Добірка наукової літератури з теми "RANS numerical simulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "RANS numerical simulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "RANS numerical simulation"

1

Zhang, Shu Jia, Yue Ping Tong, and Le Hu. "Examine Applicability of the RANS and LES Method on Numerical Simulation of Centrifugal Pump." Applied Mechanics and Materials 55-57 (May 2011): 582–86. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.582.

Повний текст джерела
Анотація:
In order to examine applicability of the Reynolds-Averaged Navier-Stokes (RANS)using Reynolds Stress equation Model (RSM) and the Large Eddy Simulation (LES) in numerical simulation of centrifugal pump, a series of 3D numerical simulation at the design point and at six off-design points were carried out with the two methods. The object is based on IS80-65-160 centrifugal pump. According to the results obtained, head, shaft power, efficiency of pump were calculated, the simulated performance curves of a centrifugal pump is processed. The simulated performance curves of a centrifugal pump were c
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Grecu, I. S., G. Dunca, D. M. Bucur, and M. J. Cervantes. "URANS numerical simulations of pulsating flows considering streamwise pressure gradient on asymmetric diffuser." IOP Conference Series: Earth and Environmental Science 1079, no. 1 (2022): 012087. http://dx.doi.org/10.1088/1755-1315/1079/1/012087.

Повний текст джерела
Анотація:
Abstract The paper focuses on implementing the wall model developed by Manhart, in Reynolds Averaged Navier - Stokes (RANS) turbulence models used in the field of Computational Fluid Dynamics (CFD). This wall model considers the influence of the streamwise pressure gradient in addition to the existing wall models used in the usual CFD codes. In the present work, two RANS numerical simulations are carried out using the k-ω Shear Stress Transport (SST) turbulence model on an asymmetric diffuser geometry. One numerical simulation is carried out using the implementation of the Manhart wall model i
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ketong, Liu, and Tang Aiping. "Numerical Investigation for Aerodynamic Derivatives of Bridge Deck Using DES." Open Civil Engineering Journal 8, no. 1 (2014): 326–34. http://dx.doi.org/10.2174/1874149501408010326.

Повний текст джерела
Анотація:
Detached Eddy Simulation(DES)is quite a new approach for the treatment of turbulence, which unites the efficiency of Reynolds Averaged Navier-Stokes Simulation (RANS) and the accuracy of Large Eddy Simulation (LES) into one framework. In this paper, DES method based on Spalart-Allmaras (S-A) turbulence model is employed to simulate the incompressible viscous flow around bridge decks. In order to obtain the aerodynamic forces, the forced motion simulations of the bridge decks are implemented by self-developed codes combined with FLUENT software. After obtaining the aerodynamic forces, aerodynam
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baranova, T. A., Yu V. Zhukova, A. D. Chorny, A. N. Skrypnik, R. A. Aksyanov, and I. A. Popov. "Non-isothermal vortex flow in the T-junction channel." Journal of Physics: Conference Series 2088, no. 1 (2021): 012034. http://dx.doi.org/10.1088/1742-6596/2088/1/012034.

Повний текст джерела
Анотація:
Abstract In this work we present the numerical simulation of coolant mixing modes in the T-junction. We shows that the RANS approach is beneficial for a qualitative flow analysis to obtain relatively agreed averaged velocity and temperature. Moreover, traditionally, the RANS approach calculates only the averaged temperature distribution. It should also be emphasized that unlike the LES approach, the steady RANS approach cannot express a local flow structure in intense mixing zones. Nevertheless, apparently the used RANS approach should be used for assessing the quality of computational grids,
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsiao, C. T., and G. L. Chahine. "Numerical Study of Cavitation Inception Due to Vortex/Vortex Interaction in a Ducted Propulsor." Journal of Ship Research 52, no. 02 (2008): 114–23. http://dx.doi.org/10.5957/jsr.2008.52.2.114.

Повний текст джерела
Анотація:
Cavitation inception in a ducted propulsor was studied numerically using Navier-Stokes computations and bubble dynamics models. Experimental observations of the propulsor model and previous numerical computations using Reynolds-averaged Navier-Stokes (RANS) codes indicated that cavitation inception occurred in the region of interaction of the leakage and trailing tip vortices. The RANS simulations failed, however, to predict correctly both the cavitation inception index value and the inception location. To improve the numerical predictions, we complemented here the RANS computations with a dir
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Viti, Nicolò, Daniel Valero, and Carlo Gualtieri. "Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook." Water 11, no. 1 (2018): 28. http://dx.doi.org/10.3390/w11010028.

Повний текст джерела
Анотація:
During the past two decades, hydraulic jumps have been investigated using Computational Fluid Dynamics (CFD). The second part of this two-part study is devoted to the state-of-the-art of the numerical simulation of the hydraulic jump. First, the most widely-used CFD approaches, namely the Reynolds-Averaged Navier–Stokes (RANS), the Large Eddy Simulation (LES), the Direct Numerical Simulation (DNS), the hybrid RANS-LES method Detached Eddy Simulation (DES), as well as the Smoothed Particle Hydrodynamics (SPH), are introduced pointing out their main characteristics also in the context of the bes
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Lu, Yongfei Mou, Fan Liu, Shuai Ma, and Xingda Cui. "Grid density effect for numerical simulation of civil aircraft in post stall." Journal of Physics: Conference Series 2599, no. 1 (2023): 012002. http://dx.doi.org/10.1088/1742-6596/2599/1/012002.

Повний текст джерела
Анотація:
Abstract Stall will deteriorate flight safety and cause serious accidents for civil aircraft. RANS-LES hybrid approaches have become a compromise choice due to insufficient ability of RANS for large flow separation. In present work, Zonal Detached-eddy-simulation coupled with high-order spatial scheme were employed to investigated grid density effect in the numerical simulations. The calculations show that the grid density would affect the numerical simulation of the small-scale flow structure in the wake of region of the main wing, and further affect the disturbance of main wing to the horizo
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Eastwood, Simon J., Paul G. Tucker, Hao Xia, and Christian Klostermeier. "Developing large eddy simulation for turbomachinery applications." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1899 (2009): 2999–3013. http://dx.doi.org/10.1098/rsta.2008.0281.

Повний текст джерела
Анотація:
For jets, large eddy resolving simulations are compared for a range of numerical schemes with no subgrid scale (SGS) model and for a range of SGS models with the same scheme. There is little variation in results for the different SGS models, and it is shown that, for schemes which tend towards having dissipative elements, the SGS model can be abandoned, giving what can be termed numerical large eddy simulation (NLES). More complex geometries are investigated, including coaxial and chevron nozzle jets. A near-wall Reynolds-averaged Navier–Stokes (RANS) model is used to cover over streak-like st
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Soni, Rahul Kumar, Nitish Arya, and Ashoke De. "Numerical simulation of supersonic separating-reattaching flow through RANS." Journal of Physics: Conference Series 822 (April 11, 2017): 012037. http://dx.doi.org/10.1088/1742-6596/822/1/012037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baranova, Tatyana A., Yulia V. Zhukova, Andrei D. Chorny, Artem Skrypnik, and Igor A. Popov. "Non-Isothermal Vortex Flow in the T-Junction Pipe." Energies 14, no. 21 (2021): 7002. http://dx.doi.org/10.3390/en14217002.

Повний текст джерела
Анотація:
The numerical simulation approach of heat carrier mixing regimes in the T-junction shows that the RANS approach is beneficial for a qualitative flow analysis to obtain relatively agreed averaged velocity and temperature. Moreover, traditionally, the RANS approach only predicts the averaged temperature distribution. This mathematical model did not consider the temperature fluctuation variations important for the thermal fatigue task. It should also be emphasized that unlike the LES approach, the steady RANS approach cannot express a local flow structure in intense mixing zones. Nevertheless, ap
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "RANS numerical simulation"

1

Kim, Su Jin. "3D numerical simulation of turbulent open-channel flow through vegetation." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42892.

Повний текст джерела
Анотація:
A comprehensive understanding of the hydrodynamics in vegetated open-channels and flow-vegetation interaction is of high interest to researchers and practitioners alike for instance in the content of river and coastal restoration schemes. The focus of this study was to investigate the effect of the presence of vegetation on flow resistance, turbulence statistics, and the instantaneous flow in open channels by performing three-dimensional computational-fluid-dynamics (CFD) simulations. Firstly, fully developed turbulent flow in fully-vegetated channel was analyzed by employing the method of h
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Afailal, Al Hassan. "Numerical simulation of non-reactive aerodynamics in Internal Combustion Engines using a hybrid RANS/LES approach." Thesis, Pau, 2020. http://www.theses.fr/2020PAUU3028.

Повний текст джерела
Анотація:
L'aérodynamique interne est un élément fondamental pour améliorer la combustion dans les moteurs à allumage commandé. Une meilleure maitrise des écoulements internes est permise grâce aux outils de simulation CFD qui sont de plus en plus utilisés dans le processus de développement des moteurs à allumage commandé. Cette thèse avait pour objectif d’étendre l'approche hybride RANS/LES-temporelle dite HTLES, initialement dédiée pour des écoulements statistiquement stationnaires, aux écoulements moteurs avec des parois mobiles et des modes opératoires cycliques, puis de la valider dans des configur
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gorgulu, Ilhan. "Numerical Simulation Of Turbine Internal Cooling And Conjugate Heat Transfer Problems With Rans-based Turbulance Models." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615000/index.pdf.

Повний текст джерела
Анотація:
The present study considers the numerical simulation of the different flow characteristics involved in the conjugate heat transfer analysis of an internally cooled gas turbine blade. Conjugate simulations require full coupling of convective heat transfer in fluid regions to the heat diffusion in solid regions. Therefore, accurate prediction of heat transfer quantities on both external and internal surfaces has the uppermost importance and highly connected with the performance of the employed turbulence models. The complex flow on both surfaces of the internally cooled turbine blades is caused
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tristanto, Indi Himawan. "A mesh transparent numerical method for large-eddy simulation of compressible turbulent flows." Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/12128.

Повний текст джерела
Анотація:
A Large Eddy-Simulation code, based on a mesh transparent algorithm, for hybrid unstructured meshes is presented to deal with complex geometries that are often found in engineering flow problems. While tetrahedral elements are very effective in dealing with complex geometry, excessive numerical diffusion often affects results. Thus, prismatic or hexahedral elements are preferable in regions where turbulence structures are important. A second order reconstruction methodology is used since an investigation of a higher order method based upon Lele's compact scheme has shown this to be impractical
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Manickam, Bhuvaneswaran [Verfasser]. "Numerical Modelling and Simulation of Hydrogen Enriched Premixed Turbulent Flames with RANS and LES Approaches / Bhuvaneswaran Manickam." München : Verlag Dr. Hut, 2012. http://d-nb.info/1022535161/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nikolaou, Zacharias M. "Study of multi-component fuel premixed combustion using direct numerical simulation." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245278.

Повний текст джерела
Анотація:
Fossil fuel reserves are projected to be decreasing, and emission regulations are becoming more stringent due to increasing atmospheric pollution. Alternative fuels for power generation in industrial gas turbines are thus required able to meet the above demands. Examples of such fuels are synthetic gas, blast furnace gas and coke oven gas. A common characteristic of these fuels is that they are multi-component fuels, whose composition varies greatly depending on their production process. This implies that their combustion characteristics will also vary significantly. Thus, accurate and yet fle
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sinha, Nityanand. "Towards RANS Parameterization of Vertical Mixing by Langmuir Turbulence in Shallow Coastal Shelves." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4945.

Повний текст джерела
Анотація:
Langmuir turbulence in the upper ocean is generated by the interaction between the wind-driven shear current and the Stokes drift velocity induced by surface gravity waves. In homogenous (neutrally stratified) shallow water, the largest scales of Langmuir turbulence are characterized by full-depth Langmuir circulation (LC). LC consists of parallel counter-rotating vortices aligned roughly in the direction of the wind. In shallow coastal shelves, LC has been observed engulfing the entire water column, interacting with the boundary layer and serving as an important mechanism for sediment re-susp
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Khosravi, Rahmani Ramin. "THREE-DIMENSIONAL NUMERICAL SIMULATION AND PERFORMANCE STUDY OF AN INDUSTRIAL HELICAL STATIC MIXER." See Full Text at OhioLINK ETD Center (Requires Adobe Acrobat Reader for viewing), 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=toledo1103149825.

Повний текст джерела
Анотація:
Dissertation (Ph.D.)--University of Toledo, 2004.<br>Typescript. "A dissertation [submitted] as partial fulfillment of the requirements of the Doctor of Philosophy degree in Engineering." Bibliography: leaves 323-340.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Vivek Mohan. "3D Numerical Simulation to Determine Liner Wall Heat Transfer and Flow through a Radial Swirler of an Annular Turbine Combustor." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/51949.

Повний текст джерела
Анотація:
RANS models in CFD are used to predict the liner wall heat transfer characteristics of a gas turbine annular combustor with radial swirlers, over a Reynolds number range from 50,000 to 840,000. A three dimensional hybrid mesh of around twenty five million cells is created for a periodic section of an annular combustor with a single radial swirler. Different turbulence models are tested and it is found that the RNG k-e model with swirl correction gives the best comparisons with experiments. The Swirl number is shown to be an important factor in the behavior of the resulting flow field. The swir
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zanette, Jerônimo. "Hydroliennes à flux transverse : contribution à l’analyse de l’interaction fluide-structure." Grenoble INPG, 2010. http://www.theses.fr/2010INPG0161.

Повний текст джерела
Анотація:
Cette thèse a été réalisée dans le cadre du Projet HARVEST, programme d'études initié au Laboratoire LEGI de Grenoble visant la production d'électricité à partir d'un concept original d'hydrolienne. Au sein du Projet HARVEST, ce travail constitue une contribution à l'analyse de l'interaction fluide-structure, appuyée sur des outils de simulation numérique disponibles. Une démarche progressive a été mise en place. L'étude porte ainsi tout d'abord sur des configurations bidimensionnelles représentant une coupe transversale de la géométrie réelle. Des géométries tridimensionnelles simplifiées, in
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "RANS numerical simulation"

1

W, Jones T., Ryu Dongsu, and United States. National Aeronautics and Space Administration., eds. Oblique MHD cosmic-ray modified shocks: Two-fluid numerical simulations. National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Frank, Adam. Oblique MHD cosmic-ray modified shocks: Two-fluid numerical simulations. National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Frank, Adam. Oblique MHD cosmic-ray modified shocks: Two-fluid numerical simulations. National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

R, Hjelmfelt Mark, Pielke Roger A, and United States. National Aeronautics and Space Administration., eds. Numerical simulation of the 9-10 June 1972 Black Hills storm using CSU RAMS. National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

R, Hjelmfelt Mark, Pielke Roger A, and United States. National Aeronautics and Space Administration., eds. Numerical simulation of the 9-10 June 1972 Black Hills storm using CSU RAMS. National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

V, Pogorelov Nikolai, Audit Edouard, Zank G. P, and Astronomical Society of the Pacific., eds. Numerical modeling of space plasma flows: ASTRONUM-2007 : proceedings of the 2nd International Conference held at Hotel Concorde Montparnasse, Paris, France, 10-15 June 2007. Astronomical Society of the Pacific, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

service), SpringerLink (Online, ed. Multivariate nonparametric methods with R: An approach based on spatial signs and ranks. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Numerical simulation of the 9-10 June 1972 Black Hills storm using CSU RAMS. National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "RANS numerical simulation"

1

Abbas, Adel, and Klaus Becker. "Numerical Simulation “Airbus Vision and Strategy”." In Progress in Hybrid RANS-LES Modelling. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31818-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mühlbauer, Bernd, Berthold Noll, Roland Ewert, Oliver Kornow, and Manfred Aigner. "Numerical RANS/URANS simulation of combustion noise." In Combustion Noise. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02038-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lakehal, D., F. Thiele, L. Duchamp Lageneste, and M. Buffat. "Computation of Vortex-Shedding Flows Past a Square Cylinder Employing LES and RANS." In Numerical Flow Simulation I. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-540-44437-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barfusz, Oliver, Felix Hötte, Stefanie Reese, and Matthias Haupt. "Pseudo-transient 3D Conjugate Heat Transfer Simulation and Lifetime Prediction of a Rocket Combustion Chamber." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_17.

Повний текст джерела
Анотація:
Abstract Rocket engine nozzle structures typically fail after a few engine cycles due to the extreme thermomechanical loading near the nozzle throat. In order to obtain an accurate lifetime prediction and to increase the lifetime, a detailed understanding of the thermomechanical behavior and the acting loads is indispensable. The first part is devoted to a thermally coupled simulation (conjugate heat transfer) of a fatigue experiment. The simulation contains a thermal FEM model of the fatigue specimen structure, RANS simulations of nine cooling channel flows and a Flamelet-based RANS simulation of the hot gas flow. A pseudo-transient, implicit Dirichlet–Neumann scheme is utilized for the partitioned coupling. A comparison with the experiment shows a good agreement between the nodal temperatures and their corresponding thermocouple measurements. The second part consists of the lifetime prediction of the fatigue experiment utilizing a sequentially coupled thermomechanical analysis scheme. First, a transient thermal analysis is carried out to obtain the temperature field within the fatigue specimen. Afterwards, the computed temperature serves as input for a series of quasi-static mechanical analyses, in which a viscoplastic damage model is utilized. The evolution and progression of the damage variable within the regions of interest are thoroughly discussed. A comparison between simulation and experiment shows that the results are in good agreement. The crucial failure mode (doghouse effect) is captured very well.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Szubert, D., I. Asproulias, N. Simiriotis, Y. Hoarau, and M. Braza. "Numerical Simulation of a 3-D Laminar Wing in Transonic Regime." In Progress in Hybrid RANS-LES Modelling. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70031-1_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stebbins, Spencer, and Eric Loth. "Numerical Simulation of Iced Swept Wing Aerodynamics with RANS, DES, and IDDES." In Handbook of Numerical Simulation of In-Flight Icing. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-33845-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stebbins, Spencer, and Eric Loth. "Numerical Simulation of Iced Swept Wing Aerodynamics with RANS, DES, and IDDES." In Handbook of Numerical Simulation of In-Flight Icing. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-64725-4_6-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Heister, C. C. "RANS Simulation of the New MEXICO Rotor Experiment Including Laminar-Turbulent Transition." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64519-3_65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wokoeck, R., A. Grote, N. Krimmelbein, J. Ortmanns, R. Radespiel, and A. Krumbein. "RANS Simulation and Experiments on the Stall Behaviour of a Tailplane Airfoil." In New Results in Numerical and Experimental Fluid Mechanics V. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33287-9_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Matiz-Chicacausa, A., J. Escobar, D. Velasco, N. Rojas, and C. Sedano. "RANS Simulations of the High Lift Common Research Model with Open-Source Code SU2." In Numerical Simulation of the Aerodynamics of High-Lift Configurations. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62136-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "RANS numerical simulation"

1

Murali, Avinaash, and R. Rajagopalan. "Numerical Simulation of Multiple Interacting Wind Turbines on a Complex Terrain." In Vertical Flight Society 72nd Annual Forum & Technology Display. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11582.

Повний текст джерела
Анотація:
Modern wind farms are subjected to significant aerodynamic interference due to unsteady wakes of individual turbines as well as the complex terrains on which they are erected. The present study uses a new mixed basis formulation of the Navier-Stokes equations for accurate numerical simulation of convection-dominated flows on a complex terrain. The turbines are modeled using a distribution of momentum sources and the incompressible, turbulent flow-field is solved using the Reynolds Averaged Navier-Stokes (RANS) equations. A finite-volume procedure is used on body fitted grids and the SIMPLER al
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cowles, Geoff, Nicola Parolini, and Mark L. Sawley. "Numerical Simulation using RANS-based Tools for America’s Cup Design." In SNAME 16th Chesapeake Sailing Yacht Symposium. SNAME, 2003. http://dx.doi.org/10.5957/csys-2003-007.

Повний текст джерела
Анотація:
The application of Computational Fluid Dynamics simulations based on the Reynolds Averaged Navier- Stokes (RANS) equations to the design of sailing yachts is becoming more commonplace, particularly for the America's Cup. Drawing on the experience of the Ecole Polytechnique Fédérale de Lausanne as Official Scientific Advisor to the Alinghi Challenge for the America’s Cup 2003, the role of RANS-based codes in the yacht design process is discussed. The strategy for simulating the hydrodynamic flow around the boat appendages is presented. Two different numerical methods for the simulation of wave
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zaidi, Ali Abbas, and Janfizza Bukhari. "Numerical simulation of circulation control airfoil using RANS solver." In 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, 2018. http://dx.doi.org/10.1109/ibcast.2018.8312274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bai, Tiechao, Yongfeng Wu, Peng Wei, Shuang Wang, and Liwei Liu. "Numerical Simulation of Submarine Self-Propulsion Based on Different Turbulent Simulation Models." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95874.

Повний текст джерела
Анотація:
Abstract Design requirements for submarines regarding resistance, maneuverability, stability and stealth tighten with each new generation. Fully understanding the hydrodynamics of the vessels is key if performance requirements need to be met. In this paper, the numerical simulation with three different turbulent models, Reynolds averaged Navier-Stokes (RANS) Realizable k-ε model, RANS SST (Menter’s Shear Stress Transport) k-ω model and the large eddy simulation (LES) are used to simulate the self-propulsion of DARPA SUBOFF submarine under V = 2.755m/s, and the simulation results are compared a
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marcu, Oana, and Dan Constantin Obreja. "RANS simulation of the planar motion mechanism tests for a VLCC hull." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ye, Bin, Jiawei Yu, Liwei Liu, Qing Wang, and Zhiguo Zhang. "Numerical Simulation of ONRT Turning Motion in Regular Waves." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-64014.

Повний текст джерела
Анотація:
Abstract Numerically simulating a ship with six-degrees-of-freedom response motions of an unsteady maneuver in a wave environment is very important in seakeeping characteristics of ship design. This paper presents the simulation studies of the turning motion in regular waves of the ONRT model. Numerical simulations were performed using viscous CFD code HUST-Ship to solve the RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations and dynamic overset grids designed for ship hydrodynamics. RANS equations are solved by the finite difference method (FDM) and PISO arith
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kolomenskiy, Dmitry, Roberto Paoli, and Jean-François Boussuge. "Hybrid RANS–LES Simulation of Wingtip Vortex Dynamics." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21349.

Повний текст джерела
Анотація:
This paper presents a feasibility study of a hybrid RANS–LES approach to numerical simulation of aircraft wing-tip vortices. A NACA 0012 wing is considered for which earlier published experimental and numerical data are available. Mesh sensitivity tests of our RANS solver and comparisons between two different turbulence models indicate that the RANS approach adequately describes the flow upstream from the trailing edge, but overestimates the rate of decay of the wing-tip vortex. A hybrid RANS–LES method is presented that results in a better agreement with the wind tunnel experiment, hence this
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Qun, Wei, Chen Hongxun, and Ma Zheng. "Numerical Simulation of Flow Around Airfoil With Non-Linear RANS Model." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-02777.

Повний текст джерела
Анотація:
The standard k-ε eddy viscosity model is the most commonly used model in computational fluid dynamics and perform well in application, but less effective for flows with high mean shear rate or massive separation. An non-linear eddy viscosity k-ε model was developed to compensate the deficit, in which the Cμ determined by an expression of shear strain rate rather than a constant on the base of experimental and DNS data. Two-dimensional CFD simulations were carried out by proposed NL k-ε model and standard k-ε model for wind-turbine airfoil S809 with the general purpose CFD code ANSYS CFX 12.1.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khali, E., and Y. F. Yao. "RANS-based numerical simulation of a rectangular turbulent jet in crossflow." In THMT-12. Proceedings of the Seventh International Symposium On Turbulence, Heat and Mass Transfer Palermo, Italy, 24-27 September, 2012. Begellhouse, 2012. http://dx.doi.org/10.1615/ichmt.2012.procsevintsympturbheattransfpal.1320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Le Clercq, Patrick, Mark Schlieper, Berthold Noll, and Manfred Aigner. "Liquid Fuel Flameless Combustion RANS Simulation." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50552.

Повний текст джерела
Анотація:
The numerical simulation of flameless combustion with liquid fuels is presented. Computations follow a RANS approach for turbulence modeling with a global reaction mechanism and the eddy dissipation concept for the combustion. Several approaches were tested for defining spray boundary conditions. A phenomenological analysis of the two-phase mixing and heat transfer that follow the injection enabled us to derive the spray boundary conditions that would eventually lead to our main goal; the simulation of flameless combustion. Computation results are compared to experimental measurements. First t
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "RANS numerical simulation"

1

Corum, Zachary, Ethan Cheng, Stanford Gibson, and Travis Dahl. Optimization of reach-scale gravel nourishment on the Green River below Howard Hanson Dam, King County, Washington. Engineer Research and Development Center (U.S.), 2022. http://dx.doi.org/10.21079/11681/43887.

Повний текст джерела
Анотація:
The US Army Corps of Engineers, Seattle District, nourishes gravel downstream of Howard Hanson Dam (HHD) on the Green River in Washington State. The study team developed numerical models to support the ongoing salmonid habitat improvement mission downstream of HHD. Recent advancements in computing and numerical modeling software make long-term simulations in steep, gravel, cobble, and boulder river environments cost effective. The team calibrated mobile-bed, sediment-transport models for the pre-dam and post-dam periods. The modeling explored geomorphic responses to flow and sediment regime ch
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!