Добірка наукової літератури з теми "Sahelian band"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sahelian band".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Sahelian band":

1

Delon, C., C. Galy-Lacaux, A. Boone, C. Liousse, D. Serça, M. Adon, B. Diop, et al. "Atmospheric nitrogen budget in Sahelian dry savannas." Atmospheric Chemistry and Physics Discussions 9, no. 3 (June 30, 2009): 14189–233. http://dx.doi.org/10.5194/acpd-9-14189-2009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The atmospheric nitrogen budget depends on emission and deposition fluxes both as reduced and oxidized nitrogen compounds. In this study, a first attempt at estimating the Sahel nitrogen budget for the year 2006 is made, through measurements and simulations at three stations from the IDAF network situated in dry savanna ecosystems. Dry deposition fluxes are estimated from measurements of NO2, HNO3 and NH3 gaseous concentrations, and wet deposition fluxes are calculated from NH4+ and NO3− concentrations in samples of rain. Emission fluxes are estimated including biogenic emission of NO from soils (an Artificial Neural Network module has been inserted into the ISBA-SURFEX surface model), emission of NOx and NH3 from domestic fires and biomass burning, and volatilization of NH3 from animal excreta. This study uses original and unique data from remote and hardly-ever-explored regions. The monthly evolution of oxidized N compounds shows that deposition increases at the beginning of the rainy season because of large emissions of biogenic NO (pulse events). Emission of oxidized compounds is dominated by biogenic emission from soils (domestic fires and biomass burning account for 27% at the most, depending on the station), whereas emission of NH3 is dominated by the process of volatilization. Deposition fluxes are dominated by gaseous dry deposition processes (58% of the total), for both oxidized and reduced compounds. The average deposition flux in dry savanna ecosystems ranges from 8.6 to 10.9 kgN ha−1 yr−1, with 30% attributed to oxidized compounds, and the other 70% attributed to NHx. The average emission flux ranges from 7.8 to 9.7 kgN ha−1 yr−1, dominated by NH3 volatilization (67%) and biogenic emission from soils (24%). The annual budget is then balanced, with emission fluxes on the same order of magnitude as deposition fluxes. When scaled up to the Sahelian region (10° N:20° N, 15° W:10° E), the estimates of total emission range from 3.6 to 4.5 TgN yr−1 and total deposition ranges from 3.9 to 5 TgN yr−1. The N budget gives a net deposition flux ranging from 0.2 to 0.6 TgN yr−1. If scaled up to the global scale (in the tropical band), it is possible to calculate a total budget of oxidized and reduced N compounds for dry savannas, with a global nitrogen deposition flux ranging from 11.1 to 14.1 TgN yr−1, and a global emission flux ranging from 10.1 to 12.5 TgN yr−1. These ecosystems contribute a significant amount (around 12%) to the global nitrogen budget.
2

Frison, P. L., G. Mercier, G. Faye, E. Mougin, P. Hiernaux, C. Lardeux, and J. P. Rudant. "Analysis of L- and C-Band SAR Image Time Series Over a Sahelian Area." IEEE Geoscience and Remote Sensing Letters 10, no. 5 (September 2013): 1016–20. http://dx.doi.org/10.1109/lgrs.2012.2227931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sy, Abdoulaye, Christophe Duroure, Jean-Luc Baray, Yahya Gour, Joël Van Baelen, and Bouya Diop. "Space-Time Variability of the Rainfall over Sahel: Observation of a Latitudinal Sharp Transition of the Statistical Properties." Atmosphere 9, no. 12 (December 7, 2018): 482. http://dx.doi.org/10.3390/atmos9120482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rain statistics of 0–45° N area including equatorial, Sahelian, and mid-latitude regions, are studied using the probability distributions of the duration of rainy and dry events. Long time daily data set from ground measurements and satellite observations of rain fields are used. This technique highlights a sharp latitudinal transition of the statistics between equatorial and all other regions (Sahel, mid-latitude). The probability distribution of the 8° S to 8° N latitude band shows a large-scale organization with a slow decreasing (power law decrease) distributions for the time and space size of rain events. This observation is in agreement with a scaling, or macro turbulent, behavior of the equatorial regions rain fields. For the Sahelian and mid-latitude regions, our observations are clearly not in agreement with this behavior. They show that the largest rain systems have a limited time and space size (well described with a decreasing exponential distribution). For these non-equatorial regions it is possible to define a local characteristic duration and a characteristic horizontal size of the large rain events. These characteristics time and space scales of observed mesoscale convective systems could be a sensible indicator for the detection of the possible trend of rain distribution properties due to anthropogenic influence.
4

Magagi, R. D., Y. H. Kerr, and J. C. Meunier. "Results of combining L- and C-band passive microwave airborne data over the Sahelian area." IEEE Transactions on Geoscience and Remote Sensing 38, no. 4 (July 2000): 1997–2008. http://dx.doi.org/10.1109/36.851781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alcoba, M., M. Gosset, M. Kacou, F. Cazenave, and E. Fontaine. "Characterization of Hydrometeors in Sahelian Convective Systems with an X-Band Radar and Comparison with In Situ Measurements. Part II: A Simple Brightband Method to Infer the Density of Icy Hydrometeors." Journal of Applied Meteorology and Climatology 55, no. 2 (February 2016): 251–63. http://dx.doi.org/10.1175/jamc-d-15-0014.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractA simple scheme that is based on the shape and intensity of the radar bright band is used to infer the density of hydrometeors just above the freezing level in Sahelian mesoscale convective systems (MCS). Four MCS jointly observed by a ground-based X-band radar and by an instrumented aircraft as part of the Megha-Tropiques algorithm-validation campaign during August 2010 in Niamey, Niger, are analyzed. The instrumented aircraft (with a 94-GHz radar and various optical probes on board) provided mass–diameter laws for the particles sampled during the flights. The mass–diameter laws derived from the ground-radar vertical profile of reflectivity (VPR) for each flight are compared with those derived from the airborne measurements. The density laws derived by both methods are consistent and encourage further use of the simple VPR scheme to quantify hydrometeor density laws and their variability for various analyses (microphysical processes and icy-hydrometeor scattering and radiative properties).
6

Rowell, David P., Rory G. J. Fitzpatrick, Lawrence S. Jackson, and Grace Redmond. "Understanding Intermodel Variability in Future Projections of a Sahelian Storm Proxy and Southern Saharan Warming." Journal of Climate 34, no. 2 (January 2021): 509–25. http://dx.doi.org/10.1175/jcli-d-20-0382.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractProjected changes in the intensity of severe rain events over the North African Sahel—falling from large mesoscale convective systems—cannot be directly assessed from global climate models due to their inadequate resolution and parameterization of convection. Instead, the large-scale atmospheric drivers of these storms must be analyzed. Here we study changes in meridional lower-tropospheric temperature gradient across the Sahel (ΔTGrad), which affect storm development via zonal vertical wind shear and Saharan air layer characteristics. Projected changes in ΔTGrad vary substantially among models, adversely affecting planning decisions that need to be resilient to adverse risks, such as increased flooding. This study seeks to understand the causes of these projection uncertainties and finds three key drivers. The first is intermodel variability in remote warming, which has strongest impact on the eastern Sahel, decaying toward the west. Second, and most important, a warming–advection–circulation feedback in a narrow band along the southern Sahara varies in strength between models. Third, variations in southern Saharan evaporative anomalies weakly affect ΔTGrad, although for an outlier model these are sufficiently substantive to reduce warming here to below that of the global mean. Together these uncertain mechanisms lead to uncertain southern Saharan/northern Sahelian warming, causing the bulk of large intermodel variations in ΔTGrad. In the southern Sahel, a local negative feedback limits the contribution to uncertainties in ΔTGrad. This new knowledge of ΔTGrad projection uncertainties provides understanding that can be used, in combination with further research, to constrain projections of severe Sahelian storm activity.
7

Louf, Valentin, Olivier Pujol, and Henri Sauvageot. "The Seasonal and Diurnal Cycles of Refractivity and Anomalous Propagation in the Sahelian Area from Microwave Radiometric Profiling." Journal of Atmospheric and Oceanic Technology 33, no. 10 (October 2016): 2095–112. http://dx.doi.org/10.1175/jtech-d-14-00208.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe Sahelian zone of West Africa is a semiarid area where strong amplitude of the seasonal and diurnal cycles of water vapor and temperature is observed. One year of continuous observation of vertical profiles of water vapor and temperature gathered from Niamey, Niger, with a profiling microwave radiometer is used to analyze the climatology of refractivity and microwave propagation regimes in the low troposphere. Seasonal and diurnal cycles of refractivity and ground-based radar anomalous propagation are emphasized. It is shown that the combined effect of water vapor and temperature vertical gradients is responsible for strong seasonal and diurnal cycles of the ducting propagation regime. Statistics of propagation regimes are given. The probability density functions of the refractivity gradient are found lognormally distributed. Three months of C-band radar data simultaneous with the profiling microwave radiometer observations have also been collected. Relations between the vertical refractivity gradient and the ground-based radar anomalous propagation echoes (APE) are illustrated and discussed. APE spatial distributions are found strongly related to the main features of the orography and topography inside the radar-observed area. Contingency tests show that the probability for APE to be linked to ducting is higher than 95%. In addition, this paper suggests that observing the refractivity vertical profiles from a microwave radiometer profiler located close to a meteorological radar provides information on whether anomalous propagation has to be considered as a potential cause of spurious signal in the measured reflectivity field.
8

Samasse, Kaboro, Niall P. Hanan, Julius Y. Anchang, and Yacouba Diallo. "A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning." Remote Sensing 12, no. 9 (May 1, 2020): 1436. http://dx.doi.org/10.3390/rs12091436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The West African Sahel Cropland map (WASC30) is a new 30-m cropland extent product for the nominal year of 2015. We used the computing resources provided by Google Earth Engine (GEE) to fit and apply Random Forest models for cropland detection in each of 189 grid cells (composed of 100 km2, hence a total of ~1.9 × 106 km2) across five countries of the West African Sahel (Burkina Faso, Mauritania, Mali, Niger, and Senegal). Landsat-8 surface reflectance (Bands 2–7) and vegetation indices (NDVI, EVI, SAVI, and MSAVI), organized to include dry-season and growing-season band reflectances and vegetation indices for the years 2013–2015, were used as predictors. Training data were derived from an independent, high-resolution, visually interpreted sample dataset that classifies sample points across West Africa using a 2-km grid (~380,000 points were used in this study, with 50% used for model training and 50% used for model validation). Analysis of the new cropland dataset indicates a summed cropland area of ~316 × 103 km2 across the 5 countries, primarily in rainfed cropland (309 × 103 km2), with irrigated cropland area (7 × 103 km2) representing 2% of the total cropland area. At regional scale, the cropland dataset has an overall accuracy of 90.1% and a cropland class (rainfed and irrigated) user’s accuracy of 79%. At bioclimatic zones scale, results show that land proportion occupied by rainfed agriculture increases with annual precipitation up to 1000 mm. The Sudanian zone (600–1200 mm) has the highest proportion of land in agriculture (24%), followed by the Sahelian (200–600 mm) and the Guinean (1200 +) zones for 15% and 4%, respectively. The new West African Sahel dataset is made freely available for applications requiring improved cropland area information for agricultural monitoring and food security applications.
9

Cazenave, F., M. Gosset, M. Kacou, M. Alcoba, E. Fontaine, C. Duroure, and B. Dolan. "Characterization of Hydrometeors in Sahelian Convective Systems with an X-Band Radar and Comparison with In Situ Measurements. Part I: Sensitivity of Polarimetric Radar Particle Identification Retrieval and Case Study Evaluation." Journal of Applied Meteorology and Climatology 55, no. 2 (February 2016): 231–49. http://dx.doi.org/10.1175/jamc-d-15-0013.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe particle identification scheme developed by Dolan and Rutledge for X-band polarimetric radar is tested for the first time in Africa and compared with in situ measurements. The data were acquired during the Megha-Tropiques mission algorithm-validation campaign that occurred in Niger in 2010. The radar classification is compared with the in situ observations gathered by an instrumented aircraft for the 13 August 2010 squall-line case. An original approach has been developed for the radar–in situ comparison: it consists of simulating synthetic radar variables from the microphysical-probe information and comparing the two datasets in a common “radar space.” The consistency between the two types of observation is good considering the differences in sampling illustrated in the paper. The time evolution of the hydrometeor types and their relative proportion in the convective and stratiform regions are analyzed. The farther away from the convection one looks, the more aggregation dominates, riming diminishes, and hydrometeors are less dense. Particle identification based on the polarimetric radar will be applied to a 5-yr African dataset in the future.
10

Thouret, V., M. Saunois, A. Minga, A. Mariscal, B. Sauvage, A. Solete, D. Agbangla, et al. "Two years of Ozone radio soundings over Cotonou as part of AMMA: overview." Atmospheric Chemistry and Physics Discussions 9, no. 3 (May 5, 2009): 11221–68. http://dx.doi.org/10.5194/acpd-9-11221-2009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. As part of the African Monsoon Multidisciplinary Analysis (AMMA) program, a total of 98 ozone vertical profiles over Cotonou, Benin, have been measured during a 26 month period (December 2004–January 2007). These regular measurements broadly document the seasonal and inter annual variability of ozone in both the troposphere and the lower stratosphere over West Africa for the first time. This data set is complementary to the MOZAIC observations made from Lagos between 0 and 12 km during the period 1998–2004. Both data sets highlight the unique way in which West Africa is impacted by two biomass burning seasons: in December–February (dry season) due to burning in the Sahelian band and in June–August (wet season) due to burning in southern Africa. High inter annual variabilities between Cotonou and Lagos data sets and within each data set are observed and are found to be a major characteristic of this region. In particular, the dry and wet seasons are discussed in order to set the data of the Special Observing Periods (SOPs) into a climatological context. Compared to other dry and wet seasons, the dry and wet season campaigns took place in rather high ozoneenvironments. During the sampled wet seasons, southern intrusions of biomass burning were particularly frequent with concentrations up to 120 ppbv of ozone in the lower troposphere. An insight into the ozone distribution in the upper troposphere and the lower stratosphere (up to 26 km) is given. The first tropospheric columns of ozone based on in-situ data in this region are assessed. They compare well with satellite products on seasonal and inter annual time-scales, provided that the layer below 850 Pa where the remote instrument is less sensitive to ozone, is removed.

Дисертації з теми "Sahelian band":

1

Audoux, Thomas. "Approches expérimentales pour l’étude et la caractérisation des dépôts humides d’aérosols atmosphériques par les précipitations." Electronic Thesis or Diss., Université Paris Cité, 2022. http://www.theses.fr/2022UNIP7332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le cadre de mon travail de thèse, je me suis intéressé aux aérosols atmosphériques et à leur transfert de l’atmosphère vers les surfaces terrestres par les précipitations. La stratégie générale que j’ai suivie repose sur l’observation des dépôts humides sur différentes échelles de temps, interannuelle d’une part et intraévènementielle de l’autre. Elle repose aussi sur leur observation dans des environnements marqués en termes de charge et de composition en aérosols, mais aussi de dynamiques atmosphériques et de précipitations. Le fait de combiner des mesures à la fois sur la composition de l’atmosphère et sur la composition des dépôts humides permet d’identifier la nature des dépôts (intensité, composition, source et provenance) et d’expliquer les phénomènes impliqués dans les dépôts. Cela passe par la documentation complète de différents paramètres (aérosols, dynamique, pluie, dépôt) sur les mêmes périodes de temps, ce qui est néanmoins complexe à mettre en oeuvre. Les deux axes de mon travail portent sur des questions distinctes et complémentaires de l’étude des dépôts humides.Le premier axe s’est porté sur les dépôts humides au Sahel, région semi-aride où le lessivage des poussières minérales de l’atmosphère est un processus clé pour contraindre le bilan atmosphérique en masse de ces composés. Dans cette région marquée par la présence de nombreux systèmes convectifs contrôlant les quantités de précipitations annuelles, la question sur les liens entre dynamiques atmosphériques et dépôts s’est alors posée. La stratégie d’observation long-terme mis en place sur les stations au Sahel dans le cadre du réseau INDAAF, avec une synergie autour de mesures météorologiques, de concentrations et de dépôts d’aérosols, a permis de constituer une base de données très complète. À partir de cette base de données pluriannuelle aux stations de Banizoumbou (Niger) et de Cinzana (Mali) de 2007 et 2015, l’identification de phénomène de cold pools (gouttes froides) à partir de données météorologiques de surface et leur lien avec les retombées de poussières minérales sont discutés. Les ratios de lessivage ont été calculés pour les évènements associés aux cold pools et varient sur plusieurs ordres de grandeur en fonction de l’effet de dilution qui diffère selon les régimes de concentrations atmosphériques en poussière minérale. Les évènements les plus convectifs associés à des concentrations élevées présentent une gamme de valeurs moins dispersée (319 – 766) qui ne dépend pas de la quantité de précipitation.Le second axe s’est focalisé sur l’étude intraévènementielle des dépôts en milieu urbain pour diverses situations de pluie, de concentration et composition en aérosols. Que peut nous apprendre le suivi des dépôts au cours d’un évènement de pluie ? Pour y répondre, j’ai tout d’abord participé au développement d’un collecteur me permettant de collecter les dépôts humides en fractions successives au cours de la pluie. Complétées par un ensemble de mesures colocalisées sur les aérosols et les dynamiques atmosphériques acquises sur le terrain pour 8 cas d’étude, les analyses chimiques des dépôts dissouts et particulaires m’ont permis de discuter à la fois la provenance des aérosols, mais aussi les processus mis en jeu. J’ai pu quantifier la décroissance des concentrations, même de composés traces, dans les dépôts au cours de la pluie. J’ai également pu documenter l’évolution de la solubilité pour les espèces chimiques des dépôts et discuter des poids relatifs des mécanismes de lessivage dans- (rainout) et sous- (washout) le nuage. La variabilité des dépôts observée au cours d’un évènement est au final aussi importante que celle observée entre évènements de pluie
In the work conducted for my thesis, I studied atmospheric aerosols and their transfer from the atmosphere to the surface by precipitation. The main strategy I followed is based on the observation of wet deposition on different time scales, interannual on one hand and intra-event on the other. It also relies on their observation in environments marked in terms of aerosol load and composition, but also in terms of atmospheric dynamics and precipitation. Combining measurements on both atmospheric and wet deposition compositions allows to identify the characteristics of the deposition (intensity, composition, source and origin) and to explain the phenomena involved in the deposition. This requires the complete documentation of different parameters (aerosols, dynamics, rainfall, deposition) over the same periods of time, which is nevertheless complex to implement. The two axes of my work deal with distinct and complementary issues in the study of wet deposition.The first focus has been on wet deposition in the Sahel, a semi-arid region where the scavenging of mineral dust from the atmosphere is a key process to constrain the atmospheric mass balance of these compounds. In this region marked by the presence of numerous convective systems controlling annual precipitation amounts, the question of the links between atmospheric dynamics and deposition was addressed. The long-term observation strategy implemented at stations in the Sahel as part of the INDAAF network, with a synergy of meteorological measurements, aerosol concentrations and deposition, has enabled the creation of a very complete database. From this multi-year dataset at Banizoumbou (Niger) and Cinzana (Mali) stations from 2007 and 2015, the identification of cold pools phenomena from surface meteorological data and their link with mineral dust deposition are discussed. Washout ratios have been calculated for cold pool events and vary over several orders of magnitude depending on the dilution effect which differs according to the levels of atmospheric aerosol concentrations. The most convective events associated with high concentrations have a less scattered range of values (319 – 766) that does not depend on the amount of precipitation.The second axis focused on the intra-event study of wet deposition in urban areas for various rainfall situations, aerosol concentration and composition. The question is: what can we learn from the monitoring of deposition during a rain event? To answer this, I first participated in the development of a collector allowing me to collect wet deposition in successive fractions during the rain event. Complemented by a set of co-located measurements on aerosols and atmospheric dynamics acquired in the field for 8 study cases, the chemical analyses of dissolved and particulate deposition allowed me to discuss both the origin of the aerosols and processes involved. I was able to quantify the decay of concentrations, even of trace compounds, in the deposits during rainfall. I was also able to document the evolution of solubility for chemical species in the deposition and discuss the relative contribution of the rainout and washout mechanisms. The variability of deposition observed during an event is actually as significant as that observed between rain events

До бібліографії