersifat rainbow connected dikatakan rainbow coloring. Bilan-gan Rainbow connection dari graf terhubung G, ditulis rc(G), didenisikan sebagaibanyaknya warna minimal yang diperluk
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Baruch, Jay. "Rainbow." Academic Emergency Medicine 19, no. 8 (2012): 990–91. http://dx.doi.org/10.1111/j.1553-2712.2012.01406.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Wu, Fatima, Mao Dun, and Madeline Zelin. "Rainbow." World Literature Today 67, no. 2 (1993): 442. http://dx.doi.org/10.2307/40149302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hewitt, Paul. "RAINBOW." Physics Teacher 44, no. 5 (2006): 268. http://dx.doi.org/10.1119/1.2195393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hajdu, Péter. "Rainbow." Neohelicon 42, no. 2 (2015): 437–50. http://dx.doi.org/10.1007/s11059-015-0316-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

LeSaulnier, Timothy D., and Douglas B. West. "Rainbow edge-coloring and rainbow domination." Discrete Mathematics 313, no. 19 (2013): 2020–25. http://dx.doi.org/10.1016/j.disc.2012.03.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Li, Can, Wenmin Peng, Yang Kang, et al. "Rainbow refractometry using partial rainbow signals." Optics & Laser Technology 158 (February 2023): 108872. http://dx.doi.org/10.1016/j.optlastec.2022.108872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Fu-Hsing, and Cheng-Ju Hsu. "Rainbow Connection Numbers of WK-Recursive Networks and WK-Recursive Pyramids." Mathematics 12, no. 7 (2024): 944. http://dx.doi.org/10.3390/math12070944.

Повний текст джерела
Анотація:
An edge coloring of a graph G results in G being rainbow connected when every pair of vertices is linked by a rainbow path. Such a path is defined as one where each edge possesses a distinct color. A rainbow coloring refers to an edge coloring that guarantees the rainbow connectedness of G. The rainbow connection number of G represents the smallest quantity of colors required to achieve rainbow connectedness under a rainbow coloring scheme. Wang and Hsu (ICICM 2019: 75–79) provided upper bounds on the size of the rainbow connection numbers in WK-recursive networks WKd,t and WK-recursive pyrami
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Septory, Brian Juned, Liliek Susilowati, Dafik Dafik, and M. Venkatachalam. "On Rainbow Antimagic Coloring of Joint Product of Graphs." CAUCHY: Jurnal Matematika Murni dan Aplikasi 7, no. 4 (2023): 548–58. http://dx.doi.org/10.18860/ca.v7i4.17471.

Повний текст джерела
Анотація:
Let be a connected graph with vertex set and edge set . A bijection from to the set is a labeling of graph . The bijection is called rainbow antimagic vertex labeling if for any two edge and in path , where and . Rainbow antimagic coloring is a graph which has a rainbow antimagic labeling. Thus, every rainbow antimagic labeling induces a rainbow coloring G where the edge weight is the color of the edge . The rainbow antimagic connection number of graph is the smallest number of colors of all rainbow antimagic colorings of graph , denoted by . In this study, we studied rainbow antimagic colorin
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Medika, Gema Hista. "RAINBOW CONNECTION PADA BEBERAPA GRAF." Jurnal Matematika UNAND 2, no. 2 (2013): 17. http://dx.doi.org/10.25077/jmu.2.2.17-25.2013.

Повний текст джерела
Анотація:
Misalkan G adalah graf terhubung tak-trivial. Denisikan pewarnaan c :E(G) ! f1; 2; :::; kg, k 2 N, dimana dua sisi yang bertetangga boleh memiliki warnayang sama. Suatu u 􀀀 v path P di G dikatakan rainbow path jika tidak ada dua sisi diP yang memiliki warna sama. Graf G dikatakan rainbow connected jika setiap dua titikyang berbeda di G dihubungkan oleh rainbow path. Pewarnaan sisi yang menyebabkan Gbersifat rainbow connected dikatakan rainbow coloring. Rainbow connection number darigraf terhubung G, ditulis rc(G), didenisikan sebagai banyaknya warna minimal yangdiperlukan untuk membuat graf G
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Barris, Michael C. "The Rainbow Bridge: Rainbows in Art, Myth, and Science." Optometry and Vision Science 79, no. 4 (2002): 216–17. http://dx.doi.org/10.1097/00006324-200204000-00007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

., Maradona. "BILANGAN STRONG RAINBOW CONNECTION UNTUK GRAF GARIS, GRAF MIDDLE DAN GRAF TOTAL." Jurnal Matematika UNAND 5, no. 2 (2016): 102. http://dx.doi.org/10.25077/jmu.5.2.102-112.2016.

Повний текст джерела
Анотація:
Abstrak. Misalkan G = (V (G); E(G)) adalah suatu graf terhubung tak trivial. Denisipewarnaan c : E(G) ! f1; 2; ; kg; k 2 N, dimana dua sisi yang bertetanggaboleh berwarna sama. Suatu lintasan u v path P di G dinamakan rainbow path jikatidak terdapat dua sisi di P yang berwarna sama. Graf G disebut rainbow connectedjika setiap dua titik yang berbeda di G dihubungkan oleh rainbow path. Pewarnaaansisi yang menyebabkan G bersifat rainbow connected dikatakan rainbow coloring. Bilanganrainbow connection dari graf terhubung G, ditulis rc(G), didenisikan sebagaibanyaknya warna minimal yang diperlukan
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yuliani, Witri. "BILANGAN STRONG RAINBOW CONNECTION UNTUK GRAF RODA DAN GRAF KUBIK." Jurnal Matematika UNAND 5, no. 4 (2016): 72. http://dx.doi.org/10.25077/jmu.5.4.72-79.2016.

Повний текст джерела
Анотація:
Abstrak. Misalkan G = (V (G); E(G)) adalah suatu graf terhubung tak trivial. Denisikansuatu pewarnaan c : E(G) ! f1; 2; ; kg; k 2 N, dimana dua sisi yang bertetanggaboleh berwarna sama. Suatu lintasan u v path P di G dinamakan rainbow pathjika tidak terdapat dua sisi di P yang berwarna sama. Graf G disebut rainbow connectedjika setiap dua titik yang berbeda di G dihubungkan oleh rainbow path. Pewarnaansisi yang menyebabkan G bersifat rainbow connected dikatakan rainbow coloring. BilanganRainbow connection dari graf terhubung G, ditulis rc(G), didenisikan sebagaibanyaknya warna minimal yang dip
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Framenau, Volker W. "Generic and family transfers, and numina dubia for orb-weaving spiders (Araneae, Araneidae) in the Australasian, Oriental and Pacific regions." Evolutionary Systematics 3 (April 16, 2019): 1–27. https://doi.org/10.3897/evolsyst.3.33454.

Повний текст джерела
Анотація:
As part of a current revision of the Australasian and Pacific orb-weaving spider fauna (family Araneidae Clerck, 1757), a number new combinations are proposed in the genera Acroaspis Karsch, 1878 (3 species), Carepalxis L. Koch, 1872 (1 species), Cyclosa Menge, 1866 (5 species), and Neoscona Simon, 1864 (7 species): Acroaspis lancearia (Keyserling, 1887), comb. n., A. mamillana (Keyserling, 1887), comb. n., A. scutifer (Keyserling, 1886), comb. n., Carepalxis furcifera (Keyserling, 1886), comb. n.; Cyclosa anatipes (Keyserling, 1887), comb. n.; Cyclosa apoblepta (Rainbow, 1916), comb. n.; Cycl
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Lestari, Dia, and I. Ketut Budayasa. "BILANGAN KETERHUBUNGAN PELANGI PADA PEWARNAAN-SISI GRAF." MATHunesa: Jurnal Ilmiah Matematika 8, no. 1 (2020): 25–34. http://dx.doi.org/10.26740/mathunesa.v8n1.p25-34.

Повний текст джерела
Анотація:
Let be a graph. An edge-coloring of is a function , where is a set of colors. Respect to a subgraph of is called a rainbow subgraph if all edges of get different colors. Graph is called rainbow connected if for every two distinct vertices of is joined by a rainbow path. The rainbow connection number of , denoted by , is the minimum number of colors needed in coloring all edges of such that is a rainbow connected. The main problem considered in this thesis is determining the rainbow connection number of graph. In this thesis, we determine the exact value of the rainbow connection number of some
Стилі APA, Harvard, Vancouver, ISO та ін.
37

RIEZSA DESSYLUVIANI, SUCI. "PENENTUAN RAINBOW CONNECTION NUMBER DAN STRONG RAINBOW CONNECTION NUMBER PADA GRAF BERLIAN." Jurnal Matematika UNAND 6, no. 3 (2017): 93. http://dx.doi.org/10.25077/jmu.6.3.93-99.2017.

Повний текст джерела
Анотація:
Misalkan G = (V, E) adalah suatu graf. Suatu pewarnaan c : E(G) → {1, 2, · · · , k}, k ∈ N pada graf G adalah suatu pewarnaan sisi di G sedemikian sehingga setiap sisi bertetangga boleh berwarna sama. Misalkan u, v ∈ V (G) dan P adalah suatu lintasan dari u ke v. Suatu intasan P dikatakan rainbow path jika tidak terdapat dua sisi di P berwarna sama. Graf G disebut rainbow connected dengan pewarnaan c jika untuk setiap u, v ∈ V (G) terdapat rainbow path dari u ke v. Jika terdapat k warna di G maka c adalah rainbow k-coloring. Rainbow connection number dari graf terhubung dinotasikan dengan rc(G
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Bustan, A. W., A. N. M. Salman, and P. E. Putri. "On the locating rainbow connection number of amalgamation of complete graphs." Journal of Physics: Conference Series 2543, no. 1 (2023): 012004. http://dx.doi.org/10.1088/1742-6596/2543/1/012004.

Повний текст джерела
Анотація:
Abstract Locating rainbow connection number determines the minimum number of colors connecting any two vertices of a graph with a rainbow vertex path and also verifies that the given colors produce a different rainbow code for each vertex. Locating rainbow connection number of graphs is a new mathematical concept, especially in graph theory, which combines the concepts of the rainbow vertex coloring and the partition dimension. In this paper, we determine the locating rainbow connection number of amalgamation of complete graphs.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Nurhasanah, Nurhasanah, Syafrizal Sy, and Lyra Yulianti. "BILANGAN RAINBOW CONNECTION UNTUK BEBERAPA GRAF CORONA SISI." Jurnal Matematika UNAND 4, no. 2 (2019): 16. http://dx.doi.org/10.25077/jmu.4.2.16-21.2015.

Повний текст джерела
Анотація:
Suatu lintasan uP v dikatakan sebagai rainbow path pada G jika tidak ada dua sisi pada P yang berwarna sama. Suatu graf G dikatakan rainbow-connected terhadap pewarnaan sisi-sisi, jika G memuat lintasan rainbow u − v untuk setiap dua titik u dan v pada G. Suatu pewarnaan sisi dimana G bersifat rainbow connected dinamakan rainbow coloring terhadap G. Pada tulisan ini akan ditentukan bilangan rainbow connection untuk corona sisi dari beberapa graf sederhana, yaitu rc(G H) untuk G atau H adalah graf lengkap Kn, graf lintasan Pn dan graf siklus Cn, n ≥ 3.Kata Kunci: Graf lengkap, lintasan, siklus,
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Mooduto, Randi, Lailany Yahya, and Nisky Imansyah Yahya. "Total Rainbow Connection Number of Corona Product of Book Graph(Bn) and Pencil Graf(Pcm)." Sainsmat : Jurnal Ilmiah Ilmu Pengetahuan Alam 12, no. 2 (2023): 153. http://dx.doi.org/10.35580/sainsmat122423112023.

Повний текст джерела
Анотація:
Let G be a simple and finite graph. Rainbow connection and total rainbow connection c are set c : G → {1,2,. . . , k} where k is the minimal color on graph G. A rainbow connection number(rc) is a pattern by giving different colors to the connection edges (E(G)) so that a rainbow path is formed. The total rainbow connection number (trc) is a payment pattern by giving color to vertices (V(G)) and edges (E(G)) in graph G so that a total rainbow path is formed. This article discusses rainbow connection numbers (rc) and total rainbow connection numbers (trc) in the corona graph of book graph (Bn) a
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Nguyen Thi Thuy, Anh, and Duyen Le Thi. "A NOTE ON GENERALIZED RAINBOW CONNECTION OF CONNECTED GRAPHS AND THEIR NUMBER OF EDGES." Journal of Science Natural Science 66, no. 3 (2021): 3–7. http://dx.doi.org/10.18173/2354-1059.2021-0041.

Повний текст джерела
Анотація:
Let l ≥ 1, k ≥ 1 be two integers. Given an edge-coloured connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colours needed in order to make G (k, l)-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we first focus to improve the upper bound of the (1, l)-rainbow connection number depending on t
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zimmerman, Christian E., and Gordon H. Reeves. "Population structure of sympatric anadromous and nonanadromous Oncorhynchus mykiss: evidence from spawning surveys and otolith microchemistry." Canadian Journal of Fisheries and Aquatic Sciences 57, no. 10 (2000): 2152–62. http://dx.doi.org/10.1139/f00-192.

Повний текст джерела
Анотація:
Reproductive isolation between steelhead and resident rainbow trout (Oncorhynchus mykiss) was examined in the Deschutes River, Oregon, through surveys of spawning timing and location. Otolith microchemistry was used to determine the occurrence of steelhead and resident rainbow trout progeny in the adult populations of steelhead and resident rainbow trout in the Deschutes River and in the Babine River, British Columbia. In the 3 years studied, steelhead spawning occurred from mid March through May and resident rainbow trout spawning occurred from mid March through August. The timing of 50% spaw
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Aryani, Suciana Budi, Lyra Yulianti, and Syafrizal Sy . "BATAS ATAS BILANGAN RAINBOW CONNECTION UNTUK GRAF KUBIK C n;2n;2n;2n;n." Jurnal Matematika UNAND 7, no. 1 (2018): 143. http://dx.doi.org/10.25077/jmu.7.1.143-148.2018.

Повний текст джерела
Анотація:
Abstrak. Misalkan G merupakan suatu graf terhubung tak trivial. Didenisikan suatupewarnaan c : E(G) ! f1; 2; ; ng; n 2 N, dimana sisi yang bertetangga bolehberwarna sama. Suatu lintasan u v path dikatakan sebagai rainbow path pada G jikatidak terdapat dua sisi pada path yang berwarna sama. Suatu graf G dikatakan rainbowconnectedterhadap pewarnaan sisi, jika G memuat rainbow u-v path untuk setiap duatitik u dan v pada G. Jika graf G bersifat rainbow connected maka pewarnaan sisinyadinamakan rainbow coloring pada G. Bilangan rainbow connection (rc) (rainbow connectionnumber) dari G, dilambangkan
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Anggalia, Fitri, LYRA YULIANTI, and DES WELYYANTI. "BATAS ATAS RAINBOW CONNECTION NUMBER PADA GRAF BUCKMINSTERFULLERENE." Jurnal Matematika UNAND 11, no. 1 (2022): 1. http://dx.doi.org/10.25077/jmu.11.1.1-11.2022.

Повний текст джерела
Анотація:
Misalkan G adalah suatu graf terhubung tak trivial. Suatu pewarnaan c :E(G) → {1, 2, ..., k}, k ∈ N pada graf G adalah suatu pewarnaan sisi di G sedemikiansehingga setiap sisi bertetangga boleh berwarna sama. Misalkan u, v ∈ V (G) dan Padalah suatu lintasan dari u ke v. Suatu lintasan P dikatakan rainbow path jika tidakterdapat dua sisi di P berwarna sama. Graf G disebut rainbow connected dengan pewarnaan c jika untuk setiap u, v ∈ V (G) terdapat rainbow path dari u ke v. Jika terdapat k warna di G maka c adalah rainbow k-coloring. Rainbow connection number dari graf terhubung dinotasikan deng
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wijaya, Reni. "BILANGAN RAINBOW CONNECTION UNTUK GRAF KOMPLEMEN." Jurnal Matematika UNAND 2, no. 3 (2013): 9. http://dx.doi.org/10.25077/jmu.2.3.9-12.2013.

Повний текст джерела
Анотація:
Misalkan terdapat dua titik u, v pada graf G. Suatu u-v path, dinotasikandengan uPv di G, dikatakan rainbow path jika tidak terdapat dua sisi di P yang memiliki warna sama. Suatu pewarnaan sisi di G dikatakan rainbow connected jika setiapdua titik yang berbeda dihubungkan oleh rainbow path. Bilangan rainbow connectiondari graf terhubung G, ditulis rc(G), didefinisikan sebagai banyaknya warna minimalyang diperlukan untuk membuat G bersifat rainbow connected. Pada tulisan ini dibahastentang bilangan rainbow connection untuk komplemen dari graf lingkaran Cn dengann ≥ 6 dan graf buku B 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Garattini, Remo. "Traversable wormholes in distorted gravity." International Journal of Modern Physics D 24, no. 09 (2015): 1542025. http://dx.doi.org/10.1142/s0218271815420250.

Повний текст джерела
Анотація:
In this paper, we consider the effects of distorted gravity on the traversability of the wormholes. In particular, we consider configurations which are sustained by their own gravitational quantum fluctuations. The Ultraviolet divergences appearing to one loop are taken under control with the help of a Noncommutative geometry representation and gravity's rainbow. In this context, it will be shown that for every framework, the self-sustained equation will produce a Wheeler wormhole, namely a wormhole of Planckian size. This means that, from the point of view of traversability, the wormhole will
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Jiang, Huiqin, and Yongsheng Rao. "Total 2-Rainbow Domination in Graphs." Mathematics 10, no. 12 (2022): 2059. http://dx.doi.org/10.3390/math10122059.

Повний текст джерела
Анотація:
A total k-rainbow dominating function on a graph G=(V,E) is a function f:V(G)→2{1,2,…,k} such that (i) ∪u∈N(v)f(u)={1,2,…,k} for every vertex v with f(v)=∅, (ii) ∪u∈N(v)f(u)≠∅ for f(v)≠∅. The weight of a total 2-rainbow dominating function is denoted by ω(f)=∑v∈V(G)|f(v)|. The total k-rainbow domination number of G is the minimum weight of a total k-rainbow dominating function of G. The minimum total 2-rainbow domination problem (MT2RDP) is to find the total 2-rainbow domination number of the input graph. In this paper, we study the total 2-rainbow domination number of graphs. We prove that th
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kim, Kijung. "On k-rainbow domination in middle graphs." RAIRO - Operations Research 55, no. 6 (2021): 3447–58. http://dx.doi.org/10.1051/ro/2021163.

Повний текст джерела
Анотація:
Let G be a finite simple graph with vertex set V(G) and edge set E(G). A function f : V(G) → P({1,2,…,k}) is a k-rainbow dominating function on G if for each vertex v∈V(G) for which f(v) = ∅, it holds that ⋃u∈N(v) f(u) = {1,2,…,k}. The weight of a k-rainbow dominating function is the value ∑v∈V(G)|f(v)|. The k-rainbow domination number γrk (G) is the minimum weight of a k-rainbow dominating function on G. In this paper, we initiate the study of k-rainbow domination numbers in middle graphs. We define the concept of a middle k-rainbow dominating function, obtain some bounds related to it and de
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Dárlla, Roberta, Francisco A. Brito, and Job Furtado. "Black String Solutions in Rainbow Gravity." Universe 9, no. 6 (2023): 297. http://dx.doi.org/10.3390/universe9060297.

Повний текст джерела
Анотація:
In this paper, we studied black string solutions under the consideration of rainbow gravity. We analytically obtained the solution for four-dimensional black strings in terms of the functions f(E/Ep) and g(E/Ep) that sets the energy scale where the rainbow gravity becomes relevant. We also obtained the Hawking temperature for the black string, from which we can see that the rainbow functions play the role of increasing or decreasing the Hawking temperature for a given horizon radius depending on the choice of such rainbow functions. We computed the entropy, specific heat and free energy for th
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Awanis, Zata Yumni, and A. N. M. Salman. "The strong 3-rainbow index of some certain graphs and its amalgamation." Opuscula Mathematica 42, no. 4 (2022): 527–47. http://dx.doi.org/10.7494/opmath.2022.42.4.527.

Повний текст джерела
Анотація:
We introduce a strong \(k\)-rainbow index of graphs as modification of well-known \(k\)-rainbow index of graphs. A tree in an edge-colored connected graph \(G\), where adjacent edge may be colored the same, is a rainbow tree if all of its edges have distinct colors. Let \(k\) be an integer with \(2\leq k\leq n\). The strong \(k\)-rainbow index of \(G\), denoted by \(srx_k(G)\), is the minimum number of colors needed in an edge-coloring of \(G\) so that every \(k\) vertices of \(G\) is connected by a rainbow tree with minimum size. We focus on \(k=3\). We determine the strong \(3\)-rainbow inde
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!