Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Receptor-ligand complexes.

Статті в журналах з теми "Receptor-ligand complexes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Receptor-ligand complexes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Veeramani, Suresh, and George J. Weiner. "Quantification of Receptor Occupancy by Ligand—An Understudied Class of Potential Biomarkers." Cancers 12, no. 10 (October 13, 2020): 2956. http://dx.doi.org/10.3390/cancers12102956.

Повний текст джерела
Анотація:
Molecular complexes, such as ligand–receptor complexes, are vital for both health and disease and can be shed into the circulation in soluble form. Relatively little is known about the biology of soluble ligand–receptor complexes. The functional importance of such complexes and their potential use as clinical biomarkers in diagnosis and therapy remains underappreciated. Most traditional technologies used to study ligand–receptor complexes measure the individual levels of soluble ligands or receptors rather than the complexes themselves. The fraction of receptors occupied by ligand, and the pot
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guvench, Olgun, Daniel J. Price, and Charles L. Brooks. "Receptor rigidity and ligand mobility in trypsin-ligand complexes." Proteins: Structure, Function, and Bioinformatics 58, no. 2 (December 1, 2004): 407–17. http://dx.doi.org/10.1002/prot.20326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Särndahl, E., M. Lindroth, T. Bengtsson, M. Fällman, J. Gustavsson, O. Stendahl, and T. Andersson. "Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein." Journal of Cell Biology 109, no. 6 (December 1, 1989): 2791–99. http://dx.doi.org/10.1083/jcb.109.6.2791.

Повний текст джерела
Анотація:
Most ligand-receptor interactions result in an immediate generation of various second messengers and a subsequent association of the ligand-receptor complex to the cytoskeleton. Depending on the receptor involved, this linkage to the cytoskeleton has been suggested to play a role in the termination of second messenger generation and/or the endocytic process whereby the ligand-receptor complex is internalized. We have studied how the binding of chemotactic peptide-receptor complexes to the cytoskeleton of human neutrophils is accomplished. As much as 76% of the tritiated formylmethionyl-leucyl-
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Suthaus, Jan, Anna Tillmann, Inken Lorenzen, Elena Bulanova, Stefan Rose-John, and Jürgen Scheller. "Forced Homo- and Heterodimerization of All gp130-Type Receptor Complexes Leads to Constitutive Ligand-independent Signaling and Cytokine-independent Growth." Molecular Biology of the Cell 21, no. 15 (August 2010): 2797–807. http://dx.doi.org/10.1091/mbc.e10-03-0240.

Повний текст джерела
Анотація:
Naturally ligand independent constitutively active gp130 variants were described to be responsible for inflammatory hepatocellular adenomas. Recently, we genetically engineered a ligand-independent constitutively active gp130 variant based on homodimerization of Jun leucine zippers. Because also heterodimeric complexes within the gp130 family may have tumorigenic potential, we seek to generate ligand-independent constitutively active heterodimers for all known gp130-receptor complexes based on IL-15/IL-15Rα-sushi fusion proteins. Ligand-independent heterodimerization of gp130 with WSX-1, LIFR,
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Czekay, R. P., R. A. Orlando, L. Woodward, M. Lundstrom, and M. G. Farquhar. "Endocytic trafficking of megalin/RAP complexes: dissociation of the complexes in late endosomes." Molecular Biology of the Cell 8, no. 3 (March 1997): 517–32. http://dx.doi.org/10.1091/mbc.8.3.517.

Повний текст джерела
Анотація:
Megalin (gp330) is a member of the low-density lipoprotein receptor gene family. Like other members of the family, it is an endocytic receptor that binds a number of specific ligands. Megalin also binds the receptor-associated protein (RAP) that serves as an exocytic traffic chaperone and inhibits ligand binding to the receptor. To investigate the fate of megalin/RAP complexes, we bound RAP glutathione-S-transferase fusion protein (RAP-GST) to megalin at the surface of L2 yolk sac carcinoma cells and followed the trafficking of the complexes by immunofluorescence and immunogold labeling and by
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Niu, Linghao, David W. Golde, Juan Carlos Vera, and Mark L. Heaney. "Kinetic Resolution of Two Mechanisms for High-Affinity Granulocyte-Macrophage Colony-Stimulating Factor Binding to Its Receptor." Blood 94, no. 11 (December 1, 1999): 3748–53. http://dx.doi.org/10.1182/blood.v94.11.3748.423k16_3748_3753.

Повний текст джерела
Анотація:
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic cytokine that exerts its effects by interaction with the GM-CSF receptor (GMR) on the surface of responsive cells. The GM-CSF receptor consists of two subunits: GMR, which binds GM-CSF with low affinity, and GMRβ, which lacks intrinsic ligand-binding capability but complexes with GMR to form a high-affinity receptor (GMR/β). We conducted dynamic kinetic analyses of GM-CSF receptors to define the role of GMRβ in the interaction of ligand and receptor. Our data show that GMR/β exhibits a higher kon than G
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Clark, Kevin P., and Ajay. "Flexible ligand docking without parameter adjustment across four ligand-receptor complexes." Journal of Computational Chemistry 16, no. 10 (October 1995): 1210–26. http://dx.doi.org/10.1002/jcc.540161004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meijsing, Sebastiaan H., Cem Elbi, Hans F. Luecke, Gordon L. Hager, and Keith R. Yamamoto. "The Ligand Binding Domain Controls Glucocorticoid Receptor Dynamics Independent of Ligand Release." Molecular and Cellular Biology 27, no. 7 (January 29, 2007): 2442–51. http://dx.doi.org/10.1128/mcb.01570-06.

Повний текст джерела
Анотація:
ABSTRACT Ligand binding to the glucocorticoid receptor (GR) results in receptor binding to glucocorticoid response elements (GREs) and the formation of transcriptional regulatory complexes. Equally important, these complexes are continuously disassembled, with active processes driving GR off GREs. We found that cochaperone p23-dependent disruption of GR-driven transcription depended on the ligand binding domain (LBD). Next, we examined the importance of the LBD and of ligand dissociation in GR-GRE dissociation in living cells. We showed in fluorescence recovery after photobleaching studies tha
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Niu, Linghao, David W. Golde, Juan Carlos Vera, and Mark L. Heaney. "Kinetic Resolution of Two Mechanisms for High-Affinity Granulocyte-Macrophage Colony-Stimulating Factor Binding to Its Receptor." Blood 94, no. 11 (December 1, 1999): 3748–53. http://dx.doi.org/10.1182/blood.v94.11.3748.

Повний текст джерела
Анотація:
Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic cytokine that exerts its effects by interaction with the GM-CSF receptor (GMR) on the surface of responsive cells. The GM-CSF receptor consists of two subunits: GMR, which binds GM-CSF with low affinity, and GMRβ, which lacks intrinsic ligand-binding capability but complexes with GMR to form a high-affinity receptor (GMR/β). We conducted dynamic kinetic analyses of GM-CSF receptors to define the role of GMRβ in the interaction of ligand and receptor. Our data show that GMR/β exhibits a higher k
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Danilowicz, Claudia, Derek Greenfield, and Mara Prentiss. "Dissociation of Ligand−Receptor Complexes Using Magnetic Tweezers." Analytical Chemistry 77, no. 10 (May 2005): 3023–28. http://dx.doi.org/10.1021/ac050057+.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Jones, Stacie M., Susan K. Foreman, Brian B. Shank, and Richard C. Kurten. "EGF receptor downregulation depends on a trafficking motif in the distal tyrosine kinase domain." American Journal of Physiology-Cell Physiology 282, no. 3 (March 1, 2002): C420—C433. http://dx.doi.org/10.1152/ajpcell.00253.2001.

Повний текст джерела
Анотація:
On binding to its receptor, epidermal growth factor (EGF) initiates a cascade of events leading to cell proliferation or differentiation. In addition, the EGF receptor itself is downregulated to attenuate mitogenic signaling. Downregulation occurs through trafficking of receptors to lysosomes, culminating in proteolytic destruction of both the receptor and ligand; however, endocytic sorting mechanisms that underlie lysosomal targeting remain obscure. The goal of this study was to explore one aspect of the molecular basis for ligand-induced lysosomal targeting and degradation of EGF receptors.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kumar, Manish, Poonam Jangra Darolia, Nidhi Antil, Mahak Dalal, Jitender Narwal, K. K. Verma, and Sapana Garg. "Spectral, Theoretical and Biological Studies of 3-((4-Mercaptophenyl)imino)- 1-phenylindolin-2-one Schiff Base and Its Organotellurium(IV) Complexes." Asian Journal of Chemistry 33, no. 8 (2021): 1749–56. http://dx.doi.org/10.14233/ajchem.2021.23214.

Повний текст джерела
Анотація:
Schiff base ligand (3-((4-mercaptophenyl)imino)-1-phenylindolin-2-one) of 1-phenylindoline-2,3-dione and 4-aminothiophenol was synthesized by refluxing. Organotellurium(IV) complexes of type (RTeCl3.NPhIATP and R2TeCl2.NPhIATP, where R = 4-hydroxyphenyl, 4-methoxyphenyl and 3-methyl-4-hydroxyphenyl, NPhIATP = Schiff base ligand). The ligand and its organotellurium(IV) complexes (9a-f) were characterized by FT-IR, molar conductance, elemental analyses, UV-vis, mass, 1H & 13C NMR spectral studies. Geometry of all the compounds were optimized and octahedral geometry have been proposed for all
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chen, X., Z. L. Ji, D. G. Zhi, and Y. Z. Chen. "CLiBE: a database of computed ligand binding energy for ligand–receptor complexes." Computers & Chemistry 26, no. 6 (November 2002): 661–66. http://dx.doi.org/10.1016/s0097-8485(02)00050-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

López-García, M., M. Nowicka, C. Bendtsen, G. Lythe, S. Ponnambalam, and C. Molina-París. "Quantifying the phosphorylation timescales of receptor–ligand complexes: a Markovian matrix-analytic approach." Open Biology 8, no. 9 (September 2018): 180126. http://dx.doi.org/10.1098/rsob.180126.

Повний текст джерела
Анотація:
Cells interact with the extracellular environment by means of receptor molecules on their surface. Receptors can bind different ligands, leading to the formation of receptor–ligand complexes. For a subset of receptors, called receptor tyrosine kinases, binding to ligand enables sequential phosphorylation of intra-cellular residues, which initiates a signalling cascade that regulates cellular function and fate. Most mathematical modelling approaches employed to analyse receptor signalling are deterministic, especially when studying scenarios of high ligand concentration or large receptor number
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Johnstone, Elizabeth K. M., Heng B. See, Rekhati S. Abhayawardana, Angela Song, K. Johan Rosengren, Stephen J. Hill, and Kevin D. G. Pfleger. "Investigation of Receptor Heteromers Using NanoBRET Ligand Binding." International Journal of Molecular Sciences 22, no. 3 (January 22, 2021): 1082. http://dx.doi.org/10.3390/ijms22031082.

Повний текст джерела
Анотація:
Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes ligand-dependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in Receptor-HIT assays have been
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Onufriev, Alexey V., and Emil Alexov. "Protonation and pK changes in protein–ligand binding." Quarterly Reviews of Biophysics 46, no. 2 (May 2013): 181–209. http://dx.doi.org/10.1017/s0033583513000024.

Повний текст джерела
Анотація:
AbstractFormation of protein–ligand complexes causes various changes in both the receptor and the ligand. This review focuses on changes in pK and protonation states of ionizable groups that accompany protein–ligand binding. Physical origins of these effects are outlined, followed by a brief overview of the computational methods to predict them and the associated corrections to receptor–ligand binding affinities. Statistical prevalence, magnitude and spatial distribution of the pK and protonation state changes in protein–ligand binding are discussed in detail, based on both experimental and th
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Potemkin, Vladimir, and Maria Grishina. "The Complementarity Principle—One More Step towards Analytical Docking on the Example of Dihydrofolate Reductase Complexes." Life 11, no. 9 (September 19, 2021): 983. http://dx.doi.org/10.3390/life11090983.

Повний текст джерела
Анотація:
New approaches to assessing the “enzyme–ligand” complementarity, taking into account hydrogens, have been proposed. The approaches are based on the calculation of three-dimensional maps of the electron density of the receptor–ligand complexes. The action of complementarity factors, first proposed in this article, has been demonstrated on complexes of human dihydrofolate reductase (DHFR) with ligands. We found that high complementarity is ensured by the formation of the most effective intermolecular contacts, which are provided due to predominantly paired atomic–atomic interactions, while inter
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Savastano, Matteo, Carlotta Cappanni, Carla Bazzicalupi, Cristiana Lofrumento, and Antonio Bianchi. "Anion Coordination into Ligand Clefts." Crystals 13, no. 5 (May 16, 2023): 823. http://dx.doi.org/10.3390/cryst13050823.

Повний текст джерела
Анотація:
A tripodal anion receptor has been obtained by an easy and fast single-reaction synthesis from commercial reagents. The three ligand arms-bearing aromatic groups able to form anion–π interactions define ligand clefts where large anions, such as perchlorate and perrhenate, are included. We report here the synthesis of the ligand, its acid/base properties in an aqueous solution which has been used to direct the synthesis of anion complexes, and the crystal structure of the free ligand and its anion complexes H3L(ClO4)2·H2O and H3L(ReO4)2.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Hohmann, Ulrich, Julia Santiago, Joël Nicolet, Vilde Olsson, Fabio M. Spiga, Ludwig A. Hothorn, Melinka A. Butenko, and Michael Hothorn. "Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors." Proceedings of the National Academy of Sciences 115, no. 13 (March 12, 2018): 3488–93. http://dx.doi.org/10.1073/pnas.1714972115.

Повний текст джерела
Анотація:
Plant-unique membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) can sense small molecule, peptide, and protein ligands. Many LRR-RKs require SERK-family coreceptor kinases for high-affinity ligand binding and receptor activation. How one coreceptor can contribute to the specific binding of distinct ligands and activation of different LRR-RKs is poorly understood. Here we quantitatively analyze the contribution of SERK3 to ligand binding and activation of the brassinosteroid receptor BRI1 and the peptide hormone receptor HAESA. We show that while the isolated receptors sen
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Pokrovskaya, E. "DNA slows dissociation of progesterone receptor–steroid ligand complexes." Steroids 68, no. 4 (April 2003): 351–59. http://dx.doi.org/10.1016/s0039-128x(03)00031-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ganem, Bruce, Yu Tsyr Li, and Jack D. Henion. "Detection of noncovalent receptor-ligand complexes by mass spectrometry." Journal of the American Chemical Society 113, no. 16 (July 1991): 6294–96. http://dx.doi.org/10.1021/ja00016a069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Carlsson, Gunilla H., Dirk Hasse, Francesca Cardinale, Cristina Prandi, and Inger Andersson. "The elusive ligand complexes of the DWARF14 strigolactone receptor." Journal of Experimental Botany 69, no. 9 (January 31, 2018): 2345–54. http://dx.doi.org/10.1093/jxb/ery036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Klotz, Irving M. "Ligand-Receptor Complexes: Origin and Development of the Concept." Journal of Biological Chemistry 279, no. 1 (November 6, 2003): 1–12. http://dx.doi.org/10.1074/jbc.x300006200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Smock, Robert G., and Rob Meijers. "Roles of glycosaminoglycans as regulators of ligand/receptor complexes." Open Biology 8, no. 10 (October 2018): 180026. http://dx.doi.org/10.1098/rsob.180026.

Повний текст джерела
Анотація:
Glycosaminoglycans (GAGs) play a widespread role in embryonic development, as deletion of enzymes that contribute to GAG synthesis lead to deficiencies in cell migration and tissue modelling. Despite the biochemical and structural characterization of individual protein/GAG interactions, there is no concept available that links the molecular mechanisms of GAG/protein engagements to tissue development. Here, we focus on the role of GAG polymers in mediating interactions between cell surface receptors and their ligands. We categorize several switches that lead to ligand activation, inhibition, se
Стилі APA, Harvard, Vancouver, ISO та ін.
25

de Araujo, Alexandre Suman, Leandro Martínez, Ricardo de Paula Nicoluci, Munir S. Skaf, and Igor Polikarpov. "Structural modeling of high-affinity thyroid receptor–ligand complexes." European Biophysics Journal 39, no. 11 (May 30, 2010): 1523–36. http://dx.doi.org/10.1007/s00249-010-0610-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Alkorta, Ibon, та Gilda H. Loew. "A 3D model of the δ opioid receptor and ligand-receptor complexes". "Protein Engineering, Design and Selection" 9, № 7 (1996): 573–83. http://dx.doi.org/10.1093/protein/9.7.573.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ukkonen, P., V. Lewis, M. Marsh, A. Helenius, and I. Mellman. "Transport of macrophage Fc receptors and Fc receptor-bound ligands to lysosomes." Journal of Experimental Medicine 163, no. 4 (April 1, 1986): 952–71. http://dx.doi.org/10.1084/jem.163.4.952.

Повний текст джерела
Анотація:
Mouse macrophage Fc receptors specific for IgG1/IgG2b mediate the binding and pinocytic uptake of soluble IgG-containing antibody-antigen complexes. Internalization of these multivalent IgG complexes is accompanied not only by the intracellular degradation of the ligand, but also by a net decrease in the number of plasma membrane Fc receptors and an accelerated rate of receptor turnover. In contrast, internalized receptors bound to a monovalent ligand, the high affinity Fab fragment of the antireceptor mAb 2.4G2, escape degradation by rapidly recycling to the cell surface. In this paper, we ha
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Slusarz, R., R. Kaźmierkiewicz, A. Giełdoń, B. Lammek, and J. Ciarkowski. "Molecular docking-based test for affinities of two ligands toward vasopressin and oxytocin receptors." Acta Biochimica Polonica 48, no. 1 (March 31, 2001): 131–35. http://dx.doi.org/10.18388/abp.2001_5119.

Повний текст джерела
Анотація:
Molecular docking simulations are now fast developing area of research. In this work we describe an effective procedure of preparation of the receptor-ligand complexes. The amino-acid residues involved in ligand binding were identified and described.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Fischer, J. A., R. Muff, and W. Born. "Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs)." Biochemical Society Transactions 30, no. 4 (August 1, 2002): 455–60. http://dx.doi.org/10.1042/bst0300455.

Повний текст джерела
Анотація:
The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classe
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Murugan, T., Rangaswamy Venkatesh, Kannappan Geetha, and Aly Abdou. "Synthesis, Spectral Investigation, DFT, Antibacterial, Antifungal and Molecular Docking Studies of Ni(II), Zn(II), Cd(II) Complexes of Tetradentate Schiff-Base Ligand." Asian Journal of Chemistry 35, no. 6 (2023): 1509–17. http://dx.doi.org/10.14233/ajchem.2023.27808.

Повний текст джерела
Анотація:
By refluxing 4-nitro-o-phenylenediamine and 5-nitro salicylaldehyde, a new Schiff base ligand was synthesized. By reacting the appropriate precursor with the tetradentate Schiff base ligand, three nitro-substituted nickel(II), zinc(II) and cadmium(II) complexes were synthesized. UV-Visible, FTIR and 1H NMR spectral investigations were used to characterize the ligand. Molar conductance, LC-MS, UV-visible and FTIR spectrum analysis were used to characterize the synthesized metal(II) complexes. The ligand and metal(II) complexes were also tested for antibacterial activity. DFT simulations were pe
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Belorusova, Anna Y., Maxime Bourguet, Steve Hessmann, Sandra Chalhoub, Bruno Kieffer, Sarah Cianférani, and Natacha Rochel. "Molecular determinants of MED1 interaction with the DNA bound VDR–RXR heterodimer." Nucleic Acids Research 48, no. 19 (September 29, 2020): 11199–213. http://dx.doi.org/10.1093/nar/gkaa775.

Повний текст джерела
Анотація:
Abstract The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the m
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Mikhailenko, I., W. Considine, K. M. Argraves, D. Loukinov, B. T. Hyman, and D. K. Strickland. "Functional domains of the very low density lipoprotein receptor: molecular analysis of ligand binding and acid-dependent ligand dissociation mechanisms." Journal of Cell Science 112, no. 19 (October 1, 1999): 3269–81. http://dx.doi.org/10.1242/jcs.112.19.3269.

Повний текст джерела
Анотація:
The very low density lipoprotein (VLDL) receptor is closely related in structure to the low density lipoprotein receptor. The ectodomain of these endocytic receptors is composed of modules which include clusters of cysteine-rich class A repeats, epidermal growth factor (EGF)-like repeats, tyrosine-tryptophan-threonine-aspartic acid (YWTD) repeats and an O-linked sugar domain. To identify important functional regions within the ectodomain of the VLDL receptor, we produced a mutant receptor in which the EGF, YWTD and O-linked sugar domains were deleted. Cells transfected with the mutant receptor
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Lovdal, T., E. Andersen, A. Brech, and T. Berg. "Fc receptor mediated endocytosis of small soluble immunoglobulin G immune complexes in Kupffer and endothelial cells from rat liver." Journal of Cell Science 113, no. 18 (September 15, 2000): 3255–66. http://dx.doi.org/10.1242/jcs.113.18.3255.

Повний текст джерела
Анотація:
Soluble circulating immunoglobulin G immune complexes are mainly eliminated by the liver, predominantly by uptake in the Kupffer cells, but also the liver endothelial cells seem to be of importance. In the present study we have followed the intracellular turnover of immune complexes after Fc(gamma) receptor mediated endocytosis in cultured rat liver endothelial cells and Kupffer cells by means of isopycnic centrifugation, DAB cross-linking and morphological techniques. For the biochemical experiments the antigen, dinitrophenylated bovine serum albumin (BSA), was labeled with radioiodinated tyr
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Pandey, Kailash N. "Dynamics of internalization and sequestration of guanylyl cyclase/atrial natriuretic peptide receptor-A." Canadian Journal of Physiology and Pharmacology 79, no. 8 (August 1, 2001): 631–39. http://dx.doi.org/10.1139/y01-035.

Повний текст джерела
Анотація:
The guanylyl cyclase/natriuretic peptide receptor-A (NPRA), also referred to as GC-A, is a single polypeptide molecule. In its mature form, NPRA resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular cytoplasmic domain that contains a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic active site. The binding of atrial natriuretic peptide (ANP) to NPRA occurs at the plasma membrane; the receptor is synthesized on the polyribosomes of the endoplasmic reticulum, and is presumabl
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ragoza, Matthew, Tomohide Masuda, and David Ryan Koes. "Generating 3D molecules conditional on receptor binding sites with deep generative models." Chemical Science 13, no. 9 (2022): 2701–13. http://dx.doi.org/10.1039/d1sc05976a.

Повний текст джерела
Анотація:
We generate 3D molecules conditioned on receptor binding sites by training a deep generative model on protein–ligand complexes. Our model uses the conditional receptor information to make chemically relevant changes to the generated molecules.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kongson, Jutarat, and Somkid Amornsamankul. "A Model of the Signal Transduction Process under a Delay." East Asian Journal on Applied Mathematics 7, no. 4 (November 2017): 741–51. http://dx.doi.org/10.4208/eajam.181016.300517a.

Повний текст джерела
Анотація:
AbstractThe signal transduction pathway is the important process of communication of the cells. It is the dynamical interaction between the ligand-receptor complexes and an inhibitor protein in second messenger synthesis. The signaling molecules are detected and bounded by receptors, typically G-Protein receptors, across the cell membrane and that in turns alerts intracellular molecules to stimulate a response or a desired consequence in the target cells. In this research, we consider a model of the signal transduction process consisting of a system of three differential equations which involv
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ward, D. M., and J. Kaplan. "The rate of internalization of different receptor–ligand complexes in alveolar macrophages is receptor-specific." Biochemical Journal 270, no. 2 (September 1, 1990): 369–74. http://dx.doi.org/10.1042/bj2700369.

Повний текст джерела
Анотація:
To probe the mechanisms of endocytosis in alveolar macrophages, we examined the internalization rates of three different receptors. Initial rates of internalization for mannosylated BSA, diferric transferrin and alpha-macroglobulin-proteinase complexes were all different. Although the absolute rates of internalization varied depending on the cell preparation, transferrin was internalized at 10-20% and alpha-macroglobulin-proteinase complex at 40-60% of the rate of manosylated-BSA. Incubation of cells with transferrin did not affect the rate of internalization of mannosylated BSA or alpha-macro
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Morelli, Maria Beatrice, Consuelo Amantini, Giorgio Santoni, Maura Pellei, Carlo Santini, Cristina Cimarelli, Enrico Marcantoni, et al. "Novel antitumor copper(ii) complexes designed to act through synergistic mechanisms of action, due to the presence of an NMDA receptor ligand and copper in the same chemical entity." New Journal of Chemistry 42, no. 14 (2018): 11878–87. http://dx.doi.org/10.1039/c8nj01763h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

JUNTUNEN, Kari, Natacha ROCHEL, Dino MORAS, and Pirkko VIHKO. "Large-scale expression and purification of the human vitamin D receptor and its ligand-binding domain for structural studies." Biochemical Journal 344, no. 2 (November 24, 1999): 297–303. http://dx.doi.org/10.1042/bj3440297.

Повний текст джерела
Анотація:
We have expressed recombinant human vitamin D receptor and its ligand-binding domain in Spodoptera frugiperda (Sf9) insect cells with a 30-litre bioreactor. Both proteins were purified to apparent homogeneity with yields of 0.5-3.5 mg/l. Gel-filtration analyses indicated that the purified human vitamin D receptor and its ligand-binding domain were present as monomers in solution. The purified vitamin D receptor and its ligand-binding domain were demonstrated to bind 1α,25-dihydroxyvitamin D3 with high affinity, the Kd values ranging from 0.9 to 1.2 nM. Neutron scattering studies of the ligand-
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Numata, Jorge, Alok Juneja, Dennis J. Diestler, and Ernst-Walter Knapp. "Influence of Spacer–Receptor Interactions on the Stability of Bivalent Ligand–Receptor Complexes." Journal of Physical Chemistry B 116, no. 8 (February 15, 2012): 2595–604. http://dx.doi.org/10.1021/jp211383s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Schneider, Helmut, Warak Chaovapong, David J. Matthews, Cyrus Karkaria, Robert T. Cass, Hangjun Zhan, Mark Boyle, Tony Lorenzini, Steve G. Elliott, and Lutz B. Giebel. "Homodimerization of Erythropoietin Receptor by a Bivalent Monoclonal Antibody Triggers Cell Proliferation and Differentiation of Erythroid Precursors." Blood 89, no. 2 (January 15, 1997): 473–82. http://dx.doi.org/10.1182/blood.v89.2.473.

Повний текст джерела
Анотація:
Abstract Erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Several lines of evidence indicate that the most likely mechanism of EPO receptor (EPO-R) activation by EPO is homodimerization of the receptor on the surface of erythrocyte precursors. Therefore, we argued that it should be possible to raise EPO-R monoclonal antibodies (MoAbs) that would activate the receptor by dimerization and thus mimic EPO action. We have identified such an agonist MoAb (MoAb34) directed against the extracellular EPO binding domain of the EPO-R. This bivalent IgG anti
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Mecham, R. P., L. Whitehouse, M. Hay, A. Hinek, and M. P. Sheetz. "Ligand affinity of the 67-kD elastin/laminin binding protein is modulated by the protein's lectin domain: visualization of elastin/laminin-receptor complexes with gold-tagged ligands." Journal of Cell Biology 113, no. 1 (April 1, 1991): 187–94. http://dx.doi.org/10.1083/jcb.113.1.187.

Повний текст джерела
Анотація:
Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Dominguez, Marta, Susana Alvarez, and Angel R. de Lera. "Natural and Structure-based RXR Ligand Scaffolds and Their Functions." Current Topics in Medicinal Chemistry 17, no. 6 (January 10, 2017): 631–62. http://dx.doi.org/10.2174/1568026616666160617072521.

Повний текст джерела
Анотація:
Retinoid X receptors (RXRs) are promiscuous partners of heterodimeric associations with other members of the Nuclear Receptor (NR) superfamily. Through these liaisons RXR ligands (“rexinoids”) either transcriptionally activate on their own the “permissive” subclass of heterodimers (PPAR/RXR, LXR/RXR, FXR/RXR) or synergize with partner ligands in the “non-permissive” subclass of heterodimers (RAR/RXR, VDR/RXR and TR/RXR). The nature and extent of the interaction of the ligand-receptor complexes with co-regulators, which is cell and context-dependent, results ultimately in transcriptional modula
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ibrahimi, Omar A., Brian K. Yeh, Anna V. Eliseenkova, Fuming Zhang, Shaun K. Olsen, Makoto Igarashi, Stuart A. Aaronson, Robert J. Linhardt, and Moosa Mohammadi. "Analysis of Mutations in Fibroblast Growth Factor (FGF) and a Pathogenic Mutation in FGF Receptor (FGFR) Provides Direct Evidence for the Symmetric Two-End Model for FGFR Dimerization." Molecular and Cellular Biology 25, no. 2 (January 15, 2005): 671–84. http://dx.doi.org/10.1128/mcb.25.2.671-684.2005.

Повний текст джерела
Анотація:
ABSTRACT Two competing models for fibroblast growth factor (FGF) receptor (FGFR) dimerization have recently emerged based on ternary FGF-FGFR-heparin crystal structures. In the symmetric two-end model, heparin promotes dimerization of two FGF-FGFR complexes by stabilizing bivalent interactions of the ligand and receptor through primary and secondary sites and by stabilizing direct receptor-receptor contacts. In the asymmetric model, there are no protein-protein contacts between the two FGF-FGFR complexes, which are bridged solely by heparin. To identify the correct mode of FGFR dimerization, w
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Amin, Divya N., and Gerald L. Hazelbauer. "The Chemoreceptor Dimer Is the Unit of Conformational Coupling and Transmembrane Signaling." Journal of Bacteriology 192, no. 5 (January 8, 2010): 1193–200. http://dx.doi.org/10.1128/jb.01391-09.

Повний текст джерела
Анотація:
ABSTRACT Transmembrane chemoreceptors are central components in bacterial chemotaxis. Receptors couple ligand binding and adaptational modification to receptor conformation in processes that create transmembrane signaling. Homodimers, the fundamental receptor structural units, associate in trimers and localize in patches of thousands. To what degree do conformational coupling and transmembrane signaling require higher-order interactions among dimers? To what degree are they altered by such interactions? To what degree are they inherent features of homodimers? We addressed these questions using
Стилі APA, Harvard, Vancouver, ISO та ін.
46

lngenhoven, Nikolaus, and Annette G. Beck-Sickinger. "Molecular Characterization of the Ligand-Receptor Interaction of Neuropeptide Y." Current Medicinal Chemistry 6, no. 11 (November 1999): 1055–66. http://dx.doi.org/10.2174/092986730611220401164224.

Повний текст джерела
Анотація:
Neuropeptide Y (NPY) consists of 36 amino acids and is one of the most abundant peptides in the peripheral and central nervous system. Several subtype•s of NPY receptors have been described (Y1• Y6) using segments and analogues of NPY. The Y 1-, Y2- and the Y5-receptor, which have been cloned, belong to the G-protein coupled hormone receptor family and will be specially addressed, because they are the endogenous binding sites of neuropeptide Y in human. In contrast, Y4-receptors recognize endogenous PP, Y3"receptors are discussed controversially and the y6-receptor is truncated in human. In th
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ahmed, A. R. H., G. W. J. Olivier, G. Adams, M. E. Erskine, R. G. Kinsman, S. K. Branch, S. H. Moss, L. J. Notarianni, and C. W. Pouton. "Isolation and partial purification of a melanocyte-stimulating hormone receptor from B16 murine melanoma cells. A novel approach using a cleavable biotinylated photoactivated ligand and streptavidin-coated magnetic beads." Biochemical Journal 286, no. 2 (September 1, 1992): 377–82. http://dx.doi.org/10.1042/bj2860377.

Повний текст джерела
Анотація:
The alpha-melanocyte-stimulating hormone (alpha-MSH) receptor of B16 mouse melanoma cells was characterized by photoaffinity labelling using radiolabelled photoactive derivatives of alpha-MSH. A doublet band of 43-46 kDa representing a ligand-receptor complex was identified. A novel adaptation of the streptovadin/biotin-based affinity system was used to isolate the alpha-MSH receptor. A probe was synthesized which contained biotin connected to a photolabelled alpha-MSH analogue via a cleavable disulphide linker and which displayed high affinity for the alpha-MSH receptor. Streptavidin-coated m
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Liebman, M. N. "An approach to modelling specificity determinants in receptor ligand complexes." Acta Crystallographica Section A Foundations of Crystallography 43, a1 (August 12, 1987): C45. http://dx.doi.org/10.1107/s0108767387084307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kastrup, J. S., P. Naur, B. Vestergaard, L. K. Skov, J. Egebjerg, and M. Gajhede. "Structural studies of kainate receptor GluR5 ligand-binding core complexes." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c234. http://dx.doi.org/10.1107/s0108767305090021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Chakrabortty, Tuhin, and Manoj M. Varma. "Equilibrium probability distribution for number of bound receptor-ligand complexes." American Journal of Physics 89, no. 1 (January 2021): 41–50. http://dx.doi.org/10.1119/10.0001898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!