Добірка наукової літератури з теми "Scanner-laser 3D"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Scanner-laser 3D".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Scanner-laser 3D":

1

Riczu, Péter, János Tamás, Gábor Nagy, Attila Nagy, Tünde Fórián, and Tamás Jancsó. "Horticulture applicability of 3D laser scanner." Acta Agraria Debreceniensis, no. 46 (May 16, 2012): 75–78. http://dx.doi.org/10.34101/actaagrar/46/2412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As a result of the technological development, remote sensing instruments and methods have become widespread in all segments of life (from precision agriculture through architecture to medicine). Among the innovative development of remote sensing instruments the 3D laser scanner is overriding importance. The horticulture applicability of terrestrial laser scanning technique is innovation in the precision agriculture, because it could be determine the structure of trees and branches, the canopy extension, which can help to recognize some biophysical parameters. The examination was carried out with Leica ScanStation C10 terrestrial laser scanner in the Study and Regional Research Farm of the University of Debrecen near Pallag. In this article I present the measuring principle, the parameters and horticulture applicability of the terrestrial laser scanner.
2

Zeidan, Zaki M., Ashraf A. Beshr, and Ashraf G. Shehata. "Study the precision of creating 3D structure modeling form terrestrial laser scanner observations." Journal of Applied Geodesy 12, no. 4 (October 25, 2018): 303–9. http://dx.doi.org/10.1515/jag-2018-0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Laser scanner has become widely used nowadays for several applications in civil engineering. An advantage of laser scanner as compared to other geodetic instruments is its capability of collecting hundreds or even thousands of point per second. Terrestrial laser scanner allows acquiring easy and fast complex geometric data from building, machines, objects, etc. Several experimental and field tests are required to investigate the quality and accuracy of scanner points cloud and the 3D geometric models derived from laser scanner. So this paper investigates the precision of creation three dimensional structural model resulted from terrestrial laser scanner observations. The paper also presented the ability to create 3D model by structural faces depending on the plane equation for each face resulted from coordinates of several observed points cover this face using reflector less total station observations. Precision comparison for the quality of 3D models created from laser scanner observations and structure faces is also presented.The results of the practical measurements, calculations and analysis of results are presented.
3

Chen, Kai, Kai Zhan, Xiaocong Yang, and Da Zhang. "Accuracy Improvement Method of a 3D Laser Scanner Based on the D-H Model." Shock and Vibration 2021 (May 25, 2021): 1–9. http://dx.doi.org/10.1155/2021/9965904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A three-dimensional (3D) laser scanner with characteristics such as acquiring huge point cloud data and noncontact measurement has revolutionized the surveying and mapping industry. Nonetheless, how to guarantee the 3D laser scanner precision remains the critical factor that determines the excellence of 3D laser scanners. Hence, this study proposes a 3D laser scanner error analysis and calibration-method-based D-H model, applies the D-H model method in the robot area to the 3D laser scanner coordinate for calculating the point cloud data and creatively derive the error model, comprehensively analyzes six external parameters and seven inner structure parameters that affect point cloud coordinator error, and designs two calibration platforms for inner structure parameters. To validate the proposed method, we used SOKKIA total station and BLSS-PE 3D laser scanner to attain the center coordinate of the testing target sphere and then evaluate the external parameters and modify the point coordinate. Based on modifying the point coordinate, comparing the point coordinate that considered the inner structure parameters with the point coordinate that did not consider the inner structure parameters, the experiment revealed that the BLSS-PE 3D laser scanner’s precision enhanced after considering the inner structure parameters, demonstrating that the error analysis and calibration method was correct and feasible.
4

Palomer, Albert, Pere Ridao, Dina Youakim, David Ribas, Josep Forest, and Yvan Petillot. "3D Laser Scanner for Underwater Manipulation." Sensors 18, no. 4 (April 4, 2018): 1086. http://dx.doi.org/10.3390/s18041086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rioux, M., and T. Bird. "White laser, synced scan (3D scanner)." IEEE Computer Graphics and Applications 13, no. 3 (May 1993): 15–17. http://dx.doi.org/10.1109/38.210485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Syed Abdullah, Sharifah Lailaton Khadijah, and Siti Kamisah Mohd Yusof. "Generating a 3D Model Parking Lot by using Terrestrial Laser Scanner." Jurnal Kejuruteraan 34, no. 3 (May 30, 2022): 411–19. http://dx.doi.org/10.17576/jkukm-2022-34(3)-08.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nowadays, the usages of Terrestrial Laser Scanner (TLS) have been practise widely use in the mapping and modelling of varies field. This is because of the advantages that TLS provided; such as speed in data collecting, high accuracy as well as saving time. One of the main technologies of TLS is by producing a 3 Dimension (3D) that can be analysed from a surface of an object and form of the real world. TLS is practically use in Civil Engineering or Geographic Information System (GIS) for objects modelling and reviewing tunnels volume whereas for Archaeology it be used by maintaining the details of cultural heritage. However, TLS has not been analysed in 3D for the parking area. The main purpose of this study took place is to prove the ability of TLS in producing and analysing into 3D modelling for this particular area. The study has been done at the parking lot of the Department of Survey and Mapping (JUPEM), Kuala Lumpur. The methods that been used for this study are by using a 3D Terrestrial Laser scanner (TLS), Leica Scan Station C10, image point cloud registration, 3D modelling, Cyclone software, parametric modelling 3D and Autodesk Revit. From this study, it helps the JUPEM department in producing 3D detailing plan as well as speed up the outcome of retrieving details for an object and can be presented in tangible form without physically going to the particular area or a site. Therefore, with this introduction of 3D modelling technology towards the relevant fields, it can help others in solving problems for internal infrastructure for buildings and structures.
7

Jang, Arum, Young K. Ju, and Min Jae Park. "Structural Stability Evaluation of Existing Buildings by Reverse Engineering with 3D Laser Scanner." Remote Sensing 14, no. 10 (May 11, 2022): 2325. http://dx.doi.org/10.3390/rs14102325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the Fourth Industrial Revolution, research and development of application technologies that combine high-tech technologies have been actively conducted. Building information modeling (BIM) technology using advanced equipment is considered promising for future construction projects. In particular, using a 3D laser scanner, LIDAR is expected to be a solution for future building safety inspections. This work proposes a new method for evaluating building stability using a 3D laser scanner. In this study, an underground parking lot was analyzed using a 3D laser scanner. Further, structural analysis was performed using the finite element method (FEM) by applying the figure and geometry data acquired from the laser scan. This process includes surveying the modeled point cloud data of the scanned building, such as identifying the relative deflection of the floor slab, and the sectional shape and inclination of the column. Consequently, safety diagnosis was performed using the original evaluation criteria. This confirms that it is precise and efficient to use a 3D laser scanner for building stability assessment. This paper presents a digital point cloud-based approach using a 3D laser scanner to evaluate the stability of buildings.
8

Gao, X., M. Li, L. Xing, and Y. Liu. "JOINT CALIBRATION OF 3D LASER SCANNER AND DIGITAL CAMERA BASED ON DLT ALGORITHM." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3 (April 30, 2018): 377–80. http://dx.doi.org/10.5194/isprs-archives-xlii-3-377-2018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.
9

Mezian, c., Bruno Vallet, Bahman Soheilian, and Nicolas Paparoditis. "UNCERTAINTY PROPAGATION FOR TERRESTRIAL MOBILE LASER SCANNER." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (June 9, 2016): 331–35. http://dx.doi.org/10.5194/isprs-archives-xli-b3-331-2016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.
10

Mezian, c., Bruno Vallet, Bahman Soheilian, and Nicolas Paparoditis. "UNCERTAINTY PROPAGATION FOR TERRESTRIAL MOBILE LASER SCANNER." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (June 9, 2016): 331–35. http://dx.doi.org/10.5194/isprsarchives-xli-b3-331-2016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.

Дисертації з теми "Scanner-laser 3D":

1

Liu, Junjie. "3D laser scanner development and analysis." Thesis, Aberystwyth University, 2013. http://hdl.handle.net/2160/b3a1beca-3d92-48bc-945e-2e50b3e7755a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This PhD project is a collaboration between Smart Light Devices, Ltd. in Aberdeen and Aberystwyth University on the development of such 3D laser scanners with an ultimate aim to inspect the underwater oil and gas pipes or structure. At the end of this project, a workable and full functional 3D laser scanner is to be developed. This PhD project puts a particular emphasis on the engineering and implementation of the scanner according to real applications’ requirements. Our 3D laser scanner is based on the principle of triangulation and its high accuracy over a short range scanning. Accurate 3D data can be obtained from a triangle between the scanner, camera lens, laser source, and the object being scanned. Once the distance between the scanner camera lens and laser source (stereo baseline) is known and the laser projection angle can be measured by the goniometer, all the X, Y,Z coordinates of the object surface can be obtained through trigonometry. This 3D laser scanner development involves a lot of issues and tasks including image noise removal, laser peak detection, corner detection, camera calibration and 3D reconstruction. These issues and tasks have been addressed, analysed and improved during the PhD period. Firstly, the Sparse Code Shrinkage (SCS) image de-noise is implemented, since it is one of the most suitable de-noising methods for our laser images with dark background and white laser stripe. Secondly, there are already plenty of methods for corner and laser peak detection, it is necessary to compare and evaluate which is the most suitable for our 3D laser scanner. Thus, comparative studies are carried out and their results are presented in this thesis. Thirdly, our scanner is based on laser triangulation, in this case, laser projection angle α and baseline distance D from the centre of the camera lens to laser source plays a crucial role in 3D reconstruction. However, these two parameters are hard to measure directly, and there are no particular tools designed for this purpose. Thus, a new approach is proposed in this thesis to estimate them which combines camera calibration results with the precise linear stage. Fourthly, it is very expensive to customize an accurate positional pattern for camera calibration, due to budget limit, this pattern is printed by a printer or even painted on a paper or white board which is inaccurate and contains errors in absolute distance and location. An iterative camera calibration method is proposed. It can compensate up to 10% error and the calibration parameters remain stable. Finally, in the underwater applications, the light travel angle is changed from water to air which makes the normal calibration method less accurate. Hence, a new approach is proposed to compensate between the estimate and real distance in 3D reconstruction with normal calibration parameters. Experimental results show the proposed methods reduce the distance error in 3D down to ±0.2mm underwater. Overall, the developed scanning systems have been successfully applied in several real scanning and 3D modelling projects such as mooring chain, underwater pipeline surface and reducer. Positive feedback has been received from these projects, the scanning results satisfy the resolution and accuracy requirements.
2

Preuksakarn, Chakkrit. "Reconstructing plant architecture from 3D laser scanner data." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20116/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les modèles virtuels de plantes sont visuellement de plus en plus réalistes dans les applications infographiques. Cependant, dans le contexte de la biologie et l'agronomie, l'acquisition de modèles précis de plantes réelles reste un problème majeur pour la construction de modèles quantitatifs du développement des plantes.Récemment, des scanners laser 3D permettent d'acquérir des images 3D avec pour chaque pixel une profondeur correspondant à la distance entre le scanner et la surface de l'objet visé. Cependant, une plante est généralement un ensemble important de petites surfaces sur lesquelles les méthodes classiques de reconstruction échouent. Dans cette thèse, nous présentons une méthode pour reconstruire des modèles virtuels de plantes à partir de scans laser. Mesurer des plantes avec un scanner laser produit des données avec différents niveaux de précision. Les scans sont généralement denses sur la surface des branches principales mais recouvrent avec peu de points les branches fines. Le cœur de notre méthode est de créer itérativement un squelette de la structure de la plante en fonction de la densité locale de points. Pour cela, une méthode localement adaptative a été développée qui combine une phase de contraction et un algorithme de suivi de points.Nous présentons également une procédure d'évaluation quantitative pour comparer nos reconstructions avec des structures reconstruites par des experts de plantes réelles. Pour cela, nous explorons d'abord l'utilisation d'une distance d'édition entre arborescence. Finalement, nous formalisons la comparaison sous forme d'un problème d'assignation pour trouver le meilleur appariement entre deux structures et quantifier leurs différences
In the last decade, very realistic rendering of plant architectures have been produced in computer graphics applications. However, in the context of biology and agronomy, acquisition of accurate models of real plants is still a tedious task and a major bottleneck for the construction of quantitative models of plant development. Recently, 3D laser scanners made it possible to acquire 3D images on which each pixel has an associate depth corresponding to the distance between the scanner and the pinpointed surface of the object. Standard geometrical reconstructions fail on plants structures as they usually contain a complex set of discontinuous or branching surfaces distributed in space with varying orientations. In this thesis, we present a method for reconstructing virtual models of plants from laser scanning of real-world vegetation. Measuring plants with laser scanners produces data with different levels of precision. Points set are usually dense on the surface of the main branches, but only sparsely cover thin branches. The core of our method is to iteratively create the skeletal structure of the plant according to local density of point set. This is achieved thanks to a method that locally adapts to the levels of precision of the data by combining a contraction phase and a local point tracking algorithm. In addition, we present a quantitative evaluation procedure to compare our reconstructions against expertised structures of real plants. For this, we first explore the use of an edit distance between tree graphs. Alternatively, we formalize the comparison as an assignment problem to find the best matching between the two structures and quantify their differences
3

Wachten, Christian. "Entwicklung eines Lasertrackersystems mit Galvanometerscanner zur 3D-Positionsbestimmung." Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/994323778/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Azim, Asma. "3D Perception of Outdoor and Dynamic Environment using Laser Scanner." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM070/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Depuis des décennies, les chercheurs essaient de développer des systèmes intelligents pour les véhicules modernes, afin de rendre la conduite plus sûre et plus confortable. Ces systèmes peuvent conduire automatiquement le véhicule ou assister un conducteur en le prévenant et en l'assistant en cas de situations dangereuses. Contrairement aux conducteurs, ces systèmes n'ont pas de contraintes physiques ou psychologiques et font preuve d'une grande robustesse dans des conditions extrêmes. Un composant clé de ces systèmes est la fiabilité de la perception de l'environnement. Pour cela, les capteurs lasers sont très populaires et largement utilisés. Les capteurs laser 2D classiques ont des limites qui sont souvent compensées par l'ajout d'autres capteurs complémentaires comme des caméras ou des radars. Les avancées récentes dans le domaine des capteurs, telles que les capteurs laser 3D qui perçoivent l'environnement avec une grande résolution spatiale, ont montré qu'ils étaient une solution intéressante afin d'éviter l'utilisation de plusieurs capteurs. Bien qu'il y ait des méthodes bien connues pour la perception avec des capteurs laser 2D, les approches qui utilisent des capteurs lasers 3D sont relativement rares dans la littérature. De plus, la plupart d'entre elles utilisent plusieurs capteurs et réduisent le problème de la 3ème dimension en projetant les données 3D sur un plan et utilisent les méthodes classiques de perception 2D. Au contraire de ces approches, ce travail résout le problème en utilisant uniquement un capteur laser 3D et en utilisant les informations spatiales fournies par ce capteur. Notre première contribution est une extension des méthodes génériques de cartographie 3D fondée sur des grilles d'occupations optimisées pour résoudre le problème de cartographie et de localisation simultanée (SLAM en anglais). En utilisant des grilles d'occupations 3D, nous définissons une carte d'élévation pour la segmentation des données laser correspondant au sol. Pour corriger les erreurs de positionnement, nous utilisons une méthode incrémentale d'alignement des données laser. Le résultat forme la base pour le reste de notre travail qui constitue nos contributions les plus significatives. Dans la deuxième partie, nous nous focalisons sur la détection et le suivi des objets mobiles (DATMO en anglais). La deuxième contribution de ce travail est une méthode pour distinguer les objets dynamiques des objets statiques. L'approche proposée utilise une détection fondée sur le mouvement et sur des techniques de regroupement pour identifier les objets mobiles à partir de la grille d'occupations 3D. La méthode n'utilise pas de modèles spécifiques d'objets et permet donc la détection de tout type d'objets mobiles. Enfin, la troisième contribution est une méthode nouvelle pour classer les objets mobiles fondée sur une technique d'apprentissage supervisée. La contribution finale est une méthode pour suivre les objets mobiles en utilisant l'algorithme de Viterbi pour associer les nouvelles observations avec les objets présents dans l'environnement, Dans la troisième partie, l'approche propose est testée sur des jeux de données acquis à partir d'un capteur laser 3D monté sur le toit d'un véhicule qui se déplace dans différents types d'environnement incluant des environnements urbains, des autoroutes et des zones piétonnes. Les résultats obtenus montrent l'intérêt du système intelligent proposé pour la cartographie et la localisation simultanée ainsi que la détection et le suivi d'objets mobiles en environnement extérieur et dynamique en utilisant un capteur laser 3D
With an anticipation to make driving experience safer and more convenient, over the decades, researchers have tried to develop intelligent systems for modern vehicles. The intended systems can either drive automatically or monitor a human driver and assist him in navigation by warning in case of a developing dangerous situation. Contrary to the human drivers, these systems are not constrained by many physical and psychological limitations and therefore prove more robust in extreme conditions. A key component of an intelligent vehicle system is the reliable perception of the environment. Laser range finders have been popular sensors which are widely used in this context. The classical 2D laser scanners have some limitations which are often compensated by the addition of other complementary sensors including cameras and radars. The recent advent of new sensors, such as 3D laser scanners which perceive the environment at a high spatial resolution, has proven to be an interesting addition to the arena. Although there are well-known methods for perception using 2D laser scanners, approaches using a 3D range scanner are relatively rare in literature. Most of those which exist either address the problem partially or augment the system with many other sensors. Surprisingly, many of those rely on reducing the dimensionality of the problem by projecting 3D data to 2D and using the well-established methods for 2D perception. In contrast to these approaches, this work addresses the problem of vehicle perception using a single 3D laser scanner. First contribution of this research is made by the extension of a generic 3D mapping framework based on an optimized occupancy grid representation to solve the problem of simultaneous localization and mapping (SLAM). Using the 3D occupancy grid, we introduce a variance-based elevation map for the segmentation of range measurements corresponding to the ground. To correct the vehicle location from odometry, we use a grid-based incremental scan matching method. The resulting SLAM framework forms a basis for rest of the contributions which constitute the major achievement of this work. After obtaining a good vehicle localization and a reliable map with ground segmentation, we focus on the detection and tracking of moving objects (DATMO). The second contribution of this thesis is the method for discriminating between the dynamic objects and the static environment. The presented approach uses motion-based detection and density-based clustering for segmenting the moving objects from 3D occupancy grid. It does not use object specific models but enables detecting arbitrary traffic participants. Third contribution is an innovative method for layered classification of the detected objects based on supervised learning technique which makes it easier to estimate their position with time. Final contribution is a method for tracking the detected objects by using Viterbi algorithm to associate the new observations with the existing objects in the environment. The proposed framework is verified with the datasets acquired from a laser scanner mounted on top of a vehicle moving in different environments including urban, highway and pedestrian-zone scenarios. The promising results thus obtained show the applicability of the proposed system for simultaneous localization and mapping with detection, classification and tracking of moving objects in dynamic outdoor environments using a single 3D laser scanner
5

Gonçales, Rodrigo. "Dispositivo de varredura laser 3D terrestre e suas aplicações na engenharia, com ênfase em túneis." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/3/3138/tde-10082007-173531/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Novas tecnologias estão sendo desenvolvidas constantemente para coletar informações de superfícies ou de sólidos para diversas finalidades. Alguns métodos clássicos, como a Topografia e a Fotogrametria terrestre, com o passar dos anos, tiveram uma grande evolução. Na Fotogrametria terrestre todo o processo está sendo feito em meio digital. Na topografia, as estações totais automatizaram a medição de ângulos e distâncias. Essa evolução tecnológica fez com que os levantamentos se tornassem cada vez mais rápidos e precisos, aumentando a produtividade. O mais recente nessa evolução é o levantamento através do sistema de varredura a laser (Laser Scanner) 3D. São muitas as aplicações dessa tecnologia, dentre as quais pode-se citar: túneis, levantamento do como construído (as-built), mineração (principalmente subterrânea), arqueologia, levantamento de monumentos para restauração, refinarias e instalações industriais e outras, caracterizadas pela grande complexidade dos elementos envolvidos. A presente dissertação apresenta os conceitos envolvidos em todos os processos, desde a coleta de dados até o produto final. Desenvolve uma metodologia de uso que possa ser útil em diversas áreas, mostra uma aplicação completa na área de túneis, complementada por uma visão geral da área de plantas industriais e procura apresentar testes para quantificar a precisão que se obtém por essa tecnologia.
New technologies are constantly being developed in order to collect information of surfaces or solids for diverse purposes. Some classic methods such as topography and terrestrial photogrammetry have had a great evolution in the past. For example, all the processes of the terrestrial photogrammetry are made in digital way and the Total Stations have automated the measurements of angles and distances. This technical evolution made the surveying faster and accurate, increasing the productivity. However this evolution does not stop for there; in other words, the last technology in the area of topography is the surveying with the system known as Laser Scanner 3D. The Laser Scanner technology 3D has a lot of applications such as: tunnel, as-built, mining (mainly in the underground); archaeology (for restore monuments), refineries, industrial installations, etc., characterized by the great complexity of the involved elements. This work presents concepts involved in all the processes, since from data collection to the final product. It develops a methodology of use that can be applied in several areas, with emphasis in tunnels surveying area and presents some tests to quantization the accuracy.
6

Cacciari, Pedro Pazzoto. "Estudo de um túnel em maciço rochoso fraturado por investigação geológico-geotécnica e análises pelo método dos elementos distintos." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3145/tde-26082015-153054/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
O comportamento geomecânico de túneis em rocha é fortemente influenciado pelas estruturas geológicas (descontinuidades) presentes no maciço. Do ponto de vista geométrico, estas estruturas são caracterizadas por parâmetros que descrevem suas orientações, frequências e comprimentos. Estes parâmetros, na maioria dos casos, são determinados em campanhas de campo, com bússola geológica e trena. Entretanto, limitações de tempo e acesso dificultam a execução destes trabalhos, impossibilitando a obtenção de números elevados de dados, que possibilitam análises estatísticas mais complexas. Para superar estas dificuldades, no presente estudo, o mapeamento das descontinuidades foi realizado em imagens do túnel Monte Seco, pertencente a Estrada de Ferro Vitória Minas (EFVM), obtidas por scanner a laser 3D. Neste mapeamento, tanto a orientação, quanto a posição e o comprimento dos traços das descontinuidades foram determinados com boa precisão, possibilitando a verificação da distribuição da intensidade de fraturamento de diferentes trechos, ao longo do túnel. Utilizando estes trechos diferenciados pela intensidade de fraturamento, foram elaboradas análises estatísticas mais complexas e adequadas (por janelas de amostragem e linhas de varredura) para determinação da orientação, comprimento médio dos traços e espaçamentos médios das famílias de descontinuidades. Com os parâmetros geométricos das descontinuidades, o modelo probabilístico de blocos rígidos foi construído, utilizando o software 3DEC. Assim, os parâmetros mecânicos das descontinuidades foram estimados utilizando correlações empíricas (a partir de descrições do maciço rochoso realizadas em mapeamentos geológicos por dentro do túnel), além de alguns ensaios de campo e laboratório. As análises com este modelo foram executadas para verificação da queda de blocos, e comparadas com as seções atuais do túnel. Os resultados indicaram que diferentes critérios de ruptura devem ser utilizados para diferentes tipos de descontinuidades (fraturas e foliação), e evidenciaram a importância de estimativas mais coerentes de parâmetros geométricos das descontinuidades nos resultados finais das análises.
The geomechanical behaviour of rock tunnels is strongly influenced by geological structures in the rock mass. Rock discontinuities are geometrically characterized by parameters that describes their orientations, frequency and lengths. In most cases, these parameters are determined in field inspections, using geological compass and measuring tapes. However, timeframes and access limitation hinder this procedure, making it impossible to obtain large amount of data that allow complex statistical analysis. To overcome these difficulties, here the discontinuity mapping was performed using images of the Monte Seco tunnel, obtained by 3D terrestrial laser scanning. In this case, the orientation, position and trace length of each discontinuity was determined with precision, allowing the verification of the fracture intensity distribution in different parts of the tunnel. Using these parts (differentiated by its fracture intensities), statistical analyses were performed, using sampling windows and scanlines, in order to determine the orientation mean trace length and spacing of discontinuity sets. Once the geometrical parameters of discontinuity sets were determined, a probabilistic model of rigid blocks was generated, using the 3DEC software. Thus, the mechanical parameters of discontinuity sets were estimated by empirical correlations (performed using descriptions of the rock mass obtained during geological inspections in the tunnel), and some laboratory and field tests. The analyses with this model were performed to verify the instability of blocks (block falls), and compared with actual cross sections of the tunnel. The results indicate that different failure criteria must be used for different discontinuity types (fractures and foliation), and revealed the importance of consistent estimated of geometrical parameters of discontinuity sets.
7

Střižík, Jakub. "Vizualizace dat z 3D laserového skeneru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Master thesis deals with the creation of the data visualization measured by 3D laser scanner using the Point Cloud method. Measured data were parameterized after loading for use in programming environment of Microsoft Visual Studio 2010 and in platform XNA. Individual data points forms the center of defined cubes which are displayed and create a scene where is possible to move through a user input in the form of a keyboard or mouse. Created algorithms were analyzed to determine the total running speed of the program, the individual as well as critical sections. The algorithms were optimized to a higher running speed of the program on the basis of analyzed data. Optimization was focused on the selection of retrieved data and on the method of their saving within the program environment. The next optimization process was based on the using of the other method for displaying of measured data points. Individual data points were displayed in form of square 2D texture replacing the cube. This square is rotating according to move of observer. Designed algorithm optimization leads to faster running of the program.
8

Schilling, Anita. "Automatic Retrieval of Skeletal Structures of Trees from Terrestrial Laser Scanner Data." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Research on forest ecosystems receives high attention, especially nowadays with regard to sustainable management of renewable resources and the climate change. In particular, accurate information on the 3D structure of a tree is important for forest science and bioclimatology, but also in the scope of commercial applications. Conventional methods to measure geometric plant features are labor- and time-intensive. For detailed analysis, trees have to be cut down, which is often undesirable. Here, Terrestrial Laser Scanning (TLS) provides a particularly attractive tool because of its contactless measurement technique. The object geometry is reproduced as a 3D point cloud. The objective of this thesis is the automatic retrieval of the spatial structure of trees from TLS data. We focus on forest scenes with comparably high stand density and with many occlusions resulting from it. The varying level of detail of TLS data poses a big challenge. We present two fully automatic methods to obtain skeletal structures from scanned trees that have complementary properties. First, we explain a method that retrieves the entire tree skeleton from 3D data of co-registered scans. The branching structure is obtained from a voxel space representation by searching paths from branch tips to the trunk. The trunk is determined in advance from the 3D points. The skeleton of a tree is generated as a 3D line graph. Besides 3D coordinates and range, a scan provides 2D indices from the intensity image for each measurement. This is exploited in the second method that processes individual scans. Furthermore, we introduce a novel concept to manage TLS data that facilitated the researchwork. Initially, the range image is segmented into connected components. We describe a procedure to retrieve the boundary of a component that is capable of tracing inner depth discontinuities. A 2D skeleton is generated from the boundary information and used to decompose the component into sub components. A Principal Curve is computed from the 3D point set that is associated with a sub component. The skeletal structure of a connected component is summarized as a set of polylines. Objective evaluation of the results remains an open problem because the task itself is ill-defined: There exists no clear definition of what the true skeleton should be w.r.t. a given point set. Consequently, we are not able to assess the correctness of the methods quantitatively, but have to rely on visual assessment of results and provide a thorough discussion of the particularities of both methods. We present experiment results of both methods. The first method efficiently retrieves full skeletons of trees, which approximate the branching structure. The level of detail is mainly governed by the voxel space and therefore, smaller branches are reproduced inadequately. The second method retrieves partial skeletons of a tree with high reproduction accuracy. The method is sensitive to noise in the boundary, but the results are very promising. There are plenty of possibilities to enhance the method’s robustness. The combination of the strengths of both presented methods needs to be investigated further and may lead to a robust way to obtain complete tree skeletons from TLS data automatically
Die Erforschung des ÖkosystemsWald spielt gerade heutzutage im Hinblick auf den nachhaltigen Umgang mit nachwachsenden Rohstoffen und den Klimawandel eine große Rolle. Insbesondere die exakte Beschreibung der dreidimensionalen Struktur eines Baumes ist wichtig für die Forstwissenschaften und Bioklimatologie, aber auch im Rahmen kommerzieller Anwendungen. Die konventionellen Methoden um geometrische Pflanzenmerkmale zu messen sind arbeitsintensiv und zeitaufwändig. Für eine genaue Analyse müssen Bäume gefällt werden, was oft unerwünscht ist. Hierbei bietet sich das Terrestrische Laserscanning (TLS) als besonders attraktives Werkzeug aufgrund seines kontaktlosen Messprinzips an. Die Objektgeometrie wird als 3D-Punktwolke wiedergegeben. Basierend darauf ist das Ziel der Arbeit die automatische Bestimmung der räumlichen Baumstruktur aus TLS-Daten. Der Fokus liegt dabei auf Waldszenen mit vergleichsweise hoher Bestandesdichte und mit zahlreichen daraus resultierenden Verdeckungen. Die Auswertung dieser TLS-Daten, die einen unterschiedlichen Grad an Detailreichtum aufweisen, stellt eine große Herausforderung dar. Zwei vollautomatische Methoden zur Generierung von Skelettstrukturen von gescannten Bäumen, welche komplementäre Eigenschaften besitzen, werden vorgestellt. Bei der ersten Methode wird das Gesamtskelett eines Baumes aus 3D-Daten von registrierten Scans bestimmt. Die Aststruktur wird von einer Voxelraum-Repräsentation abgeleitet indem Pfade von Astspitzen zum Stamm gesucht werden. Der Stamm wird im Voraus aus den 3D-Punkten rekonstruiert. Das Baumskelett wird als 3D-Liniengraph erzeugt. Für jeden gemessenen Punkt stellt ein Scan neben 3D-Koordinaten und Distanzwerten auch 2D-Indizes zur Verfügung, die sich aus dem Intensitätsbild ergeben. Bei der zweiten Methode, die auf Einzelscans arbeitet, wird dies ausgenutzt. Außerdem wird ein neuartiges Konzept zum Management von TLS-Daten beschrieben, welches die Forschungsarbeit erleichtert hat. Zunächst wird das Tiefenbild in Komponenten aufgeteilt. Es wird eine Prozedur zur Bestimmung von Komponentenkonturen vorgestellt, die in der Lage ist innere Tiefendiskontinuitäten zu verfolgen. Von der Konturinformation wird ein 2D-Skelett generiert, welches benutzt wird um die Komponente in Teilkomponenten zu zerlegen. Von der 3D-Punktmenge, die mit einer Teilkomponente assoziiert ist, wird eine Principal Curve berechnet. Die Skelettstruktur einer Komponente im Tiefenbild wird als Menge von Polylinien zusammengefasst. Die objektive Evaluation der Resultate stellt weiterhin ein ungelöstes Problem dar, weil die Aufgabe selbst nicht klar erfassbar ist: Es existiert keine eindeutige Definition davon was das wahre Skelett in Bezug auf eine gegebene Punktmenge sein sollte. Die Korrektheit der Methoden kann daher nicht quantitativ beschrieben werden. Aus diesem Grund, können die Ergebnisse nur visuell beurteiltwerden. Weiterhinwerden die Charakteristiken beider Methoden eingehend diskutiert. Es werden Experimentresultate beider Methoden vorgestellt. Die erste Methode bestimmt effizient das Skelett eines Baumes, welches die Aststruktur approximiert. Der Detaillierungsgrad wird hauptsächlich durch den Voxelraum bestimmt, weshalb kleinere Äste nicht angemessen reproduziert werden. Die zweite Methode rekonstruiert Teilskelette eines Baums mit hoher Detailtreue. Die Methode reagiert sensibel auf Rauschen in der Kontur, dennoch sind die Ergebnisse vielversprechend. Es gibt eine Vielzahl von Möglichkeiten die Robustheit der Methode zu verbessern. Die Kombination der Stärken von beiden präsentierten Methoden sollte weiter untersucht werden und kann zu einem robusteren Ansatz führen um vollständige Baumskelette automatisch aus TLS-Daten zu generieren
9

Janoušek, Pavel. "Modernizace 3D měřicího přístroje." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The theme of this thesis is solving modernization of 3D measuring instrument. The modernization was necessary for implementation of new activities. Based on customer’s requirements, a new Incoming Inspection for the new projects was established. Another reason for modernization is development of new products. These new products require the most modernized measuring technology. There are presented 4 variants of solution.
10

Rahel, Rahel. "Mesure de champs de déplacements 3D à l'aide d'un scanner laser couplé à une caméra." Dijon, 2009. http://www.theses.fr/2009DIJOS033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Scanner-laser 3D":

1

Elberink, Sander Oude. Acquisition of 3D topography: Automated 3D road and building reconstruction using airborne laser scanner data and topographic maps. Delft: NCG, Netherlands Geodetic Commission, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guyer, J. Introduction to Terrestrial 3D Laser Scanner Topographic Survey Procedures. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Scanner-laser 3D":

1

Héno, Raphaële, and Laure Chandelier. "3D Digitization by Laser Scanner." In 3D Modeling of Buildings, 85–124. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118648889.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Müller, A., M. Schubert, and L. Verges. "Laser-3D-Scanner für die Endoskopie." In Laser in der Medizin Laser in Medicine, 607. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-60306-8_124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Llamazares, Á., E. J. Molinos, M. Ocaña, L. M. Bergasa, N. Hernández, and F. Herranz. "3D Map Building Using a 2D Laser Scanner." In Computer Aided Systems Theory – EUROCAST 2011, 412–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27579-1_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Durante, Francesco, and Pierluigi Beomonte Zobel. "Development of a Time of Flight Laser Scanner 3D." In Advances in Intelligent Systems and Computing, 538–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65960-2_66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barba, Salvatore, Francesco Villecco, and Alessandro Naddeo. "“Ultima Dea”: A Laser Scanner Application for 3D Modelling." In Advances in Intelligent Systems and Computing, 559–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95588-9_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Wang, Deshan Yang, Ying Li, and Wenhai Xu. "Portable 3D Laser Scanner for Volume Measurement of Coal Pile." In Lecture Notes in Electrical Engineering, 340–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6508-9_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Adán, Antonio, David de la Rubia, and Andrés S. Vázquez. "Obtaining and Monitoring Warehouse 3D Models with Laser Scanner Data." In ROBOT 2017: Third Iberian Robotics Conference, 227–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70836-2_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Elberink, Sander Oude. "Re-using laser scanner data in applications for 3D topography." In Lecture Notes in Geoinformation and Cartography, 87–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72135-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lamovsky, Denis, and Aless Lasaruk. "Calibration and Reconstruction Algorithms for a Handheld 3D Laser Scanner." In Advanced Concepts for Intelligent Vision Systems, 635–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23687-7_57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Trinh, Nhon H., Jonathan Lester, Braden C. Fleming, Glenn Tung, and Benjamin B. Kimia. "Accurate Measurement of Cartilage Morphology Using a 3D Laser Scanner." In Computer Vision Approaches to Medical Image Analysis, 37–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11889762_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Scanner-laser 3D":

1

Mahjoubfar, A., K. Goda, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, et al. "3D ultrafast laser scanner." In SPIE LASE, edited by Alexander Heisterkamp, Peter R. Herman, Michel Meunier, and Stefan Nolte. SPIE, 2013. http://dx.doi.org/10.1117/12.2003135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thanusutiyabhorn, Pimrapat, Pizzanu Kanongchaiyos, and Waleed S. Mohammed. "Image-based 3D laser scanner." In 2011 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2011). IEEE, 2011. http://dx.doi.org/10.1109/ecticon.2011.5948005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kocmanova, Petra, Ludek Zalud, and Adam Chromy. "3D proximity laser scanner calibration." In 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2013. http://dx.doi.org/10.1109/mmar.2013.6670005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yoshida, Tomoaki, Kiyoshi Irie, Eiji Koyanagi, and Masahiro Tomono. "3D laser scanner with gazing ability." In 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2011. http://dx.doi.org/10.1109/icra.2011.5980385.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xianfang Sun, Paul L. Rosin, Ralph R. Martin, and Frank C. Langbein. "Noise in 3D laser range scanner data." In 2008 IEEE International Conference on Shape Modeling and Applications (SMI). IEEE, 2008. http://dx.doi.org/10.1109/smi.2008.4547945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nishida, Y., S. Yasukawa, and K. Ishii. "Underwater 3D Scanner using RGB Laser pattern." In 2021 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf49454.2021.9382643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Geusen, Jr., Mark, Willem D. van Amstel, Stefan M. B. Baumer, and Jef L. Horijon. "Design of a compact 3D laser scanner." In Optical Systems Design and Production, edited by Fritz Merkle. SPIE, 1999. http://dx.doi.org/10.1117/12.360015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vitor Cantarella, João Paulo Monticeli, Pedro Pazzoto Cacciari, and Marcos Massao Futai. "JRC estimation with 3D laser scanner images." In VII Simpósio Brasileiro de Mecânica das Rochas. São Paulo, SP, Brasil: Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica - ABMS, 2016. http://dx.doi.org/10.20906/cps/sbmr-02-0024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Bai-yun, Chun-xia Zhao, and Yi Zheng. "3D Scene Reconstruction Method Based on Laser Scanner." In 2009 1st International Conference on Information Science and Engineering (ICISE 2009). IEEE, 2009. http://dx.doi.org/10.1109/icise.2009.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kurisaki, Naoko, Wentao Che, and Tatsuhide Nakane. "Applications of 3D measurement with ground laser scanner." In Photonics West 2001 - Electronic Imaging, edited by Sabry F. El-Hakim and Armin Gruen. SPIE, 2000. http://dx.doi.org/10.1117/12.410865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Scanner-laser 3D":

1

Augustoni, Arnold L. 3rd Tech DeltaSphere-3000 Laser 3D Scene Digitizer infrared laser scanner hazard analysis. Office of Scientific and Technical Information (OSTI), February 2005. http://dx.doi.org/10.2172/920773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jackson, Sam S., and Michael J. Bishop. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperate Region. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada438210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jackson, Sam S., and Michael J. Bishop. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperature Region. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada443802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Coastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Coastal Observation and Analysis Branch (COAB) located at the Field Research Facility (FRF) conducts quarterly surveys and post-storm surveys along up to 60 kilometers of coastline within the vicinity of the FRF to assess, evaluate, and provide updated observations of the morphology of the foreshore and dune system. The surveys are conducted using a mobile terrestrial LiDAR scanner coupled with an Inertial Navigation System (INS). Traditionally the surveys coincide with a low tide, exposing the widest swath of visible sediment to the scanner as well as enough wind-sea swell or texture to induce wave breaking upon the interior sandbars. The wave field is measured with X-Band radar which records a spatial time series of wave direction and speed. Data for the survey region was collected using the VZ-2000's mobile, 3D scanning mode where the scanner continuously rotates the line scan 360 degrees as the vehicle progresses forward. Elevation measurements are acquired on all sides of the vehicle except for the topography directly underneath the vehicle. As the vehicle moves forward, the next rotation will capture the previous position's occluded data area. Laser data is acquired in mobile 3D radar mode with a pulse repetition rate of 300kHz, theta resolution of 0.19 degrees and phi resolution of 0.625 degrees. Horizontal Datum NAD83(2011), Projection North Carolina State Plane (3200) meters; Vertical Datum NAVD88, meters with geoid09 applied.
5

Coastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Coastal Observation and Analysis Branch (COAB) located at the Field Research Facility (FRF) conducts quarterly surveys and post-storm surveys along up to 60 kilometers of coastline within the vicinity of the FRF to assess, evaluate, and provide updated observations of the morphology of the foreshore and dune system. The surveys are conducted using a mobile terrestrial LiDAR scanner coupled with an Inertial Navigation System (INS). Traditionally the surveys coincide with a low tide, exposing the widest swath of visible sediment to the scanner as well as enough wind-sea swell or texture to induce wave breaking upon the interior sandbars. The wave field is measured with X-Band radar which records a spatial time series of wave direction and speed. Data for the survey region was collected using the VZ-2000's mobile, 3D scanning mode where the scanner continuously rotates the line scan 360 degrees as the vehicle progresses forward. Elevation measurements are acquired on all sides of the vehicle except for the topography directly underneath the vehicle. As the vehicle moves forward, the next rotation will capture the previous position's occluded data area. Laser data is acquired in mobile 3D radar mode with a pulse repetition rate of 300kHz, theta resolution of 0.19 degrees and phi resolution of 0.625 degrees. Horizontal Datum NAD83(2011), Projection North Carolina State Plane (3200) meters; Vertical Datum NAVD88, meters with geoid09 applied.

До бібліографії