Добірка наукової літератури з теми "Recombinant proteins Analysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Recombinant proteins Analysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Recombinant proteins Analysis":

1
Southan, Christopher. "Purification and analysis of recombinant proteins." Trends in Biotechnology 10 (1992): 226. http://dx.doi.org/10.1016/0167-7799(92)90226-l.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Kermasha, S., and I. Alli. "Purification and analysis of recombinant proteins." Food Research International 26, no. 2 (January 1993): 158–59. http://dx.doi.org/10.1016/0963-9969(93)90072-q.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Kaufman, Randal J. "Mammalian recombinant proteins: Structure, function and immunological analysis." Current Opinion in Biotechnology 1, no. 2 (December 1990): 141–50. http://dx.doi.org/10.1016/0958-1669(90)90023-e.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Burnouf, T. "Recombinant plasma proteins." Vox Sanguinis 100, no. 1 (December 2010): 68–83. http://dx.doi.org/10.1111/j.1423-0410.2010.01384.x.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Geisow, Michael J. "Characterizing Recombinant Proteins." Bio/Technology 9, no. 10 (October 1991): 921–24. http://dx.doi.org/10.1038/nbt1091-921.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Senear, Donald F., Robert A. Mendelson, Deborah B. Stone, Linda A. Luck, Elena Rusinova, and J. B. Alexander Ross. "Quantitative Analysis of Tryptophan Analogue Incorporation in Recombinant Proteins." Analytical Biochemistry 300, no. 1 (January 2002): 77–86. http://dx.doi.org/10.1006/abio.2001.5441.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
De Bernardez Clark, Eliana. "Refolding of recombinant proteins." Current Opinion in Biotechnology 9, no. 2 (April 1998): 157–63. http://dx.doi.org/10.1016/s0958-1669(98)80109-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Buckel, Peter. "Recombinant proteins for therapy." Trends in Pharmacological Sciences 17, no. 12 (December 1996): 450–56. http://dx.doi.org/10.1016/s0165-6147(96)01011-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Bialy, Harvey. "Recombinant Proteins: Virtual Authenticity." Nature Biotechnology 5, no. 9 (September 1987): 883–90. http://dx.doi.org/10.1038/nbt0987-883.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Fedorov, T. V., T. V. Reshetnyak, E. A. Panfertsev, and S. F. Biketov. "Renaturation of recombinant proteins." Bacteriology 4, no. 4 (2019): 19–28. http://dx.doi.org/10.20953/2500-1027-2019-4-19-28.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Recombinant proteins Analysis":

1
Lee, Jae-Yong. "Expression, purification and interaction analysis of recombinant SRB proteins." Electronic Thesis or Dissertation, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407809.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Rutt, George Clifford. "Purification of recombinant proteins." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/42614.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Castilho, Alexandra Marina Machado Ferreira. "Molecular cytogenic analysis of recombinant chromosomes in wheat - Aegilops umbellulata lines." Electronic Thesis or Dissertation, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296341.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Richards, Julie. "Humanised HMFGI in recombinant fusion proteins." Electronic Thesis or Dissertation, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407560.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Carre, Heather Emily. "Expression and analysis of recombinant mycoplasma hyponeumoniae proteins as potential subunit vaccine candidates." Electronic Thesis or Dissertation, Royal Veterinary College (University of London), 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522182.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Sheffield, William Peter. "Production and characterization of recombinant mitochondrial proteins." Electronic Thesis or Dissertation, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74253.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The requirement of mitochondrial precursor proteins for cytosolic factors was investigated. The precursor to rat ornithine carbamyl transferase (pOCT) was imported into isolated mitochondria when synthesized in either animal or bacterial extracts. Neither it nor several engineered hybrid proteins could enter mitochondria in the absence of cytosol; import was reconstituted by adding back reticulocyte lysate. The use of one of the chimeras, pO-DHFR, showed that the requisite factor in lysate functions to maintain precursors in an import-competent conformation. pO-DHFR diluted from urea in the presence of mitochondria was imported, but this competence was lost when urea was removed in the absence of organelles, unless the cytosolic protein(s) was present. The factor was NEM-sensitive, did not need ATP to maintain precursor competence, and chromatographed with an apparent molecular weight in excess of 200 kDa when partially purified. The mg quantities of pO-DHFR purified from E. coli now available will facilitate purification of this novel mitochondrial competence factor.
7
Ditsch, Andre (Andre Paul). "Purification of recombinant proteins with magnetic nanoclusters." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34160.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2005.
Includes bibliographical references.
This thesis focused on the development and analysis of a new class of magnetic fluids for recovery of recombinant proteins from fermentation broth. Magnetic fluids are colloidally stable dispersions of magnetic nanoclusters in water that do not settle gravitational and moderate magnetic fields due to their small size. The magnetic nanoclusters possess large surface area for protein adsorption without any porous structure, resulting in much faster mass transfer than in traditional separations. The magnetic nanoclusters consist of 25-200 nm clusters of 8 nm magnetite (Fe₃0₄) cores coated with poly(acrylic acid-co-styrenesulfonic acid-co-vinylsulfonic acid). For use in separation, clusters must be recoverable from solution. Individual nanoparticles are too small to be recovered efficiently, while 50nm or larger clusters of primary particles are easily recovered. Cluster size depends on polymer molecular weight and hydrophobicity as well as the amount of polymer present at nucleation. When a polymer coating with optimal molecular weight is used in limited amounts, clusters are formed. When the clusters are subsequently coated with additional polymer, the clusters are stable in high ionic strength environments (>5M NaCl), while retaining the necessary cluster size for efficient magnetic recovery.
(cont.) Models have been developed to predict the optimal molecular weight, and the cluster size obtained with limited amounts of polymer or polymers other than the optimal molecular weight. The models and methods have been verified with other polymer coatings, indicating that the methods can be used to synthesize a wide range of stable nanoclusters. Due to rapid mass transfer, the rate-limiting step of the purification scheme is recovery of the nanoclusters from solution with high gradient magnetic separation (HGMS). The nanoclusters can be recovered extremely efficiently, up to 99.9% at high flow rates, up to 10,000 cm/hr. A detailed model of HGMS has been developed to quantitatively predict capture, and simpler methods have been developed to predict the maximum capture and capacity of the column without computationally expensive simulations. The use of the nanoclusters for protein purification was studied both with model proteins the recombinant protein drosomycin from Pichia pastoris fermentation broth. The nanoclusters have high adsorptive capacities of up to 900 mg protein/mL adsorbent, nearly an order of magnitude higher than the best commercially available porous adsorbents. Adsorption can be performed both by ion exchange and hydrophobic interactions, allowing nearly pure drosomycin to be recovered from clarified fermentation broth in a single step.
(cont.) When used in whole cell broth, the nanoclusters bind to proteins on the surface of the Pichia pastoris cells at conditions where drosomycin is bound, limiting the effectiveness of the separation. When proteins are bound at conditions where nanoclusters do not bind to cells, cell clarification and protein purification can be performed in one fast step. A simple model of the cell binding has been developed, providing guidelines for use of magnetic nanoparticles in the presence of cells.
by Andre Ditsch.
Ph.D.
8
Konz, John O. (John Otto) 1971. "Oxidative damage to recombinant proteins during production." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/17472.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1998.
Includes bibliographical references (p. 209-222).
Since the introduction of recombinant human insulin nearly two decades ago, recombinant proteins have increasingly been utilized as therapeutic agents. In addition, expression of recombi­nant proteins is now a common tool used in basic research. Recombinant proteins are subject to many subtle modifications that can affect their properties; among these modifications, oxidative damage is one of the most ubiquitous. Oxidative damage, however, is only occasionally consid­ered as a "quality concern" since it rarely detectable using standard biochemical techniques. The production of an oxidatively-sensitive protein, a1-Antitrypsin, was investigated to ascertain the effect of fermentation parameters on the extent of oxidation. Oxidation of either of two methion­ine residues in the active site to methionine sulfoxide was sufficient for inactivation, and 50% of the antitrypsin produced under standard fermentation conditions was oxidized. Oxidative damage was linked to the dissolved oxygen concentration by experimentation and detailed modeling of the evolution and detoxification of reactive oxygen species. Under pseudo steady-state conditions, the fractional oxidation is near zero under anaerobic conditions and increases through the microaero­bic regime. At dissolved oxygen concentrations greater than 10% of air saturation, the fractional oxidation did not vary. Step changes in the dissolved oxygen concentration, designed to emulate possible time variation resulting from poor mixing or changes in gas composition, caused tran­sient increases in the fractional oxidation and enhanced proteolytic degradation. This may impli­cate oxidative stress in scale-up related protein quality and quantity limitations. In addition, oxidative damage to antitrypsin caused a 5-fold increase in the stepwise addition rate for in vitro aggregation, which suggests that oxidative damage will limit shelf stability. In addition, process simulation demonstrated that removal of oxidative variants caused a 100% increase in cost per unit when only 22% of the antitrypsin is oxidized during the fermentation step.
by John O. Konz.
Ph.D.
9
Rauf, Femina. "Chimeric and Recombinant Protein Reagents for Cellular Analysis and Immunoassays." Electronic Dissertation, The University of Arizona, 2011. http://hdl.handle.net/10150/145441.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Development of chimeric, recombinant peptides, proteins and enzymes expands the availability of protein/enzyme–based tools for cellular analysis and new assay platforms. Ideal protein reagents for cellular analysis must translocate into a variety of cells with minimum cell damage, retain stability and biological activity within the cell during analysis, and provide a reliable, measurable signal. This work focused on development, characterization and utilization of chimeric recombinant peptide, protein and enzyme reagents for cellular analysis and immunoassays. A cell-penetrating, fluorescent protein substrate (PKAS) was developed to monitor intracellular protein kinase A activity in cells without the need for cellular transfection. PKAS translocated into HeLa cells, βTC-3 cells and pancreatic islets with minimal toxicity. Upon cellular loading, glucose dependent phosphorylation of PKAS was observed in both βTC-3 and pancreatic islets via capillary zone electrophoresis. In pancreatic islets, maximal PKAS phosphorylation (83 ± 6 %) was observed at 12 mM glucose, whereas maximal PKAS phosphorylation (86 ± 4 %) in βTC-3 cells was with 3 mM glucose indicating a left-shifted glucose sensitivity. A cell-penetrating luciferase chimera (Luc-TAT) and a cell-penetrating phospholipid nanoshell entrapped luciferase (Luc-PPN) was constructed to monitor dynamic changes in intracellular ATP levels in mammalian cells. Upon cellular loading, the activity of Luc-TAT and Luc-PPN was monitored with time. Luc-TAT lost approximately 50% activity within one hour, and decreased rapidly over time. In contrast Luc-PPNs retain approximately 95% activity in 1 hour and 77% after 12 hours showing longer biological lifetime. Luc-PPNs were able to detect dynamic ATP changes in intact HeLa cells in the presence of KCN and NaN3. The bioluminescence returned to background levels within 8-10 minutes after treatment with KCN, whereas NaN₃ showed ~ 40% reduction. Two novel recombinant human parathyroid hormone (hPTH) analogs hPTHEGFP and hPTH-Cys were prepared to develop immunoassays for PTH detection in clinical samples. Initial experiments show promise for these analogs for use in CZELIF based immunoassays. The analogs present a number of distinctive advantages for clinical assays and can be used to develop several immunoassay platforms.
10
Alodailah, Sattam Sonitan. "The Generation of Recombinant Zea mays Spastin and Katanin Proteins for In Vitro Analysis." Thesis or Dissertation, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc1062897/.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plant microtubules play essential roles in cell processes such as cell division, cell elongation, and organelle organization. Microtubules are arranged in highly dynamic and ordered arrays, but unlike animal cells, plant cells lack centrosomes. Therefore, microtubule nucleation and organization are governed by microtubule-associated proteins, including a microtubule-severing protein, katanin. Mutant analysis and in vitro characterization has shown that the highly conserved katanin is needed for the organization of the microtubule arrays in Arabidopsis and rice as well as in a variety of animal models. Katanin is a protein complex that is part of the AAA+ family of ATPases. Katanin is composed of two subunits, katanin-p60, a catalytic subunit and katanin-p80, a regulatory subunit. Spastin is another MT-severing protein that was identified on the basis of its homology to katanin. In animal cells, spastin is also needed for microtubule organization, but its functionality has not yet been investigated in plants. To initiate an exploration of the function of katanin-p60 and spastin in Zea mays, my research goal was to generate tools for the expression and purification of maize katanin-p60 and spastin proteins in vitro. Plasmids that express katanin-p60 and spastin with N-terminal GST tags were designed and constructed via In-Fusion® cloning after traditional cloning methods were not successful. The constructs were expressed in E. coli, then the recombinant proteins were purified. To determine if the GST-tagged proteins are functional, ATPase activity and tubulin polymerization assays were performed. While both GST-katanin-p60 and GST-spastin hydrolyzed ATP indicating that the ATPase domains are functional, the results of the tubulin polymerization assays were less clear and further experimentation is necessary.

Книги з теми "Recombinant proteins Analysis":

1
Faye, Loïc, and Véronique Gomord, eds. Recombinant Proteins From Plants. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-407-0.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Cunningham, Charles, and Andrew J. R. Porter, eds. Recombinant Proteins from Plants. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-60327-260-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
MacDonald, Jacqueline, Igor Kolotilin, and Rima Menassa, eds. Recombinant Proteins from Plants. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3289-4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Kirkin, Vladimir. Expression of recombinant ricin A chain-containing proteins. [s.l.]: typescript, 1997.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Williamson, Mike. How proteins work. New York: Garland Science, 2012.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Robson, Barry. Introduction to proteins and protein engineering. Amsterdam: Elsevier, 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Robson, Barry. Introduction to proteins and protein engineering. Amsterdam: Elsevier, 1988.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Baculovirus, and Recombinant Protein Production Workshop (1992 Interlaken Switzerland). Baculovirus and recombinant protein production processes: Proceedings of the Baculovirus and Recombinant Protein Production Workshop, March 29-April 1, Interlaken, Switzerland. Basel, Switzerland: Editiones Roche, 1992.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
American, Red Cross Scientific Symposium (21st 1990 Washington D. C. ). Recombinant technology in hemostasis and thrombosis. New York: Plenum Press, 1991.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Thomas, Sandra M. Patenting of recombinant proteins: An analysis of tissue plasminogen activator (t-PA) in Europe, United States and Japan. Brighton: University of Sussex, Science Policy Research Unit, 1994.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Recombinant proteins Analysis":

1
Fitchette-Lainé, Anne-Catherine, Lise-Anne Denmat, Patrice Lerouge, and Loïc Faye. "Analysis of N- and O-Glycosylation of Plant Proteins." In Recombinant Proteins from Plants, 271–90. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-60327-260-5_19.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Arakawa, Tsutomu, and John S. Philo. "Biophysical and Biochemical Analysis of Recombinant Proteins." In Pharmaceutical Biotechnology, 19–45. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6486-0_2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Sominskaya, Irina, and Kaspars Tars. "Immunological Methods for Analysis of Recombinant Proteins." In Basic Cloning Procedures, 135–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71965-3_7.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Lotti, Marina, and Loredano Pollegioni. "Aggregation of Recombinant Proteins." In Protein Aggregation in Bacteria, 221–45. Hoboken, NJ: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118845363.ch9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Lönnerdal, Bo. "Recombinant Human Milk Proteins." In Protein and Energy Requirements in Infancy and Childhood, 207–17. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000095064.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Giese, Christoph, Henning von Horsten, and Stefan Zietze. "Characterization of Recombinant Proteins." In Pharmaceutical Biotechnology, 201–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527632909.ch9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Weimer, Thomas, Hubert J. Metzner, and Stefan Schulte. "Recombinant Albumin Fusion Proteins." In Fusion Protein Technologies for Biopharmaceuticals, 163–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118354599.ch10.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Reddy, Narendra, and Yiqi Yang. "Fibers from Recombinant Proteins." In Innovative Biofibers from Renewable Resources, 225–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45136-6_50.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Tong, Kit I., Masayuki Yamamoto, and Toshiyuki Tanaka. "Selective Isotope Labeling of Recombinant Proteins in Escherichia coli." In Intrinsically Disordered Protein Analysis, 439–48. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3704-8_30.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Tolkatchev, Dmitri, Josee Plamondon, Richard Gingras, Zhengding Su, and Feng Ni. "Recombinant Production of Intrinsically Disordered Proteins for Biophysical and Structural Characterization." In Instrumental Analysis of Intrinsically Disordered Proteins, 653–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470602614.ch22.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Recombinant proteins Analysis":

1
Korolyova-Ushakova, A. G., E. A. Panfertsev, E. V. Baranova, A. A. Gorbatov, and S. F. Biketov. "RESEARCH OF RECOMBINANT M. LEPRAE PROTEINS AS SERODIAGNOSTIC ANTIGENS." In Molecular Diagnostics and Biosafety. Federal Budget Institute of Science 'Central Research Institute for Epidemiology', 2020. http://dx.doi.org/10.36233/978-5-9900432-9-9-211.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Qiu, Weiguo, Arjun Stokes, Joseph Cappello, and Xiaoyi Wu. "Electrospinning of Recombinant Protein Polymer Nanofibers." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206352.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Structural proteins often in the form of micro and nanofibers, constituting most of intra- and extracellular matrix (ECM), are the fundamental building blocks of life [1]. Recent efforts to replace diseased or damaged tissues and organs have resulted in the molecular design and genetic engineering of recombinant proteins, and the advent of new technology for fabricating structural proteins into micro-/nanofibrous scaffolds, hoping to resemble some or all the characteristics of ECM structure and function. The fabrication of such an ECM mimic may be an important step in engineering a functional tissue. To this end, we have produced a series of silk-elastin-like proteins (SELPs) [2]. Revealed by our subsequent studies, SELPs in the form of hydrogels, thin films, and microfibers, have displayed a set of outstanding biological and physical properties. In this study, electrospinning will be pursued as a mechanism for the formation of SELP nanofibers.
3
Salins, Lyndon L., Vesna Schauer-Vukasinovic, and Sylvia Daunert. "Optical sensing systems based on biomolecular recognition of recombinant proteins." In Optoelectronics and High-Power Lasers & Applications, edited by Bryan L. Fearey. SPIE, 1998. http://dx.doi.org/10.1117/12.308378.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
MALY, J., M. ILIE, V. FOGLIETTI, E. CIANCI, A. MINOTTI, B. LANZA, A. MASCI, W. VASTARELLA, and R. PILLOTON. "ORIENTED AND REVERSIBLE IMMOBILISATION OF RECOMBINANT PROTEINS ON GOLD µ-ARRAY." In Proceedings of the 9th Italian Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701770_0002.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Freitas, Juliana, Paulo Terra, Jorge Gonçalves, Marta Cavalcanti, Mauro Castro, Regina Peralta, and José Peralta. "Recombinant ZIKV envelope proteins for the arbovirosis differential diagnosis by ELISA." In IV International Symposium on Immunobiologicals & VII Seminário Anual Científico e Tecnológico. Instituto de Tecnologia em Imunobiológicos, 2019. http://dx.doi.org/10.35259/isi.sact.2019_32801.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Bruno, Benjamin J., Sean P. Cornillie, Thomas E. Cheatham, Daniel H. Chou, and Carol S. Lim. "Abstract 3817: Recombinant stapled proteins for the treatment of chronic myeloid leukemia." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3817.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Qin, Nan, Zhiheng Gao, Yu Zhou, and Tiger H. Tao. "3d Electron Printing in Recombinant Spider Silk Proteins at the Molecular Level." In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808515.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Vehar, G. A. "THE PRESENT STATE OF GENE TECHNOLOGY IN THE MANUFACTURE OF HUMAN COAGULATION PROTEINS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644755.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The production of pharmaceuticals from human plasma that are useful in the treatment of bleeding disorders had its beginning with the development of the Cohn fractionation procedure in the 1940's. As a result of these advances, concentrates became available for the treatment of the hemophilias. Although of low purity and subject to contamination by hepatitis virus, the availability of these compounds resulted in dramatic improvements in the life expectancy and quality of life of afflicted individuals. The numerous problems associated with production of pharmaceuticals from pooled plasma made these products obvious goals for recombinant DNA technology as soon as the commercial aspects of the field became apparent. The subsequent contamination of blood products with the AIDS virus has resulted in an urgent need for a production source that is independent of human plasma. Several industrial and academic laboratories have cloned the cDNA's for human factors VIII and IX. In addition to these proteins, the utility of factor Vila in the treatment of hemophiliacs with inhibitors has shown promise. Efforts to develop a recombinant preparation of factor Vila are at a comparable stage of development as factors VIII and IX. Continuing efforts have resulted in the successful expression of these recombinant proteins in mammalian cell lines, thereby successfully completing the first steps of commercial development.Although much interest has focused upon the theoretical superiority of recombinant proteins as therapeutics, one must keep in mind that there are numerous developmental aspects of large-scale production and regulatory issues that must be addressed and solved before these drugs will be available. The coagulation proteins are complex glycoproteins that will in all probability require mammalian cell cell culture in order to produce functional proteins. The fact that these preparations will be administered over the lifetime of the patient serves to reinforce that the recombinant products be as similar to the natural proteins as possible, further supporting the concept of mammalian cell expression systems.Regulatory approval of a recombinant product are fundamentally no different than those for any other product in regards to efficacy, potency, purity, and identity. There are, however, additional considerations that must be addressed in the production of recombinant cell culture derived biologies. These relate to the possible presence in the final product of pathogenic and tumorigenic agents, and possible contamination by cell culture and cell substrate compounds. A detailed characterization of the production cell line will therefore be required, including identification and characterization of any associated viral particles. These cells must be capable of being reproducibly grown, while maintaining protein production, on ascale (tens of thousands of liters) suitable to meet the market demand of the specific protein. Apurification process must be established capable of handling the resulting large volumes of feedstock, generating a protein preparation of high purity (greater than 99% pure). Numerous assays must be developed to quantitate the purity and identity of the resulting recombinant pharmaceutical on a lot by lot basis.Studies to date have shown that recombinant forms of factors VIII and IX, produced by laboratory processes, are very similar to the plasma-derived forms as assessed by a variety of in vitro and in vivo tests. Although these results are promising, the ultimate safety and efficacy testing of these drugs will have to await the initiation of human clinical trials. Such studies will have to await the successful completion of the certain regulatory concerns. Clinical trials should begin within the near future, hopefully leading to a source of these products independent of pooled human plasma.
9
TREZZANI, I., M. NADRI, H. HAMMOURI, J. LIETO, C. DOREL, P. LEJEUNE, P. DHURJATI, J. BELLALOU, and R. LONGIN. "USE OF BIOLUMINESCENCE FOR ON-LINE ESTIMATION OF THE PRODUCTION OF RECOMBINANT PROTEINS." In Bioluminescence and Chemiluminescence - Progress and Current Applications - 12th International Symposium on Bioluminescence (BL) and Chemiluminescence (CL). WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776624_0114.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Durans, Andressa, Flavia Reis, Flávia Carneiro, Paloma Pêgo, Evandro Dias, Salvatore De Simone, Angela Junqueira, and David Provance Junior. "Two innovative multi-epitope recombinant proteins for the diagnosis of chronic T. cruzi infections." In IV International Symposium on Immunobiologicals & VII Seminário Anual Científico e Tecnológico. Instituto de Tecnologia em Imunobiológicos, 2019. http://dx.doi.org/10.35259/isi.sact.2019_32765.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Recombinant proteins Analysis":

1
Adams, Michael W., and Michael W. W. Adams. MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1113776.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Cowens, J. W., and M. J. Ehrke. Application of Laboratory Robotics to the Determination of the Primary Structure of Recombinant Proteins and the Measurement of Endotoxin. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada294245.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Pilon, Shari. Recombinant Breast Cancer Vaccines. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada384110.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Dang, Jessica, Suzanne Kracke, Peter A. Emanuel, Michael J. Gostomski, and Darrel E. Menking. Purification and Analysis of a Recombinant Human Anti-Cholera Toxin B Antibody. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada341970.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Adams, Michael W. Fundamental Studies of Recombinant Hydrogenases. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1116135.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
ZALUTSKY, MICHAEL R. Recombinant anti-tenascin antibody constructs. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/890551.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Sherman, L. A. Analysis of the PS II proteins MSP and CP43. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/100110.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Wetzel, Carolyn M. Functional analysis of chloroplast early light inducible proteins (ELIPs). Office of Scientific and Technical Information (OSTI), February 2005. http://dx.doi.org/10.2172/836992.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Leighton, Terrance. Recombinant Antibodies Specific to Bacillus Anthracis Spores. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada406971.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Vickery, Larry E. Structure/Function of Recombinant Human Estrogen Receptor. Fort Belvoir, VA: Defense Technical Information Center, November 1998. http://dx.doi.org/10.21236/ada370209.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити