Добірка наукової літератури з теми "Rota-Baxter operator"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Rota-Baxter operator".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Rota-Baxter operator"
BAI, CHENGMING, LI GUO, and XIANG NI. "RELATIVE ROTA–BAXTER OPERATORS AND TRIDENDRIFORM ALGEBRAS." Journal of Algebra and Its Applications 12, no. 07 (May 16, 2013): 1350027. http://dx.doi.org/10.1142/s0219498813500278.
Повний текст джерелаWang, Zhongwei, Zhen Guan, Yi Zhang, and Liangyun Zhang. "Rota–Baxter Operators on Cocommutative Weak Hopf Algebras." Mathematics 10, no. 1 (December 28, 2021): 95. http://dx.doi.org/10.3390/math10010095.
Повний текст джерелаXu, Senrong, Wei Wang, and Jia Zhao. "Twisted Rota-Baxter operators on Hom-Lie algebras." AIMS Mathematics 9, no. 2 (2023): 2619–40. http://dx.doi.org/10.3934/math.2024129.
Повний текст джерелаZhao, Jia, and Yu Qiao. "Cohomology and Deformations of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras." Mathematics 12, no. 1 (January 4, 2024): 166. http://dx.doi.org/10.3390/math12010166.
Повний текст джерелаGuo, Shuangjian, Shengxiang Wang, and Xiaohui Zhang. "The Classical Hom–Leibniz Yang–Baxter Equation and Hom–Leibniz Bialgebras." Mathematics 10, no. 11 (June 3, 2022): 1920. http://dx.doi.org/10.3390/math10111920.
Повний текст джерелаTang, Rong, Yunhe Sheng, and Yanqiu Zhou. "Deformations of relative Rota–Baxter operators on Leibniz algebras." International Journal of Geometric Methods in Modern Physics 17, no. 12 (September 4, 2020): 2050174. http://dx.doi.org/10.1142/s0219887820501741.
Повний текст джерелаZhou, Shuyun, and Li Guo. "Rota-Baxter TD Algebra and Quinquedendriform Algebra." Algebra Colloquium 24, no. 01 (February 15, 2017): 53–74. http://dx.doi.org/10.1142/s1005386717000037.
Повний текст джерелаLiu, Ling, Abdenacer Makhlouf, Claudia Menini, and Florin Panaite. "-Rota–Baxter Operators, Infinitesimal Hom-bialgebras and the Associative (Bi)Hom-Yang–Baxter Equation." Canadian Mathematical Bulletin 62, no. 02 (January 7, 2019): 355–72. http://dx.doi.org/10.4153/cmb-2018-028-8.
Повний текст джерелаDas, Apurba, and Satyendra Kumar Mishra. "The L∞-deformations of associative Rota–Baxter algebras and homotopy Rota–Baxter operators." Journal of Mathematical Physics 63, no. 5 (May 1, 2022): 051703. http://dx.doi.org/10.1063/5.0076566.
Повний текст джерелаRosenkranz, Markus, Xing Gao, and Li Guo. "An algebraic study of multivariable integration and linear substitution." Journal of Algebra and Its Applications 18, no. 11 (August 19, 2019): 1950207. http://dx.doi.org/10.1142/s0219498819502074.
Повний текст джерелаДисертації з теми "Rota-Baxter operator"
Hajjaji, Atef. "Étude des opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et Jordan." Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7172.
Повний текст джерелаThe goal of this thesis is to explore relative Rota-Baxter operators in the context of ternary algebras of both Lie and Jordan types. We mainly consider Lie triple systems, 3-Lie algebras and ternary Jordan algebras. The study covers their structure, cohomology, deformations, and their connection with the Yang-Baxter equations. The work is divided into three main parts. The first part aims first to introduce and study a graded Lie algebra whose Maurer-Cartan elements are Lie triple systems. It turns out to be the controlling algebra of Lie triple systems deformations and fits with the adjoint cohomology theory of Lie triple systems introduced by Yamaguti. In addition, we introduce the notion of relative Rota-Baxter operators on Lie triple systems and construct a Lie 3-algebra as a special case of L∞-algebras, where the Maurer-Cartan elements correspond to relative Rota-Baxter operators. In the second part, we introduce the concept of twisted relative Rota-Baxter operators on 3-Lie algebras and construct an L∞-algebra, where the Maurer-Cartan elements are twisted relative Rota-Baxter operators. This allows us to define the Chevalley-Eilenberg cohomology of a twisted relative Rota-Baxter operator. In the last part, we deal with a representation theory of ternary Jordan algebras. In particular, we introduce and discuss the concept of coherent ternary Jordan algebras. We then define relative Rota-Baxter operators for ternary Jordan algebras and discuss solutions ofthe ternary Jordan Yang-Baxter equation involving relative Rota-Baxter operators. Moreover, we investigate ternary pre-Jordan algebras as the underlying algebraic structure of relative Rota-Baxter operators
Тези доповідей конференцій з теми "Rota-Baxter operator"
Anghel, Cristian. "On a class of Rota-Baxter operators with geometric origin." In 10th Jubilee International Conference of the Balkan Physical Union. Author(s), 2019. http://dx.doi.org/10.1063/1.5091250.
Повний текст джерела