Добірка наукової літератури з теми "Robust non-linear control"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Robust non-linear control".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Robust non-linear control":

1

Haddad, Wassim M., Vijaysekhar Chellaboina, Jerry L. Fausz, and Alexander Leonessa. "Optimal non-linear robust control for non-linear uncertain systems." International Journal of Control 73, no. 4 (January 2000): 329–42. http://dx.doi.org/10.1080/002071700219687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liang, Yew-Wen, and Der-Cherng Liaw. "Robust control of non-linear affine systems." Applied Mathematics and Computation 137, no. 2-3 (May 2003): 337–47. http://dx.doi.org/10.1016/s0096-3003(02)00129-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Al-Khazraji, Ayman, and Karim M. Aljebory. "Robust Adaptive Type-2 Fuzzy Sliding Mode Control for Non-Linear uncertain SISO systems." Journal of Control Engineering and Technology 4, no. 4 (October 31, 2014): 243–56. http://dx.doi.org/10.14511/jcet.2014.040401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Spurgeon, S. K. "Non-Linear Control for Uncertain Systems." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 208, no. 4 (November 1994): 205–13. http://dx.doi.org/10.1243/pime_proc_1994_208_333_02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents a review of a number of state-of-the-art non-linear control design techniques which may be readily applied to solve practical problems in a robust fashion. It is first shown that non-linear controllers may be designed using straightforward linear models with minimal recourse to abstract mathematical concepts. More involved philosophies for robust control system design of inherently non-linear plants are then briefly described. A straightforward yet rigorous design framework is then presented to implement the philosophy. Tutorial examples are presented throughout the paper in order to illustrate major points of interest.
5

Liu, Yusheng. "Robust adaptive control of uncertain non-linear systems with non-linear parameterisation." International Journal of Modelling, Identification and Control 1, no. 2 (2006): 151. http://dx.doi.org/10.1504/ijmic.2006.010091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shergei, M., U. Shaked та C. E. De Souza. "Robust ℋ∞ non-linear estimation". International Journal of Adaptive Control and Signal Processing 10, № 4-5 (липень 1996): 395–408. http://dx.doi.org/10.1002/(sici)1099-1115(199607)10:4/5<395::aid-acs370>3.0.co;2-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yamamoto, Ikuo. "Robust and non-linear control of marine system." International Journal of Robust and Nonlinear Control 11, no. 13 (2001): 1285–341. http://dx.doi.org/10.1002/rnc.606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hammer, Jacob. "Robust stabilization of non-linear systems." International Journal of Control 49, no. 2 (February 1989): 629–53. http://dx.doi.org/10.1080/00207178908559657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kelemen, Matei, Ouassima Akhrif, and Azeddine Kaddouri. "Linear robust control of a synchronous motor, experimental comparison with non-linear control." International Journal of Control 73, no. 7 (January 2000): 624–38. http://dx.doi.org/10.1080/002071700219461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Amiri-M, Amir-A., M. R. Gharib, M. Moavenian, and K. Torabiz. "Modelling and control of a SCARA robot using quantitative feedback theory." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 223, no. 7 (August 3, 2009): 919–28. http://dx.doi.org/10.1243/09596518jsce733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a practical method to design a robust controller for a SCARA robot using quantitative feedback theory (QFT) is proposed. The models used to describe robots contain uncertainties that are the result of insufficient knowledge on the dynamics of the robot, external disturbances, pay load changes, and friction, etc. Thus, the application of robust control methods to create the precise control of robots is of considerable interest. This paper considers a robot arm manipulator, a system whose models contain non-linear coupled transfer functions. In the first step of applying the QFT technique the non-linear plant is converted into a family of linear uncertain plants. This is achieved using a fixed-point theorem and then suitable disturbance rejection bounds are found. A robust controller is designed for the tracking problem. Non-linear simulations on the tracking problem for a three-dimension elliptical path are performed and the results highlight the success of the designed controllers and pre-filters. The presented results indicate that applying the proposed technique successfully overcomes the obstacles to robust control of non-linear SCARA robots.

Дисертації з теми "Robust non-linear control":

1

Petridis, Anthemios Philemon. "Non-linear robust control of S.I. engines." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pechev, Alexandre Nikolov. "Robust linear and non-linear control of magnetically levitated systems." Thesis, Cardiff University, 2004. http://orca.cf.ac.uk/55944/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The two most advanced applications of contactless magnetic levitation are high-speed magnetic bearings and magnetically levitated vehicles (Maglev) for ground transportation using superconducting magnets and controlled d.c. electromagnets. The repulsion force from superconducting magnets provide stable levitation with low damping, while the suspension force generated by electromagnets is inherently unstable. This instability, due to the in verse force-distance relationship, requires the addition of feedback controllers to sustain stable suspension. The problem of controlling magnetically levitated systems using d.c. electromagnets under different operating conditions has been studied in this thesis with a design process primarily driven by experimental results from a representative single-magnet test rig and a multi-magnet vehicle. The controller-design stages are presented in detail and close relationships have been constructed between selection of performance criteria for the derivation process and desired suspension characteristics. Both linear and nonlinear stabilising compensators have been developed. Simulation and experimental results have been studied in parallel to assess operational stability and the main emphasis has been given to assessing performance under different operational conditions. For the experimental work, a new digital signal processor-based hardware platform has been designed, built with interface to Matlab/Simulink. The controller design methods and algorithmic work presented in this thesis can be divided into: non-adaptive, adaptive, optimal linear and nonlinear. Adaptive algorithms based on model reference control have been developed to improve the performance of the suspension system in the presence of considerable variations in external payload and force disturbances. New design methods for Maglev suspension have been developed using robust control theory (%oo and fi synthesis). Single- and multi-magnet control problems have been treated using the same framework. A solution to the Hoo controller-optimisation problem has been derived and applied to Maglev control. The sensitivity to robustness has been discussed and tools for assessing the robustness of the closed-loop system in terms of sustaining stability and performance in the presence of uncertainties in the suspension model have been presented. Multivariable controllers based on %00 and /i synthesis have been developed for a laboratory scale experimental vehicle weighing 88 kg with four suspension magnets, and experimental results have been derived to show superiority of the proposed design methods in terms of ability to deal with external disturbances. The concept of Hoo control has been extended to the nonlinear setting using the concepts of energy and dissipativity, and nonlinear state-feedback and out put-feed back controllers for Maglev have been developed and reported. Simulation and experimental results have been presented to show the improved performance of these controllers to attenuate guideway-induced disturbances while maintaining acceptable suspension qualities and larger operational bandwidth.
3

Herrmann, Guido. "Discretization of non-linear controls with application to robust, sliding-mode-based control systems." Thesis, University of Leicester, 2000. http://hdl.handle.net/2381/30178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis deals with sampled-data implementations of continuous-time, non-linear control systems. The basis for the analysis is a static, continuous-time feedback law for non-linear, affine systems with bounded input gain. The sampled-data implementation is obtained from the discretization of the control via a sample-and-hold-process. With the incorporation of the aspect of robustness, a theoretical framework is created which supersedes previous work concentrating on stability. Bounding constraints for the closed-loop differential system allow uncertainty and disturbances to be considered. Other assumptions for the continuous-time control are Lipschitz continuity, exponential decay outside a compact set and existence of a Lyapunov function. The important parameter for the discretization analysis is the sampling time; fast sampling implies robust stability. The controller sampling residual, the difference between the discretized and the original control, is of key interest within a Lyapunov-type stability analysis; suitable norms, such as the Euler norm, are chosen to find upper bounds for the sampling residual. The generalization of a result from linear to non-linear sampled-data control permits the application of the Lp-norm. The theoretical framework is also suitable for dynamic control systems and the investigation of computational delays. The analysis approaches are demonstrated for two different robust control. strategies .based on sliding-mode approaches. A state-feedback sliding-mode-based control extends ideas for smoothing discontinuous sliding-mode control components by introducing a cone-shaped sliding-mode layer. A non-smooth Lyapunov function is used to prove stability of the discretized control. An observer-based tracking control improves a previous control scheme by considering a class of non-minimum phase and relative-degree-zero plants. Simulation and numerical fast-sampling analysis results are provided for all developed discretization and sliding-mode-based control techniques in application to non-trivial examples. The simulation of a highly non-linear, large-scale chemical plant for benzene production with non-minimum phase and relative-degree-zero characteristics proves the effectiveness of sliding-mode output control.
4

Torabi, Zahra. "Distributed non-cooperative robust economic predictive control for dynamically coupled linear systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this thesis, a tube-based Distributed Economic Predictive Control (DEPC) scheme is presented for a group of dynamically coupled linear subsystems. These subsystems are components of a large scale system and control inputs are computed based on optimizing a local economic objective. Each subsystem is interacting with its neighbors by sending its future reference trajectory, at each sampling time. It solves a local optimization problem in parallel, based on the received future reference trajectories of the other subsystems. To ensure recursive feasibility and a performance bound, each subsystem is constrained to not deviate too much from its communicated reference trajectory. This difference between the plan trajectory and the communicated one is interpreted as a disturbance on the local level. Then, to ensure the satisfaction of both state and input constraints, they are tightened by considering explicitly the effect of these local disturbances. The proposed approach averages over all possible disturbances, handles tightened state and input constraints, while satisfies the compatibility constraints to guarantee that the actual trajectory lies within a certain bound in the neighborhood of the reference one. Each subsystem is optimizing a local arbitrary economic objective function in parallel while considering a local terminal constraint to guarantee recursive feasibility. In this framework, economic performance guarantees for a tube-based distributed predictive control (DPC) scheme are developed rigorously. It is presented that the closed-loop nominal subsystem has a robust average performance bound locally which is no worse than that of a local robust steady state. Since a robust algorithm is applying on the states of the real (with disturbances) subsystems, this bound can be interpreted as an average performance result for the real closed-loop system. To this end, we present our outcomes on local and global performance, illustrated by a numerical example.
5

O'Dea, Enda. "Robust control of non-linear 2D and linear 3D disturbances in channel flow by surface transpiration." Thesis, University of Southampton, 2004. https://eprints.soton.ac.uk/47092/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The attenuation of perturbations in both periodic and non-periodic channel flow is attempted through wall-normal transcription and point wall-shear-stress measurements. The transcription is applied in both continuous harmonic form and a system based on discrete zero-net-mass-flux panel-pair form. For 2D flow it is demonstrated by means of a spectral Galerkin solver, that a simple classical controller with harmonic transpiration is capable of attenuating highly non-linear 2D perturbations. A multiple-input/multiple-output (MIMO) robust control scheme designed for the attenuation of perturbations in a non-periodic channel is applied to linear perturbations in the periodic setting. A certain set of linearly unstable modes in this periodic setting prove unstable for this control scheme. The significance of the last panel-pair in the scheme's failure in the presence of such modes is also demonstrated to continue to attenuate simple 2D perturbations in the presence of certain prescribed actuator/sensor faults. The identification of which faults are detrimental to the control demonstrates the importance of upstream actuators and downstream sensors respectively. Such observations may be useful in the design of fault tolerant control schemes. An ad-hoc extension of the 2D MIMO controller is applied to a 3D flow. A simple perturbation is initialised in the flow by an upstream panel pair
6

Costa, Giuseppe Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "Robust Control For Gantry Cranes." Awarded by:University of New South Wales. Electrical Engineering and Telecommunications, 1999. http://handle.unsw.edu.au/1959.4/17609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this thesis a class of robust non-linear controllers for a gantry crane system are discussed. The gantry crane has three degrees of freedom, all of which are interrelated. These are the horizontal traverse of the cart, the vertical motion of the goods (i.e. rope length) and the swing angle made by the goods during the movement of the cart. The objective is to control all three degrees of freedom. This means achieving setpoint control for the cart and the rope length and cancellation of the swing oscillations. A mathematical model of the gantry crane system is developed using Lagrangian dynamics. In this thesis it is shown that a model of the gantry crane system can be represented as two sub models which are coupled by a term which includes the rope length as a parameter. The first system will consist of the cart and swing dynamics and the other system is the hoist dynamics. The mathematical model of these two systems will be derived independent of the other system. The model that is comprised of the two sub models is verified as an accurate model of a gantry crane system and it will be used to simulate the performance of the controllers using Matlab. For completeness a fully coupled mathematical model of the gantry crane system is also developed. A detailed design of a gain scheduled sliding mode controller is presented. This will guarantee the controller's robustness in the presence of uncertainties and bounded matched disturbances. This controller is developed to achieve cart setpoint and swing control while achieving rope length setpoint control. A non gain scheduled sliding mode controller is also developed to determine if the more complex gain scheduled sliding mode controller gives any significant improvement in performance. In the implementation of both sliding mode controllers, all system states must be available. In the real-time gantry crane system used in this thesis, the cart velocity and the swing angle velocity are not directly available from the system. They will be estimated using an alpha-beta state estimator. To overcome this limitation and provide a more practical solution an optimal output feedback model following controller is designed. It is demonstrated that by expressing the system and the model for which the system is to follow in a non-minimal state space representation, LQR techniques can be used to design the controller. This produces a dynamic controller that has a proper transfer function, and negates the need for the availability of all system states. This thesis presents an alternative method of solving the LQR problem by using a generic eigenvalue solution to solve the Riccati equation and thus determine the optimal feedback gains. In this thesis it is shown that by using a combination of sliding mode and H??? control techniques, a non-linear controller is achieved which is robust in the presence of a wide variety of uncertainties and disturbances. A supervisory controller is also described in this thesis. The supervisory control is made up of a feedforward and a feedback component. It is shown that the feedforward component is the crane operator's action, and the feedback component is a sliding mode controller which compensates as the system's output deviates from the desired trajectory because of the operator's inappropriate actions or external disturbances such as wind gusts and noise. All controllers are simulated using Matlab and implemented in real-time on a scale model of the gantry crane system using the program RTShell. The real-time results are compared against simulated results to determine the controller's performance in a real-time environment.
7

KOWTA, SRINIVAS. "ROBUST STABILITY ANALYSIS OF SERVO-HYDRAULIC SYSTEM IN PARAMETER SPACE." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1060970575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ouattara, Seydou. "Mise en œuvre d'une loi de commande adaptative floue indirecte." Valenciennes, 1996. https://ged.uphf.fr/nuxeo/site/esupversions/34633a72-0657-4c61-8628-c72bea21021e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les récents progrès théoriques et le nombre croissant des applications industrielles de la commande floue lui permettent de prendre place à côté des théories classiques de commande. Cependant il reste à mettre en œuvre des stratégies de réglage automatique des différents paramètres intervenant dans la conception des régulateurs flous. Le travail présenté dans ce mémoire propose la possibilité de réaliser une loi de commande adaptative floue indirecte. Il consiste à modifier les gains d'un régulateur flou en fonction des résultats d'une identification d'un modèle linéaire pseudo-continu du système utilisant le formalisme de l'opérateur delta. Dans un premier temps, une méthode d'obtention des gains robustes optimaux du régulateur flou pour une classe de systèmes linéaires du premier et du second ordre est proposée. Une analyse statistique est effectuée sur l'ensemble des résultats de l'optimisation non linéaire et permet de mettre en évidence qu'il n'existe pas de relations générales liant les gains du régulateur flou à un ou plusieurs paramètres du système. Cette absence de relations marquées conduit à mettre en œuvre un modèle flou d'évolution des gains du régulateur en fonction des paramètres du système. L’approche envisagée est du type floue car elle permet au travers des règles linguistiques de conserver les relations locales mises en évidence par l'analyse statistique. Cette modélisation permet de mettre en œuvre un algorithme d'adaptation des gains du régulateur flou en fonction des paramètres dynamiques du système. La technique d'identification développée est basée sur la méthode des moindres carrés récursifs et l'utilisation du formalisme de l'opérateur delta. Enfin un superviseur central permet de piloter à la fois les modules d'identification et de commande en sélectionnant, soit un régulateur robuste à gains constants, soit un régulateur adaptatif pour améliorer les performances de la boucle fermée. Des essais en simulation et sur un procédé de régulation de niveau d'eau ont permis de valider l'approche.
9

Dos, Santos Paulino Ana Carolina. "Robust analysis of uncertain descriptor systems using non quadratic Lyapunov functions." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les systèmes descripteurs incertains sont convenables pour la représentation des incertitudes d’un modèle, du comportement impulsif et des contraintes algébriques entre les variables d’état. Ils peuvent décrire bien plus de phénomènes qu’un système dynamique standard, mais, en conséquence, l’analyse des systèmes descripteurs incertains est aussi plus complexe. Des recherches sont menées de façon à réduire le degré de conservatisme dans l’analyse des systèmes descripteurs incertains. L’utilisation des fonctions de Lyapunov qui sont en mesure de générer des conditions nécessaires et suffisantes pour une telle évaluation y figurent. Les fonctions de Lyapunov polynomiales homogènes font partie de ces classes, mais elles n’ont jamais été employées pour les systèmes descripteurs incertains. Dans cette thèse, nous comblons ce vide dans la littérature en étendant l’usage des fonctions de Lyapunov polynomiales homogènes du cas incertain standard vers les systèmes descripteurs incertains
Uncertain descriptor systems are a convenient framework for simultaneously representing uncertainties in a model, as well as impulsive behavior and algebraic constraints. This is far beyond what can be depicted by standard dynamic systems, but it also means that the analysis of uncertain descriptor systems is more complex than the standard case. Research has been conducted to reduce the degree of conservatism in the analysis of uncertain descriptor systems. This can be achieved by using classes of Lyapunov functions that are known to be able to provide necessary and sufficient conditions for this evaluation. Homogeneous polynomial Lyapunov functions constitute one of such classes, but they have never been employed in the context of uncertain descriptor systems. In this thesis, we fill in this scientific gap, extending the use of homogeneous polynomial Lyapunov functions from the standard uncertain case for the uncertain descriptor one
10

Maya, Gonzalez Martin. "Frequency domain analysis of feedback interconnections of stable systems." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/frequency-domain-analysis-of-feedback-interconnections-of-stable-systems(c6415a11-3417-48ba-9961-ecef80b08e0e).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The study of non-linear input-output maps can be summarized by three concepts: Gain, Positivity and Dissipativity. However, in order to make efficient use of these theorems it is necessary to use loop transformations and weightings, or so called ”multipliers”.The first problem this thesis studies is the feedback interconnection of a Linear Time Invariant system with a memoryless bounded and monotone non-linearity, or so called Absolute Stability problem, for which the test for stability is equivalent to show the existence of a Zames-Falb multiplier. The main advantage of this approach is that Zames–Falb multipliers can be specialized to recover important tools such as Circle criterion and the Popov criterion. Albeit Zames-Falb multipliers are an efficient way of describing non-linearities in frequency domain, the Fourier transform of the multiplier does not preserve the L1 norm. This problem has been addressed by two paradigms: mathematically complex multipliers with exact L1 norm and multipliers with mathematically tractable frequency domain properties but approximate L1 norm. However, this thesis exposes a third factor that leads to conservative results: causality of Zames-Falb multipliers. This thesis exposes the consequences of narrowing the search Zames-Falb multipliers to causal multipliers, and motivated by this argument, introduces an anticausal complementary method for the causal multiplier synthesis in [1].The second subject of this thesis is the feedback interconnection of two bounded systems. The interconnection of two arbitrary systems has been a well understood problem from the point of view of Dissipativity and Passivity. Nonetheless, frequency domain analysis is largely restricted for passive systems by the need of canonically factorizable multipliers, while Dissipativity mostly exploits constant multipliers. This thesis uses IQC to show the stability of the feedback interconnection of two non-linear systems by introducing an equivalent representation of the IQC Theorem, and then studies formally the conditions that the IQC multipliers need. The result of this analysis is then compared with Passivity and Dissipativity by a series of corollaries.

Книги з теми "Robust non-linear control":

1

Arimoto, Suguru. Control theory of non-linear mechanical systems: A passivity-based and circuit-theoretic approach. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guay, DeHaan, and Adetola. Robust and Adaptive Model Predictive Control of Non-linear Systems. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/pbce083e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Fan. The design of control systems in the time domain: The analysis of the characteristic weighting sequences of multivariable linear systems and the design of robust controllers for non linear time-varying systems based on time domain input-output properties. Bradford, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lewis, F. W., S. Jagannathan, and A. Yesildirak. Neural Network Control of Robot Manipulators and Non-Linear Systems. Taylor & Francis Group, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lewis, F. W., S. Jagannathan, and A. Yesildirak. Neural Network Control of Robot Manipulators and Non-Linear Systems. Taylor & Francis Group, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lewis, F. W., S. Jagannathan, and A. Yesildirak. Neural Network Control of Robot Manipulators and Non-Linear Systems. Taylor & Francis Group, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lewis, F. W., S. Jagannathan, and A. Yesildirak. Neural Network Control of Robot Manipulators and Non-Linear Systems. Taylor & Francis Group, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lewis, F. W., S. Jagannathan, and A. Yesildirak. Neural Network Control Of Robot Manipulators And Non-Linear Systems (Series in Systems and Control). CRC, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Robust non-linear control":

1

Ackermann, Jürgen. "Value Sets for Non-linear Coefficient Functions." In Robust Control, 362–94. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0207-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sowers, Richard B., and Armand M. Makowski. "Discrete-Time Filtering for Linear Systems in Correlated Noise with Non-Gaussian Initial Conditions: Formulas and Asymptotics." In Robust Control of Linear Systems and Nonlinear Control, 407–19. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-4484-4_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Buciakowski, Mariusz, Marcin Witczak, and Józef Korbicz. "Towards Robust Predictive Control for Non-linear Discrete Time System." In Advances in Intelligent Systems and Computing, 179–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23180-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Borangiu, Theodor, Mitică Manu, and Virginia Ecaterina Oltean. "Multi-processor Design of Non-linear Robust Motion Control for Rigid Robots." In Computer Aided Systems Theory - EUROCAST’99, 224–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10720123_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pazera, Marcin, and Marcin Witczak. "Robust sensor fault-tolerant control for non-linear aero-dynamical MIMO system." In Advances in Intelligent Systems and Computing, 651–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60699-6_63.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

de la Sen, M. "A robust discrete adaptive control approach based on passivity results for non-linear systems." In Analysis and Optimization of Systems, 786–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0042264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fantoni, Isabelle, and Rogelio Lozano. "The planar flexible-joint robot." In Non-linear Control for Underactuated Mechanical Systems, 107–28. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0177-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Montes, H., L. Pedraza, M. Armada, and T. Akinfiev. "Force Feedback Control Implementation for SMART Non-Linear Actuator." In Climbing and Walking Robots, 625–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-29461-9_62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Montes, H., M. Armada, and T. Akinfiev. "On the Application of Impedance Control to a Non-linear Actuator." In Climbing and Walking Robots, 751–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hernández, J., J. Torres, and S. Salazar. "Mechatronic Design of a Mobile Robot and Non-Linear Control." In Multibody Mechatronic Systems, 531–41. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09858-6_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Robust non-linear control":

1

Zhang, Kaixuan, Ruiye Liu, and Zhizhong Guo. "Non-linear time-delay robust control for steam turbine generator units." In 2016 UKACC 11th International Conference on Control (CONTROL). IEEE, 2016. http://dx.doi.org/10.1109/control.2016.7737614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fang, Jianyin, and Minggui Rao. "Robust stabilizationof linear Discrete-Time Systems with Non-linear Uncertain parameters." In 2006 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.280736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gil, Guillermo Pita, Emmanuel Godoy, Didier Dumur, Marco Marsilia, and Samuel Cregut. "Robust non-linear controllers for automotive vehicle handling." In 2009 European Control Conference (ECC). IEEE, 2009. http://dx.doi.org/10.23919/ecc.2009.7075163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Turetsky, Vladimir, and Valery Y. Glizer. "Robust controllability of linear systems in non-scalarizable case." In 2022 UKACC 13th International Conference on Control (CONTROL). IEEE, 2022. http://dx.doi.org/10.1109/control55989.2022.9781366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Casado, Manuel Haro, and Francisco J. Velasco Gonzalez. "Non linear and robust control of underwater vehicles." In Robotics (MMAR). IEEE, 2010. http://dx.doi.org/10.1109/mmar.2010.5587212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Peiying, Linin Ou, Danying Gu, and Weidong Zhang. "Robust analytical scheme for linear non-square systems." In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5399990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chassikos, Anastassios G., H. Ali Pak, and Petros A. Ioannou. "Non-Linear Robust Adaptive Control of a SCARA Manipulator." In 1989 American Control Conference. IEEE, 1989. http://dx.doi.org/10.23919/acc.1989.4790419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zarei, Jafar, Javad Poshtan, and Majid Poshtan. "Robust fault detection of non-linear systems with unknown disturbances." In Control (MSC). IEEE, 2010. http://dx.doi.org/10.1109/cca.2010.5611239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Calafiore, Giuseppe. "A set-valued non-linear filter for robust localization." In 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7076167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kelly, Matthew, and Andy Ruina. "Non-linear robust control for inverted-pendulum 2D walking." In 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015. http://dx.doi.org/10.1109/icra.2015.7139800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії