Добірка наукової літератури з теми "Schlafen-11"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Schlafen-11".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Schlafen-11"

1

Razzak, Mina. "Schlafen 11 naturally blocks HIV." Nature Reviews Urology 9, no. 11 (October 9, 2012): 605. http://dx.doi.org/10.1038/nrurol.2012.188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bednarikova, Marketa, Jitka Hausnerova, Lucie Ehrlichova, Kvetoslava Matulova, Eliska Gazarkova, Lubos Minar, and Vit Weinberger. "Can Schlafen 11 Help to Stratify Ovarian Cancer Patients Treated with DNA-Damaging Agents?" Cancers 14, no. 10 (May 10, 2022): 2353. http://dx.doi.org/10.3390/cancers14102353.

Повний текст джерела
Анотація:
Platinum-based chemotherapy has been the cornerstone of systemic treatment in ovarian cancer. Since no validated molecular predictive markers have been identified yet, the response to platinum-based chemotherapy has been evaluated clinically, based on platinum-free interval. The new promising marker Schlafen 11 seems to correlate with sensitivity or resistance to DNA-damaging agents, including platinum compounds or PARP inhibitors in various types of cancer. We provide background information about the function of Schlafen 11, its evaluation in tumor tissue, and its prevalence in ovarian cancer. We discuss the current evidence of the correlation of Schlafen 11 expression in ovarian cancer with treatment outcomes and the potential use of Schlafen 11 as the key predictive and prognostic marker that could help to better stratify ovarian cancer patients treated with platinum-based chemotherapy or PARP inhibitors. We also provide perspectives on future directions in the research on this promising marker.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tian, Li, Santai Song, Xiaojing Liu, Yan Wang, Xiaoguang Xu, Yi Hu, and Jianming Xu. "Schlafen-11 sensitizes colorectal carcinoma cells to irinotecan." Anti-Cancer Drugs 25, no. 10 (November 2014): 1175–81. http://dx.doi.org/10.1097/cad.0000000000000151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jitobaom, Kunlakanya, Thanyaporn Sirihongthong, Chompunuch Boonarkart, Supinya Phakaratsakul, Ornpreya Suptawiwat, and Prasert Auewarakul. "Human Schlafen 11 inhibits influenza A virus production." Virus Research 334 (September 2023): 199162. http://dx.doi.org/10.1016/j.virusres.2023.199162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Manqing, Elaine Kao, Hilary Sandig, Sebastien Landry, Matthew D. Weitzman, and Michael David. "SS5-8 Inhibition of retroviral replication by human Schlafen 11." Cytokine 52, no. 1-2 (October 2010): 45. http://dx.doi.org/10.1016/j.cyto.2010.07.433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhou, Jing, Mei-Ying Zhang, Ai-Ai Gao, Cheng Zhu, Tao He, James G. Herman, and Ming-Zhou Guo. "Epigenetic silencing schlafen-11 sensitizes esophageal cancer to ATM inhibitor." World Journal of Gastrointestinal Oncology 16, no. 5 (May 15, 2024): 2060–73. http://dx.doi.org/10.4251/wjgo.v16.i5.2060.

Повний текст джерела
Анотація:
BACKGROUND Targeting DNA damage response (DDR) pathway is a cutting-edge strategy. It has been reported that Schlafen-11 (SLFN11) contributes to increase chemosensitivity by participating in DDR. However, the detailed mechanism is unclear. AIM To investigate the role of SLFN11 in DDR and the application of synthetic lethal in esophageal cancer with SLFN11 defects. METHODS To reach the purpose, eight esophageal squamous carcinoma cell lines, 142 esophageal dysplasia (ED) and 1007 primary esophageal squamous cell carcinoma (ESCC) samples and various techniques were utilized, including methylation-specific polymerase chain reaction, CRISPR/Cas9 technique, Western blot, colony formation assay, and xenograft mouse model. RESULTS Methylation of SLFN11 was exhibited in 9.15% of (13/142) ED and 25.62% of primary (258/1007) ESCC cases, and its expression was regulated by promoter region methylation. SLFN11 methylation was significantly associated with tumor differentiation and tumor size (both P < 0.05). However, no significant associations were observed between promoter region methylation and age, gender, smoking, alcohol consumption, TNM stage, or lymph node metastasis. Utilizing DNA damaged model induced by low dose cisplatin, SLFN11 was found to activate non-homologous end-joining and ATR/CHK1 signaling pathways, while inhibiting the ATM/CHK2 signaling pathway. Epigenetic silencing of SLFN11 was found to sensitize the ESCC cells to ATM inhibitor (AZD0156), both in vitro and in vivo . CONCLUSION SLFN11 is frequently methylated in human ESCC. Methylation of SLFN11 is sensitive marker of ATM inhibitor in ESCC.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jo, Ukhyun, Yasuhisa Murai, Naoko Takebe, Anish Thomas, and Yves Pommier. "Precision Oncology with Drugs Targeting the Replication Stress, ATR, and Schlafen 11." Cancers 13, no. 18 (September 14, 2021): 4601. http://dx.doi.org/10.3390/cancers13184601.

Повний текст джерела
Анотація:
Precision medicine aims to implement strategies based on the molecular features of tumors and optimized drug delivery to improve cancer diagnosis and treatment. DNA replication is a logical approach because it can be targeted by a broad range of anticancer drugs that are both clinically approved and in development. These drugs increase deleterious replication stress (RepStress); however, how to selectively target and identify the tumors with specific molecular characteristics are unmet clinical needs. Here, we provide background information on the molecular processes of DNA replication and its checkpoints, and discuss how to target replication, checkpoint, and repair pathways with ATR inhibitors and exploit Schlafen 11 (SLFN11) as a predictive biomarker.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Borrego, Andre Raymundo, Christian Corona-Ayala, Julienne Christa Salvador, Federico Christa Valdez, and Manuel Llano. "Gene Expression Regulation of the Type I Interferon‐Induced Protein Schlafen 11." FASEB Journal 34, S1 (April 2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.00603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Manqing, Elaine Kao, Xia Gao, Hilary Sandig, Kirsten Limmer, Mariana Pavon-Eternod, Thomas E. Jones, et al. "Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11." Nature 491, no. 7422 (September 23, 2012): 125–28. http://dx.doi.org/10.1038/nature11433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Buettner, Reinhard. "Awakening of SCHLAFEN 11 by immunohistochemistry: a new biomarker predicting response to chemotherapy." Virchows Archiv 478, no. 3 (February 10, 2021): 567–68. http://dx.doi.org/10.1007/s00428-021-03051-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Schlafen-11"

1

FERRAIOLI, DOMENICO. "Assessment and relevance of the putative DNA/RNA helicase Schlafen-11 in ovarian and breast cancer." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/989355.

Повний текст джерела
Анотація:
Abstract in English Schlafen 11 (SLFN11) is a putative DNA/RNA helicase, first described for its role in thymocyte development and differentiation in mouse models [1]. SLFN11 is part of a family of proteins with various degree of homology across species, but intriguingly being consistently present only in vertebrates and especially in mammals. Recently the role of this putative DNA/RNA helicase, SLFN11, was causal association with sensitivity to DNA damaging agents, such as platinum salts, topoisomerase I and II inhibitors, and other alkylators in the NCI-60 panel of cancer cell lines.13 In the first study, we validate an anti-SLFN11 antibody in formalin-fixed paraffin-embedded (FFPE) high-grade serous ovarian carcinoma (HGSOC) samples, developing a immunohistochemistry (IHC) protocol in order to determinate the expression of SLFN11 in our series of HGSOC. Indeed, we tested and validated a reliable SLFN 11 antibody (Ab) in IHC choosing between two anti-SLFN11 Ab used normally for Western Blot (WB) in culture cell block (CCB) of ovarian carcinoma and in an independent series of HGSOCs tissue micro-array (TMA). For each case, we evaluated both the Intensity Score (IS) and the Distribution Score (DS) evaluating at least 300 cells. A Histological Score (HS) was obtained as follow: HS=IS x DS. Successively, we applied our protocol to a large case series of HGSOC samples to confirm our preliminary results. We found one antibody to be reliable in CCB and TMA series allowing to determinate clearly IHC expression of SLFN11. These results were confirmed in our large case series of FFPE HGSOC samples. Briefly, as for TMA independent series, we found that the HS for SLFN11 expression presents a normal distribution with a prevalent (≈ 60%) intermediate expression. Parallel SLFN11 was not expressed in practically 40% of cases that clinically corresponded to the platinum resistant patients in about 60% of cases (16/27). So, we believe that low IHC expression of SLFN 11 should be correlated to response to the platinum based chemotherapy. In the second study, we investigate the transcriptional landscape of SLFN11 in breast cancer performing a gene expression microarray meta-analysis of more than 7000 cases from 35 publicly available data sets. By correlation analysis, we identified 537 transcripts in the top 95th percentile of Pearson’s coef- ficients with SLFN11 identifying “immune response”, “lymphocyte activation”and “T cell activation” as top Gene Ontology enriched processes. Furthermore, we reported very strong association of SLFN11 with immune signatures in breast cancer through penalized maximum like-lihood lasso regression Finally, through multiple corresponde analysis we discovered a subgroup of patients, defined “SLF11-hot cluster”, characterized by high SLFN11 levels, estrogen receptor negativity, basal-like phenotype, elevated CD3D, STAT1 signature, and young age and using Cox proportional hazard regression, we characterized SLFN11 high levels, high proliferation index, and ER negativity as independent parameters for longer disease-free interval in patients undergoing chemotherapy. We believe that our work supports proof of concept that: i) A clear and specific role for SLFN11 in breast cancer, in likely connection with the immune system modulation in such disease entity, ii) a strong correlation between high SFLN 11 and specific molecular subtype of breast cancer (estrogen receptor negativity, basal-like phenotype).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ferraioli, Domenico. "Assessment and relevance of the putative DNA/RNA helicase Schlafen-11 in ovarian and breast cancer." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1324/document.

Повний текст джерела
Анотація:
Schlafen 11 (SLFN11) est une ADN/ARN hélicase décrite pour la première fois pour son rôle dans le développement et la différenciation des thymocytes chez la souris. Elle fait partie d'une famille de protéines présentant divers degrés d'homologie entre les espèces, mais qu’est présente de façon constante chez les mammifères. Le rôle de cette ADN/ARN hélicase, SLFN11, a été associé de façon causale à la sensibilité de réponse aux différents agents alkylants (agents endommageant l'ADN, les inhibiteurs de topo-isomérase I et II) dans le NCI-60. Dans la première étude, nous avons développé un protocole d’immunohistochimie (IHC) sur des biopsies paraffinées de carcinome séreux de l'ovaire de haut grade (HGSOC), afin de valider un anticorps (Ab) anti-SLFN11 et d’en déterminer l'expression. En IHC, nous avons testé et validé un Ab anti-SLFN11, en choisissant entre deux anti-SLFN11 Ab utilisés normalement pour le Western Blot. Premièrement, il a été développé dans une culture cellulaire (CCB) de HGSOC et, successivement, dans une série indépendante de micro-array (TMA) de HGSOC. Pour chaque cas, nous avons évalué soit le score d'intensité (IS) que le score de distribution (DS) en évaluant au moins 300 cellules. Un score histologique (HS) a été obtenu comme suit : HS=IS x DS. Successivement, nous avons appliqué notre protocole à une plus large série d'échantillons de HGSOC pour confirmer nos résultats préliminaires. Nous avons trouvé un anticorps fiable dans les séries CCB et TMA permettant de déterminer l'expression IHC de SLFN11. Ces résultats ont été confirmés dans notre plus large série de HGSOC. Brièvement, comme pour les séries indépendantes de TMA, nous avons constaté que la HS de l'expression de SLFN11 est présente dans environ 60%. En parallèle, le SLFN11 n'a pas été exprimé dans 40 % des cas qui, cliniquement, correspondent, dans environ 60 % de ces cas (16/27), aux patients résistant aux sels de platine. Une faible expression de SLFN11 en IHC pourrait être corrélée à la réponse à la chimiothérapie(CT) à base de platine. Dans la deuxième étude, nous étudions l’état transcriptionnel du SLFN11 dans le cancer du sein en effectuant une méta-analyse de plus de 7000 cas à partir de 35 étudies publiquement disponibles. Par l’analyse de corrélation, nous avons identifié 537 transcrits qui corrèle, au-delà du 95e percentile selon le coefficient de Pearson, avec l’expression de SLFN11. En particulier, voie l’analyse par “Gene Ontology” SLFN11 est lié au transcrits impliqués dans le système immunitaire : "réponse immunitaire", "l’activation lymphocytaire" et "l’activation des lymphocytes T". En outre, voie le “likehood lasso regression ”, nous avons signalé une très forte association entre le SLFN11 et les signatures immunitaires dans le cancer du sein. Enfin, grâce à la “multiple corresponded analysis ”, nous avons découvert un sous-groupe de patients, défini "SLFN11-Hot cluster", caractérisé par une expression élevé de SLFN11, récepteurs d'œstrogènes(ER) négatives, un phénotype basal, un jeune âge, une signature élevée de CD3D et de STAT1. En utilisant la "Cox proportional hazard regression", l’expression élevé de SLFN11, l’indice de prolifération élevé et le ER négative sont des paramètres indépendants lié à la survie sans maladie chez les patients soumises à la CT. Notre deuxième travail decrit un rôle spécifique pour le SLFN11 dans le cancer du sein probablement en relation avec la modulation du système immunitaire et une forte corrélation entre l’expression de SFLN11 et un sous-type moléculaire spécifique de cancer du sein (récepteurs négatifs aux œstrogènes, phénotype de type basal). Autres études devront être réalisées afin de: 1) mieux comprendre la fonction du SLFN11 dans les cellules cancéreuses, 2) valider un protocole IHC fiable et standardisé pour évaluer l’expression de SLFN11, 3) utiliser SFLN11 comme biomarqueur prédictif de réponse aux DDA et PARP inhibiteurs et 4) établir sa relation avec le système immunitaire
Schlafen 11 (SLFN11) is a putative DNA/RNA helicase, first described for its role in thymocyte development and differentiation in mouse models. SLFN11 is part of a family of proteins with various degree of homology across species, but intriguingly being consistently present only in vertebrates and especially in mammals. Recently, the role of this putative DNA/RNA helicase, SLFN11, was causally associated with sensitivity to DNA damaging agents, such as platinum salts, topoisomerase I and II inhibitors, and other alkylators in the NCI-60 panel of cancer cell lines. In the first study, we validate an anti-SLFN11 antibody in formalin-fixed paraffin-embedded (FFPE) high-grade serous ovarian carcinoma (HGSOC) samples, developing an immunohistochemistry (IHC) protocol in order to determinate the expression of SLFN11 in our series of HGSOC. Indeed, we tested and validated a reliable SLFN 11 antibody (Ab) in IHC choosing between two anti-SLFN11 Ab used normally for Western Blot (WB) in culture cell block (CCB) of ovarian carcinoma and in an independent series of HGSOCs tissue micro-array (TMA). For each case, we evaluated both the Intensity Score (IS) and the Distribution Score (DS) evaluating at least 300 cells. A Histological Score (HS)was obtained as follow: HS=IS x DS. Successively, we applied our protocol to a large case series of HGSOC samples to confirm our preliminary results. We found one antibody to be reliable in CCB and TMA series allowing to determinate clearly IHC expression of SLFN11. These results were confirmed in our large case series of FFPE HGSOC samples. Briefly, as for TMA independent series, we found that the HS for SLFN11 expression presents a normal distribution with a prevalent (≈ 60%) intermediate expression. Parallel SLFN11 was not expressed in practically 40% of cases that clinically corresponded to the platinum resistant patients in about 60% of cases (16/27). So, we believe that low IHC expression of SLFN 11 should be correlated to response to the platinum-based chemotherapy. In the second study, we investigate the transcriptional landscape of SLFN11 in breast cancer performing a gene expression microarray meta-analysis of more than 7000 cases from 35 publicly available data sets. By correlation analysis, we identified 537 transcripts in the top 95th percentile of Pearson’s coefficients with SLFN11 identifying “immune response”, “lymphocyte activation” and “T cell activation” as top Gene Ontology enriched processes. Furthermore, we reported very strong association of SLFN11 with immune signatures in breast cancer through penalized maximum likelihood lasso regression. Finally, through multiple corresponded analysis we discovered a subgroup of patients, defined “SLF11-hot cluster”, characterized by high SLFN11 levels, estrogen receptor(ER) negativity, basal-like phenotype, elevated CD3D, STAT1 signature, and young age. Using Cox proportional hazard regression, we characterized that SLFN11 high levels, high proliferation index, and ER negativity are independent parameters for longer disease-free interval in patients undergoing chemotherapy. We believe that our second work supports proof of concept that: i) A clear and specific role for SLFN11 in breast cancer, in likely connection with the immune system modulation in such disease entity, ii) a strong correlation between high SFLN 11 and specific molecular subtype of breast cancer (estrogen receptor negativity, basal-like phenotype). Further studies will be performed to confirm our hypothesis in order to: 1) better understand the function of SLFN 11 in cancer cell, 2) validate an easy, reliable and standardized IHC protocol to assessment SLFN11, 3) use SFLN11expression as a predictive biomarker of response to DDA and PARP inhibitors and 4) determinate the relationship with immune system
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ferraioli, Domenico. "Assessment and relevance of the putative DNA/RNA helicase Schlafen-11 in ovarian and breast cancer." Electronic Thesis or Diss., Lyon, 2019. http://www.theses.fr/2019LYSE1324.

Повний текст джерела
Анотація:
Schlafen 11 (SLFN11) est une ADN/ARN hélicase décrite pour la première fois pour son rôle dans le développement et la différenciation des thymocytes chez la souris. Elle fait partie d'une famille de protéines présentant divers degrés d'homologie entre les espèces, mais qu’est présente de façon constante chez les mammifères. Le rôle de cette ADN/ARN hélicase, SLFN11, a été associé de façon causale à la sensibilité de réponse aux différents agents alkylants (agents endommageant l'ADN, les inhibiteurs de topo-isomérase I et II) dans le NCI-60. Dans la première étude, nous avons développé un protocole d’immunohistochimie (IHC) sur des biopsies paraffinées de carcinome séreux de l'ovaire de haut grade (HGSOC), afin de valider un anticorps (Ab) anti-SLFN11 et d’en déterminer l'expression. En IHC, nous avons testé et validé un Ab anti-SLFN11, en choisissant entre deux anti-SLFN11 Ab utilisés normalement pour le Western Blot. Premièrement, il a été développé dans une culture cellulaire (CCB) de HGSOC et, successivement, dans une série indépendante de micro-array (TMA) de HGSOC. Pour chaque cas, nous avons évalué soit le score d'intensité (IS) que le score de distribution (DS) en évaluant au moins 300 cellules. Un score histologique (HS) a été obtenu comme suit : HS=IS x DS. Successivement, nous avons appliqué notre protocole à une plus large série d'échantillons de HGSOC pour confirmer nos résultats préliminaires. Nous avons trouvé un anticorps fiable dans les séries CCB et TMA permettant de déterminer l'expression IHC de SLFN11. Ces résultats ont été confirmés dans notre plus large série de HGSOC. Brièvement, comme pour les séries indépendantes de TMA, nous avons constaté que la HS de l'expression de SLFN11 est présente dans environ 60%. En parallèle, le SLFN11 n'a pas été exprimé dans 40 % des cas qui, cliniquement, correspondent, dans environ 60 % de ces cas (16/27), aux patients résistant aux sels de platine. Une faible expression de SLFN11 en IHC pourrait être corrélée à la réponse à la chimiothérapie(CT) à base de platine. Dans la deuxième étude, nous étudions l’état transcriptionnel du SLFN11 dans le cancer du sein en effectuant une méta-analyse de plus de 7000 cas à partir de 35 étudies publiquement disponibles. Par l’analyse de corrélation, nous avons identifié 537 transcrits qui corrèle, au-delà du 95e percentile selon le coefficient de Pearson, avec l’expression de SLFN11. En particulier, voie l’analyse par “Gene Ontology” SLFN11 est lié au transcrits impliqués dans le système immunitaire : "réponse immunitaire", "l’activation lymphocytaire" et "l’activation des lymphocytes T". En outre, voie le “likehood lasso regression ”, nous avons signalé une très forte association entre le SLFN11 et les signatures immunitaires dans le cancer du sein. Enfin, grâce à la “multiple corresponded analysis ”, nous avons découvert un sous-groupe de patients, défini "SLFN11-Hot cluster", caractérisé par une expression élevé de SLFN11, récepteurs d'œstrogènes(ER) négatives, un phénotype basal, un jeune âge, une signature élevée de CD3D et de STAT1. En utilisant la "Cox proportional hazard regression", l’expression élevé de SLFN11, l’indice de prolifération élevé et le ER négative sont des paramètres indépendants lié à la survie sans maladie chez les patients soumises à la CT. Notre deuxième travail decrit un rôle spécifique pour le SLFN11 dans le cancer du sein probablement en relation avec la modulation du système immunitaire et une forte corrélation entre l’expression de SFLN11 et un sous-type moléculaire spécifique de cancer du sein (récepteurs négatifs aux œstrogènes, phénotype de type basal). Autres études devront être réalisées afin de: 1) mieux comprendre la fonction du SLFN11 dans les cellules cancéreuses, 2) valider un protocole IHC fiable et standardisé pour évaluer l’expression de SLFN11, 3) utiliser SFLN11 comme biomarqueur prédictif de réponse aux DDA et PARP inhibiteurs et 4) établir sa relation avec le système immunitaire
Schlafen 11 (SLFN11) is a putative DNA/RNA helicase, first described for its role in thymocyte development and differentiation in mouse models. SLFN11 is part of a family of proteins with various degree of homology across species, but intriguingly being consistently present only in vertebrates and especially in mammals. Recently, the role of this putative DNA/RNA helicase, SLFN11, was causally associated with sensitivity to DNA damaging agents, such as platinum salts, topoisomerase I and II inhibitors, and other alkylators in the NCI-60 panel of cancer cell lines. In the first study, we validate an anti-SLFN11 antibody in formalin-fixed paraffin-embedded (FFPE) high-grade serous ovarian carcinoma (HGSOC) samples, developing an immunohistochemistry (IHC) protocol in order to determinate the expression of SLFN11 in our series of HGSOC. Indeed, we tested and validated a reliable SLFN 11 antibody (Ab) in IHC choosing between two anti-SLFN11 Ab used normally for Western Blot (WB) in culture cell block (CCB) of ovarian carcinoma and in an independent series of HGSOCs tissue micro-array (TMA). For each case, we evaluated both the Intensity Score (IS) and the Distribution Score (DS) evaluating at least 300 cells. A Histological Score (HS)was obtained as follow: HS=IS x DS. Successively, we applied our protocol to a large case series of HGSOC samples to confirm our preliminary results. We found one antibody to be reliable in CCB and TMA series allowing to determinate clearly IHC expression of SLFN11. These results were confirmed in our large case series of FFPE HGSOC samples. Briefly, as for TMA independent series, we found that the HS for SLFN11 expression presents a normal distribution with a prevalent (≈ 60%) intermediate expression. Parallel SLFN11 was not expressed in practically 40% of cases that clinically corresponded to the platinum resistant patients in about 60% of cases (16/27). So, we believe that low IHC expression of SLFN 11 should be correlated to response to the platinum-based chemotherapy. In the second study, we investigate the transcriptional landscape of SLFN11 in breast cancer performing a gene expression microarray meta-analysis of more than 7000 cases from 35 publicly available data sets. By correlation analysis, we identified 537 transcripts in the top 95th percentile of Pearson’s coefficients with SLFN11 identifying “immune response”, “lymphocyte activation” and “T cell activation” as top Gene Ontology enriched processes. Furthermore, we reported very strong association of SLFN11 with immune signatures in breast cancer through penalized maximum likelihood lasso regression. Finally, through multiple corresponded analysis we discovered a subgroup of patients, defined “SLF11-hot cluster”, characterized by high SLFN11 levels, estrogen receptor(ER) negativity, basal-like phenotype, elevated CD3D, STAT1 signature, and young age. Using Cox proportional hazard regression, we characterized that SLFN11 high levels, high proliferation index, and ER negativity are independent parameters for longer disease-free interval in patients undergoing chemotherapy. We believe that our second work supports proof of concept that: i) A clear and specific role for SLFN11 in breast cancer, in likely connection with the immune system modulation in such disease entity, ii) a strong correlation between high SFLN 11 and specific molecular subtype of breast cancer (estrogen receptor negativity, basal-like phenotype). Further studies will be performed to confirm our hypothesis in order to: 1) better understand the function of SLFN 11 in cancer cell, 2) validate an easy, reliable and standardized IHC protocol to assessment SLFN11, 3) use SFLN11expression as a predictive biomarker of response to DDA and PARP inhibitors and 4) determinate the relationship with immune system
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Schlafen-11"

1

Pommier, Yves, and Junko Murai. "Abstract IA19: PARP trapping and Schlafen 11." In Abstracts: AACR Special Conference on DNA Repair: Tumor Development and Therapeutic Response; November 2-5, 2016; Montreal, QC, Canada. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1557-3125.dnarepair16-ia19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pommier, Yves G., and Junko Murai. "Abstract IA21: PARP trapping and Schlafen 11 to kill cancer cells." In Abstracts: AACR International Conference held in cooperation with the Latin American Cooperative Oncology Group (LACOG) on Translational Cancer Medicine; May 4-6, 2017; São Paulo, Brazil. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.tcm17-ia21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Murai, Junko, Rozenn Josse, James H. Doroshow, and Yves Pommier. "Abstract 1718: Schlafen 11 (SLFN11) is a critical determinant of cellular sensitivity to PARP inhibitors." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zoppoli, Gabriele, Marie Regairaz, Elisabetta Leo, William C. Reinhold, and Yves Pommier. "Abstract 4693: The putative DNA/RNA Helicase Schlafen-11 sensitizes cancer cells to topoisomerase I inhibitors." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schwartz, Anthony L., Sukhbir Kaur, Sai-Wen Tang, Yves Pommier, and David D. Roberts. "Abstract 3054: CD47 signaling regulates a DNA damage response pathway by suppressing the expression of Schlafen-11 (SLFN11)." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Murai, Junko, and Yves Pommier. "Abstract B64: Schlafen 11 (SLFN11) irreversibly blocks cell cycle recovery independently of ATR following replicative damage by poly(ADPribose) polymerase inhibitors." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; November 5-9, 2015; Boston, MA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1535-7163.targ-15-b64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ghafoor, Azam, Sai-Wen Tang, Anish Thomas, Junko Murai, Jane B. Trepel, Susan E. Bates, Vinodh N. Rajapakse, and Yves Pommier. "Abstract LB-244: Overcoming resistance to DNA targeted agents by epigenetic activation of Schlafen 11 (SLFN11) expression with class I histone deacetylase inhibitors." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-lb-244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fukushima, Hiroto, Hiroyuki Ueno, Takuya Hoshino, Wakako Yano, Hiraku Itadani, Miki Terasaka, Sayaka Tsukioka, et al. "Abstract P020: Schlafen 11 (SLFN11) as a predictive biomarker of the response to TAS1553, a novel small molecule ribonucleotide reductase subunit interaction inhibitor." In Abstracts: AACR-NCI-EORTC Virtual International Conference on Molecular Targets and Cancer Therapeutics; October 7-10, 2021. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1535-7163.targ-21-p020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Murai, Junko, Sai-wen Tang, and Yves Pommier. "Abstract 3736: Schlafen 11 (SLFN11) blocks RNA synthesis upon replicative damage, a novel mechanism for killing cancer cells in response to DNA damaging agents." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Murai, Junko, and Yves Pommier. "Abstract 2849: The combination of the PARP inhibitor talazoparib (BMN 673) with the ATR inhibitor VE-821 overcomes the drug resistance of Schlafen 11-deficient cells." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії