Добірка наукової літератури з теми "Roughness optimization"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Roughness optimization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Roughness optimization":

1

Kamaruzaman, Anis Farhan, Azlan Mohd Zain, Razana Alwee, Noordin Md Yusof, and Farhad Najarian. "Optimization of Surface Roughness in Deep Hole Drilling using Moth-Flame Optimization." ELEKTRIKA- Journal of Electrical Engineering 18, no. 3-2 (December 24, 2019): 62–68. http://dx.doi.org/10.11113/elektrika.v18n3-2.195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study emphasizes on optimizing the value of machining parameters that will affect the value of surface roughness for the deep hole drilling process using moth-flame optimization algorithm. All experiments run on the basis of the design of experiment (DoE) which is two level factorial with four center point. Machining parameters involved are spindle speed, feed rate, depth of hole and minimum quantity lubricants (MQL) to obtain the minimum value for surface roughness. Results experiments are needed to go through the next process which is modeling to get objective function which will be inserted into the moth-flame optimization algorithm. The optimization results show that the moth-flame algorithm produced a minimum surface roughness value of 2.41µ compared to the experimental data. The value of machining parameters that lead to minimum value of surface roughness are 900 rpm of spindle speed, 50 mm/min of feed rate, 65 mm of depth of hole and 40 l/hr of MQL. The ANOVA has analysed that spindle speed, feed rate and MQL are significant parameters for surface roughness value with P-value <0.0001, 0.0219 and 0.0008 while depth of hole has P-value of 0.3522 which indicates that the parameter is not significant for surface roughness value. The analysis also shown that the machining parameter that has largest contribution to the surface roughness value is spindle speed with 65.54% while the smallest contribution is from depth of hole with 0.8%. As the conclusion, the application of artificial intelligence is very helpful in the industry for gaining good quality of products.
2

Lan. "Parametric Deduction Optimization for Surface Roughness." American Journal of Applied Sciences 7, no. 9 (September 1, 2010): 1248–53. http://dx.doi.org/10.3844/ajassp.2010.1248.1253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fan Di, 范镝. "Optimization of SiC Mirror Surface Roughness." Laser & Optoelectronics Progress 51, no. 9 (2014): 092206. http://dx.doi.org/10.3788/lop51.092206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cardoso, Pedro, and J. Paulo Davim. "Optimization of Surface Roughness in Micromilling." Materials and Manufacturing Processes 25, no. 10 (December 3, 2010): 1115–19. http://dx.doi.org/10.1080/10426914.2010.481002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nosonovsky, Michael, and Bharat Bhushan. "Roughness optimization for biomimetic superhydrophobic surfaces." Microsystem Technologies 11, no. 7 (July 2005): 535–49. http://dx.doi.org/10.1007/s00542-005-0602-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fabre, D., C. Bonnet, J. Rech, and T. Mabrouki. "Optimization of surface roughness in broaching." CIRP Journal of Manufacturing Science and Technology 18 (August 2017): 115–27. http://dx.doi.org/10.1016/j.cirpj.2016.10.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dikshit, Mithilesh K., Asit B. Puri, and Atanu Maity. "Optimization of surface roughness in ball-end milling using teaching-learning-based optimization and response surface methodology." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231, no. 14 (February 29, 2016): 2596–607. http://dx.doi.org/10.1177/0954405416634266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Surface roughness is one of the most important requirements of the finished products in machining process. The determination of optimal cutting parameters is very important to minimize the surface roughness of a product. This article describes the development process of a surface roughness model in high-speed ball-end milling using response surface methodology based on design of experiment. Composite desirability function and teaching-learning-based optimization algorithm have been used for determining optimal cutting process parameters. The experiments have been planned and conducted using rotatable central composite design under dry condition. Mathematical model for surface roughness has been developed in terms of cutting speed, feed per tooth, axial depth of cut and radial depth of cut as the cutting process parameters. Analysis of variance has been performed for analysing the effect of cutting parameters on surface roughness. A second-order full quadratic model is used for mathematical modelling. The analysis of the results shows that the developed model is adequate enough and good to be accepted. Analysis of variance for the individual terms revealed that surface roughness is mostly affected by the cutting speed with a percentage contribution of 47.18% followed by axial depth of cut by 10.83%. The optimum values of cutting process parameters obtained through teaching-learning-based optimization are feed per tooth ( fz) = 0.06 mm, axial depth of cut ( Ap) = 0.74 mm, cutting speed ( Vc) = 145.8 m/min, and radial depth of cut ( Ae) = 0.38 mm. The optimum value of surface roughness at the optimum parametric setting is 1.11 µm and has been validated by confirmation experiments.
8

Bhushan, B. "Methodology for roughness measurement and contact analysis for optimization of interface roughness." IEEE Transactions on Magnetics 32, no. 3 (May 1996): 1819–25. http://dx.doi.org/10.1109/20.492871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rao, Ch Maheswara, S. Srikanth, R. Vara Prasad, and G. Babji. "Simultaneous Optimization of Roughness Parameters using TOPSIS." International Journal of Engineering Trends and Technology 49, no. 3 (July 25, 2017): 150–57. http://dx.doi.org/10.14445/22315381/ijett-v49p223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nosonovsky, Michael, and Bharat Bhushan. "Hierarchical roughness optimization for biomimetic superhydrophobic surfaces." Ultramicroscopy 107, no. 10-11 (October 2007): 969–79. http://dx.doi.org/10.1016/j.ultramic.2007.04.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Roughness optimization":

1

Vandadi, Aref. "Optimization of Superhydrophobic Surfaces to Maintain Continuous Dropwise Condensation." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500016/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the past decade, the condensation on superhydrophobic surfaces has been investigated abundantly to achieve dropwise condensation. There is not a specific approach in choosing the size of the roughness of the superhydrophobic surfaces and it was mostly selected arbitrarily to investigate the behavior of condensates on these surfaces. In this research, we are optimizing the size of the roughness of the superhydrophobic surface in order to achieve dropwise condensation. By minimizing the resistances toward the transition of the tails of droplets from the cavities of the roughness to the top of the roughness, the size of the roughness is optimized. It is shown that by decreasing the size of the roughness of the superhydrophobic surface, the resistances toward the transition of the tails of droplets from Wenzel state to Cassie state decrease and consequently dropwise condensation becomes more likely.
2

Hu, Chen. "Surface Optimization of the Silicon Templates for Monolithic Photonics Integration." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-37226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silicon photonics is emerging as a potential field to achieve optical interconnects towards the realization of ultra high bandwidth. The indirect band-gap property of silicon still remains as a big challenge to incorporate silicon photonic active device, for example, silicon-based laser. In the Laboratory of Semiconductor Materials at KTH, a monolithic integration platform based on nano-epitaxial lateral overgrowth (nano-ELOG) technique has been proposed to integrate III-V semiconductor materials with silicon for light source application. The integration process involves uneven surface morphology at different stages. The surfaces of the indium phosphide seed layer on silicon used for ELOG, the mask deposited on it (the silicon/silicon dioxide waveguide) and the ELOG indium phosphide layer grown on it prior to laser growth are often rough. In this thesis work, we have optimized chemical mechanical polishing (CMP) technique in order to achieve an even surface. The same procedure is also necessary to reach the optimal thickness of different layers to enable effective coupling of light from the laser source into the waveguide. CMP of indium phosphide to obtain an average surface roughness of < 1 nm has been optimized by a two-step polishing using different slurries; it results in a step height of ca 3 nm. Similarly the surface of silicon/silicon dioxide “waveguide” has also been optimized with the roughness of ~ 0.5 nm. In the latter case, a step height of 40 nm is retained and this increase with respect to InP is identified to be mainly due to limitations of the polishing machine which is different from that used for indium phosphide. The reduction in step heights with polishing time is analyzed and compared with an existing theoretical model. Our results are in good qualitative agreement with the model. The optimized surface morphology obtained in this work was tested for its suitability for integration. For this evaluation, InP was grown by ELOG in a hydride vapour phase epitaxy reactor with and without CMP of the involved surfaces. The surface after CMP yields layers of better surface morphology with fewer defects as revealed by atomic force microscopy, surface profilometer and cathodoluminescence analysis. The results indicate that the CMP process is useful for monolithic integration for silicon photonics.
3

O'Hanley, Harrison Fagan. "Separate effects of surface roughness, wettability and porosity on boiling heat transfer and critical heat flux and optimization of boiling surfaces." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering; and, (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 157-161).
The separate effects of surface wettability, porosity, and roughness on critical heat flux (CHF) and heat transfer coefficient (HTC) were examined using carefully-engineered surfaces. All test surfaces were prepared on nanosmooth indium tin oxide - sapphire heaters and tested in a pool boiling facility in MIT's Reactor Thermal Hydraulics Laboratory. Roughness was controlled through fabrication of micro-posts of diameter 20[mu]m and height 15[mu]m; intrinsic wettability was controlled through deposition of thin compact coatings made of hydrophilic SiO₂ (typically, 20nm thick) and hydrophobic fluorosilane (monolayer thickness); porosity and pore size were controlled through deposition of layer-by-layer coatings made of SiO₂ nanoparticles. The ranges explored were: 0 - 15[mu] for roughness (Rz), 0 - 135 degrees for intrinsic wettability, and 0 - 50% and 50nm for porosity and pore size, respectively. During testing, the active heaters were imaged with an infrared camera to map the surface temperature profile and locate distinct nucleation sites. It was determined that wettability can play a large role on a porous surface, but has a limited effect on a smooth non-porous surface. Porosity had very pronounced effects on CHF. When coupled with hydrophilicity, a porous structure enhanced CHF by approximately 50% - 60%. However, when combined with a hydrophobic surface, porosity resulted in a reduction of CHF by 97% with respect to the reference surface. Surface roughness did not have an appreciable effect, regardless of the other surface parameters present. Hydrophilic porous surfaces realized a slight HTC enhancement, while the HTC of hydrophobic porous surfaces was greatly reduced. Roughness had little effect on HTC. A second investigation used spot patterning aimed at creating a surface with optimal characteristics for both CHF and HTC. Hydrophobic spots (meant to be preferential nucleation sites) were patterned on a porous hydrophilic surface. The spots indeed were activated as nucleation sites, as recognized via the IR signal. However, CHF and HTC were not enhanced by the spots. In some instances, CHF was actually decreased by the spots, when compared to a homogenous porous hydrophilic surface.
by Harrison Fagan O'Hanley.
S.B.
S.M.
4

Sällberg, Gustav, and Pontus Söderbäck. "Thesis - Optimizing Smooth Local Volatility Surfaces with Power Utility Functions." Thesis, Linköpings universitet, Produktionsekonomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The master thesis is focused on how a local volatility surfaces can be extracted by optimization with respectto smoothness and price error. The pricing is based on utility based pricing, and developed to be set in arisk neutral pricing setting. The pricing is done in a discrete multinomial recombining tree, where the timeand price increments optionally can be equidistant. An interpolation algorithm is used if the option that shallbe priced is not matched in the tree discretization. Power utility functions are utilized, where the log-utilitypreference is especially studied, which coincides with the (Kelly) portfolio that systematically outperforms anyother portfolio. A fine resolution of the discretization is generally a property that is sought after, thus a seriesof derivations for the implementation are done to restrict the computational encumbrance and thus allow finer discretization. The thesis is mainly focused on the derivation of the method rather than finding optimal parameters thatgenerate the local volatility surfaces. The method has shown that smooth surfaces can be extracted, whichconsider market prices. However, due to lacking available interest and dividend data, the pricing error increasessymmetrically for longer option maturities. However, the method shows exponential convergence and robustnessto different initial (flat) volatilities for the optimization initiation. Given an optimal smooth local volatility surface, an arbitrary payoff function can then be used to price thecorresponding option, which could be path-dependent, such as barrier options. However, only vanilla optionswill be considered in this thesis. Finally, we find that the developed
5

Lapushkina, Elizaveta. "Anti-corrosion coatings fabricated by cold spray technique : Optimization of spray condition and relationship between microstructure and performance." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Des revêtements anticorrosion de zinc et d'aluminium ont été développés respectivement par des techniques de pulvérisation à froid à haute pression et à basse pression. Pour les revêtements de zinc, la dépendance de la température de pulvérisation sur l'épaisseur a été analysée et la température critique de dépôt a été trouvée à 230°C. Des variations de pression de 2 MPa, 2,5 MPa et 3 MPa à température constante 290 °C ont montré la valeur d'épaisseur de couche plus élevée à 2 MPa. Il a été également confirmé que l'épaisseur du revêtement à tendance à diminuer avec la pression. Le taux d'alimentation en poudre ainsi que la distance de pulvérisation ont également été considérés comme des paramètres influençant l'épaisseur. Les conditions optimales de projection ont été trouvées pour 3 rps et 30 mm, respectivement. Enfin, la température et la pression du gaz ont été optimisées par le plan d’experience dit de Doehlert. Leurs influences sur la qualité du revêtement de zinc ont été discutées en termes de microstructure, de porosité, d'épaisseur et de résistance à la corrosion. Une porosité maximale de 4,2% a été atteinte avec la pression la plus élevée et avec une température modérée (260 ° C < T < 300 ° C). Ces conditions favorisait l'érosion du substrat et la faible déformation des particules lors de l'impact. Deux conditions optimales ont ainsi été trouvées: 320 ° C – 2,5 MPa et 260 ° C – 2,5 MPa. Des expériences électrochimiques macroscopiques et locales ont été ensuite réalisées. Une résistance à la corrosion plus élevée a été détectée pour la condition 320 ° C – 2,5 MPa. Les revêtements étaient alors suffisamment épais pour protéger le substrat et le mécanisme de corrosion était liée au comportement des couches d'hydroxyde et d'oxyde de Zn. Il est a noter que la rugosité du revêtement devra être pour réduire l'amorçage de la corrosion. Pour les revêtements d'aluminium, les paramètres de déposition optimaux ont été trouvés à 400 ° C / 0,65 MPa. Des particules de céramique ont été ajoutées pour densifier le revêtement permettant une réduction de porosité de 8% à 6,4%. Un traitement de surface par laser a été ensuite effectué. Dans ce travail, la puissance du laser s’est révelée insuffisante pour atteindre le point de fusion de l’aluminium, cependant, la dureté des revêtement a pu être modifée. Les résultats ont montré une augmentation de la microdureté des revêtements de 5% avec l'ajout de particules céramiques tandis qu’une réduction de dureté de 39% et 35% a été mesurée sur le revêtement en aluminium pur et composite respecitvement. La diminution de dureté lors le traitement au laser a été attribuée au recuit de surface, à la libération de contraintes internes et à une possible recristallisation locale. Enfin, les caractérisations électrochimiques ont montré une résistance à la corrosion plus élevée pour les revêtements composites céramiques que l'aluminium pur et les revêtements traités au laser
Anticorrosion coatings of Zinc and Aluminium were developed by high pressure and low-pressure Cold Spray techniques, respectively. For Zinc coatings, the dependence of spraying temperature on thickness has been analyzed and the critical temperature of deposition was found at 230 oC. For lower temperatures, the coating was considerably thinner. Dependence of thickness on pressure variation 2 MPa, 2,5 MPa and 3 MPa at constant temperature 290 oC has shown the highest thickness value at 2 MPa. It was confirmed that the coating thickness tends to decrease with the pressure rise. The powder feeding rate as well as the spraying distance were also considered to influence the thickness. The optimal conditions were found for 3ps and 30 mm, respectively. Finally, the gas temperature and pressure were optimized by a Doehlert uniform shell design. Their influences on the zinc coating quality were discussed in terms of microstructure, porosity, thickness, and corrosion resistance. A maximum porosity of 4.2% was reached with the highest pressure and with a moderate temperature (260 °C < T < 300 °C). These conditions promoted erosion of the substrate and a lower accommodation of particles at the impact. Thicker coatings were obtained at higher temperatures because of better particle straining. Two optimal conditions were then identified: 320 °C–2.5 MPa and 260 °C–2.5 MPa. Macroscopic and local electrochemical experiments were performed. Higher corrosion resistance was detected for the condition 320 °C–2.5 MPa. Coatings were enough thick to protect the substrate and the corrosion mechanism was driven by the classical Zn hydroxide and oxide layers. Note that the coating roughness may be optimized later to reduce the corrosion initiation. For aluminum coatings deposited by a low-pressure cold spray method, the optimal spraying parameters according to deposition efficiency were found at 400 °C /0.65 MPa. Ceramic particles were added to densify the coating and allowed to reduce porosity from 8% to 6.4%. Instead of ceramic particle addition, laser surface treatment was performed after coating design. Laser power was not enough high to reach the surface melting, however, the coating microhardness was modified. Results showed a microhardness increase of coatings of 5% with the addition of hard particles whereas the microhardness decreased after the post-heat treatment (pure aluminum coating reduction of 39% and for composite coating 35%). The hardness reduction during the laser treatment was attributed to surface annealing and the release of internal stresses and possible recrystallization with the subsequent grain growth. Finally, the results of the electrochemical investigations showed higher corrosion resistance of ceramic composite coatings than both pure aluminum and laser-treated coatings
6

Masiagutova, Elina. "Étude de la génération des topographies de surfaces latérales issues du procédé LPBF pour un alliage d’aluminium AlSi10Mg." Thesis, Lyon, 2022. http://www.theses.fr/2022LYSEE002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le cadre de ce travail, la génération des surfaces produites par le procédé de fusion laser sur lit de poudre LPBF a été étudiée. Le LPBF est un procédé de fabrication additive qui peut conduire à de nouvelles opportunités (fabrication de structures complexes avec canaux internes, structures lattices). Ce procédé attire donc une attention considérable en particulier dans l'industrie aéronautique. Une étude de l’influence des paramètres primaires du procédé LPBF sur la génération des surfaces a été réalisée. Au cours de cette étude, la relation entre la rugosité des surfaces supérieures et latérales et la densité du matériau a été établie. Cela a permis de déterminer la première fenêtre de paramètres optimaux.Une analyse de la dispersion de la rugosité et la reproductibilité du procédé ont ensuite été réalisées. Cette analyse a révélé une importante dispersion de la rugosité, notamment d'une face à l'autre. En conséquence, des recommandations sur les mesures de surface ont été proposées.L'effet de différents paramètres secondaires est également étudié afin de mieux comprendre la génération de la surface latérale et de l'optimiser. Cette étude a montré que les compensations et les réglages de contour sont des paramètres clés qui peuvent contribuent à la réduction de la rugosité des surfaces latérales. Sur la base des résultats de ces études, la rugosité a pu être diminuée d’un Sa de 40 µm à un Sa de 10 μm.Enfin, cette thèse présente une nouvelle approche de modélisation de génération des topographies des surfaces latérales. L’approche est basée sur la géométrie du cordon (rayons de courbure). Elle permet de prendre en compte la position des cordons et des couches et prédit la rugosité pour différentes stratégies de lasage et paramètres de compensation
In the current study, surface generation during additive manufacturing (AM), especially the laser powder bed fusion (LPBF) process was studied. LPBF is a progressive process that can lead to new opportunities, such as applications that require complex structures (internal channels or lightweight lattice structures). It has therefore attracted considerable attention, which has led to research and development in many industries, particularly in the aerospace industry.A surface generation study to optimize surface roughness and material density by examining the influence of the primary LPBF process parameters was therefore performed. During this study, the relationship between the roughness of the top and side surfaces and the density of the material was established. This made it possible to determine the first window of optimal parameters.An analysis of the roughness dispersion and process reproducibility were then carried out. This analysis revealed a significant roughness dispersion, especially from one side to the other. As a result, recommendations on surface measurements have been proposed.The effect of different process options (secondary parameters) are also studied in order to better understand the generation of the side surface and optimize it. This study showed that compensations and contour settings are key parameters that can help reduce the side surface roughness. Indeed, the geometric positioning of the different weld tracks is an important issue that must be addressed to reduce surface roughness. Based on the results of this study, it is possible to reduce the average surface roughness Sa from 40 to 10 μm.Finally, this thesis presents a new approach to modeling side surfaces roughness (at 0°). The approach is based on the weld track geometry (radii of curvature). It allows to take into account the weld tracks and layers position in relation to each other and thus to predict the roughness for different scanning strategies, compensation parameters
7

Jeng, Jiun-Fu, and 鄭竣夫. "Optimization of ceramic grinding the surface roughness." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/95664049138441506559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
建國科技大學
機械工程系暨製造科技研究所
102
This study is based on diamond grinding rods on the degree of purity of 99.7% alumina (Al_2 O_3) ceramic processing, and with response surface method to find the optimal parameters. Grinding of the surface roughness experiment: Selected the spindle speed、feed rate、cutting depth of three experimental factors, know shaft speed is 13121rpm、feed rate is 33 mm / min、cut depth is 0.020mm can obtained the minimum reaction value(arithmetical mean deviation) 0.359μm, actual milling compared with simulation, the error value is 7.43%.
8

CHAO, CHIH-CHIEH, and 趙致傑. "Roughness Optimization of CO2 Laser Removing Rust and Modal Analysis." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/5p6x5d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立聯合大學
機械工程學系碩士班
105
This study aims to investigate the roughness of carbon steel through CO2 laser removing. In order to reduce experimental cost and time, using the Taguchi method to optimize the parameters and also using the signal-to-noise with analysis of variance to find the important factors and the best combination of parameters which affect the surface roughness. The control factors are: (A) laser power, (B) processing speed, (C) focal distance, and (D) carving step. Each control factors has three levels. The results show that the optimal combination of laser removing is (A3B1C2D1). The control factors affect the processing quality are A>D>C>B. Furthermore, this study also discusses the vibration of carbon dioxide laser machine by the finite element analysis (FEA) and also using the laser vibration meters to measure the vibration when using the CO2 laser machine. The results show that the practical measurements aren’t the same with the theoretical values. Therefore, it doesn’t cause the resonance when using the CO2 laser machine.
9

Chen, Cheng-Yang, and 陳正陽. "Optimization Study of Ultrasonic Horn to Ceramic Plates Surface Roughness." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/87920412992573268657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立中興大學
精密工程學系所
101
This thesis aims to explore the ultrasonic horn processing parameters effect on the hole wall surface roughness of ceramic plates. The finite element analysis (FEA) method was used to simulate natural frequencies of various plates and horns. Experimental parameters including feed rate, feed flute, ultrasonic power were tested for the optimal result. The surface roughness of hole wall surface was measured by a laser displacement instrument. Stainless steel horn with natural frequency in axial vibration mode was 21.4 KHz from the FEA simulation. The experimental measurement showed that the stainless steel horn is 21.913 KHz. There is only 2.3% difference between the simulation and experiment. The experiment used the horn diameter ψ1000 μm to drill hole and examined the optimal parameter for wall surface roughness. The achieved wall surface roughness is Ra 1.49μm when using feed rate 10 mm/min, feed flute 0.1/mm, and ultrasonic power 99%. This study is practical for ultrasonic horn processing to drill holes on plates.
10

Lin, Chi-Chen, and 林豈臣. "Surface Roughness Prediction and Cutting Parameter Optimization in Milling Process." Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5311038%22.&searchmode=basic.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立中興大學
機械工程學系所
107
In this study, the spindle and vise vibrations as well as the spindle current were measured synchronously during the process of milling Inconel 718. The surface roughness (represented by Ra) of workpiece was investigated by determining the correlation among the Ra, the signals of vibration, the cutting parameters, and the current signals, under the different combinations of cutting parameters. The prediction models of workpiece surface roughness were built through the Elman neural network. In the experiment, the features of signals were extracted through the Empirical Mode Decomposition (EMD), envelope analysis, fast Fourier transform(FFT), and the determination of root-mean-square, kurtosis, skewness, and multiscale entropy. The Pearson correlation analysis was utilized to select the features that have high correlation with the Ra value. The Elman neural network model is then trained by the selected features and employed for predicting the workpiece surface roughness. The surface roughness prediction model was employed to optimize the cutting parameters according to the constraints. In this study, the feed rate is maximized under the constraints of certain Ra values in the optimization process. The optimal combination of cutting parameters were obtained through the process of genetic algorithm and the particle swarm algorithm. The optimized cutting parameters were validated by the experiment result. The result of using different signal features and different optimization algorithms are also compared and discussed.

Частини книг з теми "Roughness optimization":

1

Amith Kumar, G., and T. Jagadeesha. "Optimization of Tool Wear and Surface Roughness of Hybrid Ceramic Tools." In Advanced Engineering Optimization Through Intelligent Techniques, 699–705. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8196-6_61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sarkar, Subhasish, Rishav Kumar Baranwal, Rajat Nandi, Maharshi Ghosh Dastidar, Jhumpa De, and Gautam Majumdar. "Parametric Optimization of Surface Roughness of Electroless Ni-P Coating." In Lecture Notes on Multidisciplinary Industrial Engineering, 197–207. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4550-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rajamani, D., E. Balasubramanian, and M. Siva Kumar. "Enhancing the Surface Roughness Characteristics of Selective Inhibition Sintered HDPE Parts." In Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems, 229–43. First edition. | Boca Raton : CRC Press, 2020. | Series:: CRC Press, 2020. http://dx.doi.org/10.1201/9781003081166-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khachane, Ashish, and Vijaykumar Jatti. "Optimization of Surface Roughness in Turning Process by Using Jaya Algorithm." In Techno-Societal 2018, 143–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16962-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Saini, Surendra K., Avanish K. Dubey, and B. N. Upadhyay. "Optimization of Surface Roughness of Laser Trepanned Hole in ZTA Plate." In Lecture Notes in Mechanical Engineering, 61–67. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0550-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kurkute, Vijay, and Sandip Chavan. "Modeling and Pareto Optimization of Burnishing Process for Surface Roughness and Microhardness." In Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems, 193–210. First edition. | Boca Raton : CRC Press, 2020. | Series:: CRC Press, 2020. http://dx.doi.org/10.1201/9781003081166-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Banker, Vaishal J., Jitendra M. Mistry, and Mihir H. Patel. "Experimental Investigation of Cutting Parameters on Surface Roughness in Hard Turning of AISI 4340 Alloy Steel." In Advanced Engineering Optimization Through Intelligent Techniques, 727–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8196-6_64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mondal, Subhas Chandra, and Prosun Mandal. "An Application of Particle Swarm Optimization Technique for Optimization of Surface Roughness in Centerless Grinding Operation." In ICoRD’15 – Research into Design Across Boundaries Volume 2, 687–97. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2229-3_59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vossen, Georg, Jens Schüttler, and Markus Nießen. "Optimization of Partial Differential Equations for Minimizing the Roughness of Laser Cutting Surfaces." In Recent Advances in Optimization and its Applications in Engineering, 521–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12598-0_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ahmad, Nooraziah, and Tiagrajah V. Janahiraman. "Modelling and Prediction of Surface Roughness and Power Consumption Using Parallel Extreme Learning Machine Based Particle Swarm Optimization." In Proceedings in Adaptation, Learning and Optimization, 321–29. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14066-7_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Roughness optimization":

1

Farshad, Fred F., and Herman H. Rieke. "Gas Well Optimization: A Surface Roughness Approach." In CIPC/SPE Gas Technology Symposium 2008 Joint Conference. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/114486-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stonyte, Dominyka, Vytautas Jukna, Simas Butkus, and Domas Paipulas. "Surface roughness optimization during femtosecond UV laser ablation." In Fiber Lasers and Glass Photonics: Materials through Applications III, edited by Stefano Taccheo, Maurizio Ferrari, and Angela B. Seddon. SPIE, 2022. http://dx.doi.org/10.1117/12.2621036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jana, Bhaskara Rao, and J. Beatrice Seventline. "Identification of surface roughness parameters using wavelet transforms." In 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO). IEEE, 2015. http://dx.doi.org/10.1109/eesco.2015.7253777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lejon, Marcus, Niklas Andersson, Tomas Grönstedt, Lars Ellbrant, and Hans Mårtensson. "Optimization of Robust Transonic Compressor Blades." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Surface degradation in an axial compressor during its lifetime can have a considerable adverse effect on its performance. The present study investigates how the optimized design of compressor blades in a single compressor stage is affected by considering a high level of surface roughness on a level representative of a long period of in-service use. It is shown that including surface roughness in the optimization process is of relatively little importance, however, matching of compressor stages is shown to require consideration as the rotational speed must be increased to reach the design point as surface quality decrease. An increased surface roughness in itself is shown to have a large effect on performance. Two optimization approaches are compared. The first approach considers the compressor blades to be hydraulically smooth. The designs obtained from this approach are subsequently degraded by increasing the level of surface roughness. The compressor blades from the first approach are compared to designs obtained from a second optimization approach, which considers a high level of surface roughness from the outset. The degraded compressor stages from the first approach are shown to be among the best performing designs in terms of polytropic efficiency and stability when compared to designs obtained with the second approach.
5

Aslani, Kyriaki-Evangelia, Foteini Vakouftsi, John D. Kechagias, and Nikos E. Mastorakis. "Surface Roughness Optimization of Poly-Jet 3D Printing Using Grey Taguchi Method." In 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). IEEE, 2019. http://dx.doi.org/10.1109/iccairo47923.2019.00041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Le Tiec, Remi, Shimon Levi, Angela Kravtsov, Olga Novak, Cecilia Dupre, Cyril Vannuffel, Tristan Dewolf, Stephanie Garcia, Quentin Wilmart, and Jonathan Faugier-Tovar. "Advanced roughness characterization for 300mm Si photonics patterning and optimization." In Smart Photonic and Optoelectronic Integrated Circuits XXIII, edited by Sailing He and Laurent Vivien. SPIE, 2021. http://dx.doi.org/10.1117/12.2578550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mack, Chris A., and Benjamin D. Bunday. "CD-SEM algorithm optimization for line roughness metrology (Conference Presentation)." In Metrology, Inspection, and Process Control for Microlithography XXXII, edited by Ofer Adan and Vladimir A. Ukraintsev. SPIE, 2018. http://dx.doi.org/10.1117/12.2297426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lee, Benjamin C., and David Brooks. "Roughness of microarchitectural design topologies and its implications for optimization." In 2008 IEEE 14th International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2008. http://dx.doi.org/10.1109/hpca.2008.4658643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Layek, Apurba, Swapan Paruya, Samarjit Kar, and Suchismita Roy. "Performance Evaluation of Solar Air Heater Having Chamfered Rib Groove Roughness on Absorber Plate." In INTERNATIONAL CONFERENCE ON MODELING, OPTIMIZATION, AND COMPUTING (ICMOS 20110). AIP, 2010. http://dx.doi.org/10.1063/1.3516316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Xiusheng, Chengrui Zhang, Riliang Liu, and Hongbo Lan. "Study on the Surface Roughness and Surface Shape Simulation Based on STEP-NC Turning." In 2008 International Workshop on Modelling, Simulation and Optimization (WMSO). IEEE, 2008. http://dx.doi.org/10.1109/wmso.2008.75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Roughness optimization":

1

Rahman, Shahedur, Rodrigo Salgado, Monica Prezzi, and Peter J. Becker. Improvement of Stiffness and Strength of Backfill Soils Through Optimization of Compaction Procedures and Specifications. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vibration compaction is the most effective way of compacting coarse-grained materials. The effects of vibration frequency and amplitude on the compaction density of different backfill materials commonly used by INDOT (No. 4 natural sand, No. 24 stone sand, and No. 5, No. 8, No. 43 aggregates) were studied in this research. The test materials were characterized based on the particle sizes and morphology parameters using digital image analysis technique. Small-scale laboratory compaction tests were carried out with variable frequency and amplitude of vibrations using vibratory hammer and vibratory table. The results show an increase in density with the increase in amplitude and frequency of vibration. However, the increase in density with the increase in amplitude of vibration is more pronounced for the coarse aggregates than for the sands. A comparison of the maximum dry densities of different test materials shows that the dry densities obtained after compaction using the vibratory hammer are greater than those obtained after compaction using the vibratory table when both tools were used at the highest amplitude and frequency of vibration available. Large-scale vibratory roller compaction tests were performed in the field for No. 30 backfill soil to observe the effect of vibration frequency and number of passes on the compaction density. Accelerometer sensors were attached to the roller drum (Caterpillar, model CS56B) to measure the frequency of vibration for the two different vibration settings available to the roller. For this roller and soil tested, the results show that the higher vibration setting is more effective. Direct shear tests and direct interface shear tests were performed to study the impact of particle characteristics of the coarse-grained backfill materials on interface shear resistance. The more angular the particles, the greater the shear resistance measured in the direct shear tests. A unique relationship was found between the normalized surface roughness and the ratio of critical-state interface friction angle between sand-gravel mixture with steel to the internal critical-state friction angle of the sand-gravel mixture.
2

Al-Qadi, Imad, Egemen Okte, Aravind Ramakrishnan, Qingwen Zhou, and Watheq Sayeh. Truck Platooning on Flexible Pavements in Illinois. Illinois Center for Transportation, May 2021. http://dx.doi.org/10.36501/0197-9191/21-010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Truck platoons have many benefits over traditional truck mobility. Truck platoons have the potential to improve safety and reduce fuel consumption between 5% and 15%, based on platoon configuration. In Illinois, trucks carry more than 50% of freight tonnage and constitute 25% of the traffic on interstates. Therefore, expected fuel savings would be significant for trucks. Deployment of truck platoons within interstate highways may have a direct effect on flexible pavement performance, as the time between consecutive axle loads (i.e., resting time) is expected to decrease significantly. Moreover, platoons could potentially accelerate pavement damage accumulation due to trucks’ channelized position, decreasing pavement service life and increasing maintenance and rehabilitation costs. The main objective of this project was to quantify the effects of truck platoons on pavements and to provide guidelines to control corresponding potential pavement damage. Finite-element models were utilized to quantify the impact of rest period on pavement damage. Recovered and accumulated strains were predicted by fitting exponential functions to the calculated strain profiles. The results suggested that strain accumulation was negligible at a truck spacing greater that 10 ft. A new methodology to control pavement damage due to truck platoons was introduced. The method optimizes trucks’ lateral positions on the pavements, and an increase in pavement service life could be achieved if all platoons follow this optimization method. Life cycle assessment and life cycle cost analysis were conducted for fully autonomous, human-driven, and mixed-traffic regimes. For example, for an analysis period of 45 years, channelized truck platoons could save life cycle costs and environmental impacts by 28% and 21% compared with human-driven trucks, respectively. Furthermore, optimum truck platoon configuration could reduce life cycle costs and environmental impacts by 48% and 36%, respectively, compared with human-driven trucks. In contrast, channelized traffic could increase pavement roughness, increasing fuel consumption by 15%, even though platooning vehicles still benefit from reduction in air drag forces. Given that truck platoons are expected to be connected only in the first phase, no actions are required by the agency. However, in the second phase when truck platoons are also expected to be autonomous, a protocol for driving trends should be established per the recommendation of this study.

До бібліографії