Добірка наукової літератури з теми "Renewable energy integrated power system"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Renewable energy integrated power system".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Renewable energy integrated power system"
Dey, A. K., JVR Nickey, and Y. Sun. "Renewable-integrated Traffic Energy." MATEC Web of Conferences 220 (2018): 05005. http://dx.doi.org/10.1051/matecconf/201822005005.
Повний текст джерелаBAL, Güngör, and Süleyman Emre EYİMAYA. "DESIGN OF WIND TURBINE SYSTEM INTEGRATED WITH BATTERY ENERGY STORAGE SYSTEM." Journal of Electrical Engineering and Automation 1, no. 02 (December 10, 2019): 72–82. http://dx.doi.org/10.36548/jeea.2019.2.002.
Повний текст джерелаDorji, Sangay, Hemlal Bhattarai, Parashuram Sharma, Sonam Yoser, Karma Singye, and Jigme Tenzin. "SIMULATION AND MODELING OF INTEGRATED RENEWABLE ENERGY RESOURCES (HYDRO, SOLAR AND WIND ENERGY)." Journal of Applied Engineering, Technology and Management 1, no. 1 (June 30, 2021): 67–78. http://dx.doi.org/10.54417/jaetm.v1i1.25.
Повний текст джерелаReddy, G. Koti, SK Neelima, A. Sai Chandana, M. Kavitha, M. Mounika, K. Sravani, K. Sowjan Kumar, and G. V. K. Murthy. "Energy Management in Microgrids with Renewable Energy Sources." International Journal of Innovative Research in Computer Science & Technology 10, no. 2 (March 25, 2022): 588–92. http://dx.doi.org/10.55524/ijircst.2022.10.2.111.
Повний текст джерелаBasu, Jayanta Bhusan, Subhojit Dawn, Pradip Kumar Saha, Mitul Ranjan Chakraborty, and Taha Selim Ustun. "A Comparative Study on System Profit Maximization of a Renewable Combined Deregulated Power System." Electronics 11, no. 18 (September 9, 2022): 2857. http://dx.doi.org/10.3390/electronics11182857.
Повний текст джерелаChakraborty, Mitul Ranjan, Subhojit Dawn, Pradip Kumar Saha, Jayanta Bhusan Basu, and Taha Selim Ustun. "A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems." Batteries 8, no. 9 (September 10, 2022): 124. http://dx.doi.org/10.3390/batteries8090124.
Повний текст джерелаMa, Chao-Tsung, and Chin-Lung Hsieh. "Investigation on Hybrid Energy Storage Systems and Their Application in Green Energy Systems." Electronics 9, no. 11 (November 13, 2020): 1907. http://dx.doi.org/10.3390/electronics9111907.
Повний текст джерелаBamberger, Joachim, Ti-Chiun Chang, Brian Mason, Amer Mesanovic, Ulrich Münz, Warner Priest, Ross Thompson, Andrei Szabo, and Xiaofan Wu. "Reliable cost-efficient distributed energy systems with a high renewable penetration: a techno-economic case study for remote off-grid regional coal seam gas extraction." APPEA Journal 58, no. 2 (2018): 493. http://dx.doi.org/10.1071/aj17238.
Повний текст джерелаMishra, Akanksha, Nagesh Kumar G.V., and Sravana Kumar Bali. "Optimized utilization of interline power flow controller in an integrated power system." World Journal of Engineering 17, no. 2 (March 19, 2020): 261–66. http://dx.doi.org/10.1108/wje-06-2019-0176.
Повний текст джерелаLiu, Lian, Dan Wu, Aiqiang Pan, and Xingde Huang. "Study on optimization method of rural integrated energy system including renewable energy." Journal of Physics: Conference Series 2358, no. 1 (October 1, 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2358/1/012003.
Повний текст джерелаДисертації з теми "Renewable energy integrated power system"
Mataifa, Haltor. "Modeling and control of a dual-mode grid-integrated renewable energy system." Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/2190.
Повний текст джерелаFrom the electric power generation perspective, the last three decades have been characterized by sustained growth in the amount of Distributed Power Generation (DPG) systems integrated into the electric grid. This trend is anticipated to continue, especially in light of the widespread acceptance of the many benefits envisaged in the increase of renewable-based power generation. The potential for grid-integrated DPG systems to significantly contribute to electric power supply reliability has consistently attracted extensive research in recent times, although concerns continue to be raised over their adverse impact on the normal grid operation at high penetration levels. These concerns largely stem from the limited controllability of most DPG systems, which tend to exhibit large output impedance variation, and non-deterministic power output characteristics. There has therefore also been a growing need to develop effective control strategies that can enhance the overall impact of the DPG systems on the grid operation, thus improving their synergistic properties, and probably also enabling an even higher penetration level into the utility grid. In line with this identified need, this thesis discusses the modeling and controller design for an inverter-based DPG system with the capability to effectively operate both in grid-connected and autonomous (i.e. independent of the utility grid) operational modes. The dual-mode operation of the DPG is made possible by incorporating into the inverter interface control scheme the means to ensure seamless transition of the DPG between the grid-connected and autonomous modes of operation. The intention is to have a grid-integrated inverter-based DPG system whose operation approximates that of an online Uninterruptible Power Supply (UPS) system, in that it is able to sustain power supply to the local load in the absence of the grid supply, which would be desirable for critical loads, for which the level of power supply reliability guaranteed by the grid often falls short of the requirements. The work developed in this thesis considers three of the aspects associated with grid-integrated DPG systems that are equipped with autonomous-mode operation capability.
Wang, Chen. "Renewable Energy Integrated Power System Stability Assessment with Validated System Model Based on PMU Measurements." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/101015.
Повний текст джерелаDoctor of Philosophy
Assembe, Cedric Obiang. "Integrated solar photovoltaic and thermal system for enhanced energy efficiency." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2387.
Повний текст джерелаSouth Africa has raised concerns regarding the development of renewable energy sources such as wind, hydro and solar energy. Integration of a combined photovoltaic and thermal system was considered to transform simultaneous energy into electricity and heat. This was done to challenge the low energy efficiency observed when the two solar energy conversion technologies are employed separately, in order to gain higher overall energy efficiency and ensure better utilization of the solar energy. Therefore, the notion of using a combined photovoltaic and thermal system was to optimize and to improve the overall PV panel efficiency by adding conversion to thermal energy for residential and commercial needs of hot water or space heating or space cooling using appropriate technology. The PV/T model constructed using water as fluid like the one used for the experimental work, presented a marginal increase in electrical efficiency but a considerable yield on the overall PV/T efficiency, because of the simultaneous operation by coupling a PV module with a thermal collectors.
Sterner, Michael [Verfasser]. "Bioenergy and renewable power methane in integrated 100% renewable energy systems. Limiting global warming by transforming energy systems / Michael Sterner." Kassel : Kassel University Press, 2009. http://d-nb.info/1011714493/34.
Повний текст джерелаIbrahim, Sarmad Khaleel. "DISTRIBUTION SYSTEM OPTIMIZATION WITH INTEGRATED DISTRIBUTED GENERATION." UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/116.
Повний текст джерелаSerrallés, Roberto Juan. "Electricity, policy and landscape : an integrated geographic approach to renewable electric energy development /." view abstract or download file of text, 2004. http://wwwlib.umi.com/cr/uoregon/fullcit?p3153797.
Повний текст джерелаTypescript. Includes vita and abstract. Includes bibliographical references (leaves 228-236). Also available for download via the World Wide Web; free to University of Oregon users.
Bandara, Jayasinghe. "An Integrated Power Supply System for Water Pumping and Lighting in a Rural Village Utilizing Renewable Energy Sources." Thesis, KTH, Energiteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178068.
Повний текст джерелаAbdin, Adam. "Techno-economic modeling and robust optimization of power systems planning under a high share of renewable energy sources and extreme weather events An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC046.
Повний текст джерелаRecent objectives for power systems sustainability and mitigation of climate change threats are modifying the breadth of power systems planning requirements. On one hand, sustainable low carbon power systems which have a high share of intermittent renewable energy sources (IRES) are characterized by a sharp increase in inter-temporal variability and require flexible systems able to cope and ensure the security of electricity supply. On the other hand, the increased frequency and severity of extreme weather events threatens the reliability of power systems operation and require resilient systems able to withstand those potential impacts. All of which while ensuring that the inherent system uncertainties are adequately accounted for directly at the issuance of the long-term planning decisions. In this context, the present thesis aims at developing a techno-economic modeling and robust optimization framework for multi-period power systems planning considering a high share of IRES and resilience against extreme weather events. The specific planning problem considered is that of selecting the technology choice, size and commissioning schedule of conventional and renewable generation units under technical, economic, environmental and operational constraints. Within this problem, key research questions to be addressed are: (i) the proper integration and assessment of the operational flexibility needs due to the increased variability of the high shares of IRES production, (ii) the appropriate modeling and incorporation of the resilience requirements against extreme weather events within the power system planning problem and (iii) the representation and treatment of the inherent uncertainties in the system supply and demand within this planning context. In summary, the original contributions of this thesis are: - Proposing a computationally efficient multiperiod integrated generation expansion planning and unit commitment model that accounts for key short-term constraints and chronological system representation to derive the planning decisions under a high share of renewable energy penetration. - Introducing the expected flexibility shortfall metric for operational flexibility assessment. - Proposing a set of piece-wise linear models to quantify the impact of extreme heat waves and water availability on the derating of thermal and nuclear power generation units, renewable generation production and system load. - Presenting a method for explicitly incorporating the impact of the extreme weather events in a modified power system planning model. - Treating the inherent uncertainties in the electric power system planning parameters via a novel implementation of a multi-stage adaptive robust optimization model. - Proposing a novel solution method based on ``information basis'' approximation for the linear decision rules of the affinely adjustable robust planning model. - Applying the framework proposed to a practical size case studies based on realistic climate projections and under several scenarios of renewable penetration levels and carbon limits to validate the relevance of the overall modeling for real applications
Harthan, Ralph Oliver. "Integration of Renewable Energies into the German Power System and Their Influence on Investments in New Power Plants." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-160117.
Повний текст джерелаDer steigende Anteil erneuerbarer Energien beeinflusst die Wirtschaftlichkeit von Investitionen in neue konventionelle Kraftwerke. Zahlreiche Studien haben diese Aspekte in Bezug auf den Kraftwerksbetrieb oder die langfristige Entwicklung des Kraftwerksparks untersucht. Stilllegungen, Investitionen und Betrieb im Kraftwerkspark bedingen jedoch einander. Aus diesem Grund wird in dieser Doktorarbeit ein Modellierungsansatz für eine integrierte Betrachtung von Kraftwerksstilllegung, -investition und -betrieb vorgestellt. In einer Fallstudie für Deutschland werden die Auswirkungen einer Integration erneuerbarer Energien auf Kraftwerksstilllegung, -investition und -betrieb im Zusammenhang mit unterschiedlichen Annahmen über die Restlaufzeit von Kernkraftwerken untersucht. Bezogen auf die Nutzung der Kernenergie wird hierbei ein Ausstiegsszenario sowie ein Laufzeitverlängerungsszenario (Verlän-gerung der Laufzeit um durchschnittlich 12 Jahre) betrachtet. Die Ergebnisse zeigen, dass die statische Stilllegung (d.h. die Betrachtung fester technischer Lebensdauern) im Fall eines Verzichts auf die Laufzeitverlängerung die im Kraftwerkspark verfügbare Leistung unterschätzt, da Retrofit-Maßnahmen (im Vergleich zur Stilllegung) nicht berücksichtigt werden. Die verfügbare Leistung im Falle einer Laufzeitverlängerung wird dagegen überschätzt, da die Möglichkeit der Kaltreserve (im Vergleich zum regulären Betrieb) vernachlässigt wird. Werden die Rückwirkungen der im Betrieb erwirtschaftbaren Deckungsbeiträge auf Stilllegungsentscheidungen (“dynamische Stilllegung”) betrachtet, so wird der strompreissenkende Effekt durch die Laufzeitverlängerung im Vergleich zur statischen Stilllegung mehr als halbiert. Knappheitssitutationen unterscheiden sich nicht wesentlich mit und ohne Laufzeitverlängerung im Fall der dynamischen Stilllegung, während bei statischer Stilllegung ohne Laufzeitzeitverlängerung ein deutlich größerer Importbedarf besteht. Die Fallstudie zeigt, dass weitere Systemflexibilitäten für die Integration erneuerbarer Energien benötigt werden. Der Anteil flexibler Kraftwerke ist größer im Fall des Kernenergieausstiegs. Der Kernenergieausstieg wirkt sich in Bezug auf die Stilllegungsdynamik positiv auf die Wirtschaftlichkeit fossiler Kraftwerke aus. Insgesamt führt der Kernenergieausstieg zu keinen mittelfristig nachteiligen Umwelteffekten, er kann sich jedoch langfristig positiv auswirken, da Lock-in-Effekte vermieden werden. Es besteht weiterer Forschungsbedarf in Bezug auf die Berücksichtigung künftiger Flexibilitätsoptionen und ein neues Marktdesign
Albaz, Abdulkarim. "Investigation into using Stand-Alone Building Integrated Photovoltaic System (SABIPV) as a fundamental solution for Saudi rural areas and studying the expected impacts." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/15844.
Повний текст джерелаКниги з теми "Renewable energy integrated power system"
B, Ferguson Mitchell, ed. Renewable energy grid integration. Hauppauge, N.Y: Nova Science Publishers, 2009.
Знайти повний текст джерелаH, Balderas Marco, ed. Renewable energy grid integration: The business of photovoltaics. New York: Nova Science, 2009.
Знайти повний текст джерелаBillinton, Roy. Reliability and Risk Evaluation of Wind Integrated Power Systems. India: Springer India, 2013.
Знайти повний текст джерелаGeorgiadis, Thomas. Renewable energy grid integration: Building and assessment. New York: Nova Science Publishers, 2010.
Знайти повний текст джерелаRenewable energy grid integration: Building and assessment. Hauppauge, N.Y: Nova Science Publishers, 2009.
Знайти повний текст джерелаGevorkian, Peter. Alternative energy systems in building design. New York: McGraw-Hill, 2010.
Знайти повний текст джерелаGolling, Christiane. A cost-efficient expansion of renewable energy sources in the European electricity system: An integrated modelling approach with a particular emphasis on diurnal and seasonal patterns. München: Oldenbourg Industrieverlag, 2012.
Знайти повний текст джерелаCraig, Kevin R. Cost and performance analysis of biomass-based integrated gasification combined-cycle (BIGCC) power systems. Golden, CO: National Renewable Energy Laboratory, 1996.
Знайти повний текст джерелаAlternative energy systems in building design. New York: McGraw-Hill, 2010.
Знайти повний текст джерелаGevorkian, Peter. Sustainable Energy Systems in Architectural Design. New York: McGraw-Hill, 2006.
Знайти повний текст джерелаЧастини книг з теми "Renewable energy integrated power system"
Mendes, Ana Beatriz Soares, Carlos Santos Silva, and Manuel Correia Guedes. "Toward NZEB in Public Buildings: Integrated Energy Management Systems of Thermal and Power Networks." In Innovative Renewable Energy, 251–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15218-4_13.
Повний текст джерелаHosseini, Mehdi, Ibrahim Dincer, and Marc A. Rosen. "Investigation of a Renewable Energy-Based Integrated System for Baseload Power Generation." In Progress in Sustainable Energy Technologies: Generating Renewable Energy, 21–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07896-0_2.
Повний текст джерелаde Graaf, Florijn, and Simon Goddek. "Smarthoods: Aquaponics Integrated Microgrids." In Aquaponics Food Production Systems, 379–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_15.
Повний текст джерелаEicke, Laima, Anselm Eicke, and Manfred Hafner. "Solar Power Generation." In The Palgrave Handbook of International Energy Economics, 157–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86884-0_9.
Повний текст джерелаKarelia, Nirav, Amit Sant, and Vivek Pandya. "Power Quality Improvement for Grid-Integrated Renewable Energy Sources." In Introduction to AI Techniques for Renewable Energy Systems, 269–86. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003104445-17.
Повний текст джерелаKumar, Nishant, and Kumari Namrata. "Optimal Generation Sizing for Jharkhand Remote Rural Area by Employing Integrated Renewable Energy Models Opting Energy Management." In Control Applications in Modern Power System, 229–39. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_20.
Повний текст джерелаRodrigues, Neshwin, Raghav Pachouri, Shubham Thakare, G. Renjith, and Thomas Spencer. "Integrating Wind and Solar in the Indian Power System." In Energiepolitik und Klimaschutz. Energy Policy and Climate Protection, 139–62. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-38215-5_7.
Повний текст джерелаEicke, Anselm, Laima Eicke, and Manfred Hafner. "Wind Power Generation." In The Palgrave Handbook of International Energy Economics, 171–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86884-0_10.
Повний текст джерелаTolj, Ivan, Mykhaylo Lototskyy, Adrian Parsons, and Sivakumar Pasupathi. "Fuel Cell Power Pack with Integrated Metal Hydride Hydrogen Storage for Powering Electric Forklift." In Recent Advances in Renewable Energy Systems, 19–27. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1581-9_2.
Повний текст джерелаAluko, Anuoluwapo, Rudiren Pillay Carpanen, David Dorrell, and Evans Ojo. "Virtual Inertia Control Strategy for High Renewable Energy-Integrated Interconnected Power Systems." In Lecture Notes in Electrical Engineering, 346–64. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1742-4_29.
Повний текст джерелаТези доповідей конференцій з теми "Renewable energy integrated power system"
Patel, Alpesh M., and Sunil Kumar Singal. "Off grid rural electrification using integrated renewable energy system." In 2016 IEEE 7th Power India International Conference (PIICON). IEEE, 2016. http://dx.doi.org/10.1109/poweri.2016.8077272.
Повний текст джерелаPatel, Alpesh M., and Sunil Kumar Singal. "Design approach of integrated renewable energy system for small autonomous power system." In 2016 IEEE 7th Power India International Conference (PIICON). IEEE, 2016. http://dx.doi.org/10.1109/poweri.2016.8077266.
Повний текст джерелаChouwei Ni, Xuesong Zhang, Xinhong Wu, Yuhan Ma, Yajie Tang, Shaohe Wang, and Bo Zhao. "Equivalent energy storage of building with thermal inertia in integrated energy system." In 8th Renewable Power Generation Conference (RPG 2019). Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/cp.2019.0593.
Повний текст джерелаChen, Y., B. Liu, S. Liu, and M. Li. "Multi objective operation optimization of multi energy coupling integrated energy system." In The 10th Renewable Power Generation Conference (RPG 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2021.2331.
Повний текст джерелаXia, Chunni, Jiaqi Zhang, Shuqi Luo, Yongqiang Zhu, and Ruihua Xia. "Optimal Planning of District Integrated Energy System considering Distributed Renewable Energy." In 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). IEEE, 2022. http://dx.doi.org/10.1109/acpee53904.2022.9783656.
Повний текст джерелаMosobi, Rinchin W., Toko Chichi, and Sarsing Gao. "Modeling and power quality analysis of integrated renewable energy system." In 2014 Eighteenth National Power Systems Conference (NPSC). IEEE, 2014. http://dx.doi.org/10.1109/npsc.2014.7103806.
Повний текст джерелаGan, Ming, Hui Hou, Xixiu Wu, Bo Zhao, Leiqi Zhang, Changjun Xie, Ying Shi, and Liang Huang. "Bi-level Iterative Planning of Integrated Energy System for Renewable Energy Consumption." In 2022 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2022. http://dx.doi.org/10.1109/pesgm48719.2022.9916988.
Повний текст джерелаMaheshwari, Zeel. "Multi-objective optimization of Smart Integrated Renewable Energy System (SIRES)." In 2022 IEEE Kansas Power and Energy Conference (KPEC). IEEE, 2022. http://dx.doi.org/10.1109/kpec54747.2022.9814800.
Повний текст джерелаEduardo, Jose, M. S. Paiva, and Adriano S. Carvalho. "An integrated hybrid power system based on renewable energy sources." In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON 2009). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5414869.
Повний текст джерелаLv, Fengbo, Xiaoxu Gong, Bingjie Li, and Hu Li. "Comprehensive Evaluation System of Energy Integrated Service Station." In 2021 6th International Conference on Power and Renewable Energy (ICPRE). IEEE, 2021. http://dx.doi.org/10.1109/icpre52634.2021.9635452.
Повний текст джерелаЗвіти організацій з теми "Renewable energy integrated power system"
Ogino, Kaoru. A Review of the Strategy for the Northeast Asia Power System Interconnection. Asian Development Bank, December 2020. http://dx.doi.org/10.22617/wps200386-2.
Повний текст джерелаApt, Jay. The RenewElec Project: Variable Renewable Energy and the Power System. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1134748.
Повний текст джерелаBialasiewicz, J. T., E. Muljadi, G. R. Nix, and S. Drouilhet. RPM-SIM (Renewable Energy Power System Modular Simulator) user's guide. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/753768.
Повний текст джерелаZhou, Z., C. Liu, and A. Botterud. Stochastic Methods Applied to Power System Operations with Renewable Energy: A Review. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1307655.
Повний текст джерелаWiser, Ryan H., Andrew Mills, Joachim Seel, Todd Levin, and Audun Botterud. Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1411668.
Повний текст джерелаMuthyala, Rupesh, Michael Lewis, and Thomas Deetjen. Integrated Hydrogen Energy Storage System (IHESS) for Power Generation Final Report. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1884860.
Повний текст джерелаWang, Yishen, Zhi Zhou, Cong Liu, and Audun Botterud. Systematic Evaluation of Stochastic Methods in Power System Scheduling and Dispatch with Renewable Energy. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1307654.
Повний текст джерелаBialasiewicz, J. T., E. Muljadi, G. R. Nix, and S. Drouilhet. Renewable Energy Power System Modular SIMulators: RPM-Sim User's Guide (Supersedes October 1999 edition). Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/777317.
Повний текст джерелаCox, Sarah L., and Kaifeng Xu. Integration of Large-Scale Renewable Energy in the Bulk Power System: Lessons from International Experiences. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1604617.
Повний текст джерелаMartinez, A., K. Eurek, T. Mai, and A. Perry. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS). Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1067922.
Повний текст джерела