Добірка наукової літератури з теми "Separative chemistry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Separative chemistry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Separative chemistry":

1

Wong, Kar Chun, Pei Sean Goh, Ahmad Fauzi Ismail, Hooi Siang Kang, Qingjie Guo, Xiaoxia Jiang, and Jingjing Ma. "The State-of-the-Art Functionalized Nanomaterials for Carbon Dioxide Separation Membrane." Membranes 12, no. 2 (February 4, 2022): 186. http://dx.doi.org/10.3390/membranes12020186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanocomposite membrane (NCM) is deemed as a practical and green separation solution which has found application in various fields, due to its potential to delivery excellent separation performance economically. NCM is enabled by nanofiller, which comes in a wide range of geometries and chemical features. Despite numerous advantages offered by nanofiller incorporation, fabrication of NCM often met processing issues arising from incompatibility between inorganic nanofiller and polymeric membrane. Contemporary, functionalization of nanofiller which modify the surface properties of inorganic material using chemical agents is a viable approach and vigorously pursued to refine NCM processing and improve the odds of obtaining a defect-free high-performance membrane. This review highlights the recent progress on nanofiller functionalization employed in the fabrication of gas-separative NCMs. Apart from the different approaches used to obtain functionalized nanofiller (FN) with good dispersion in solvent and polymer matrix, this review discusses the implication of functionalization in altering the structure and chemical properties of nanofiller which favor interaction with specific gas species. These changes eventually led to the enhancement in the gas separation efficiency of NCMs. The most frequently used chemical agents are identified for each type of gas. Finally, the future perspective of gas-separative NCMs are highlighted.
2

YANAGISAWA, Masaaki, Kazuo KATOH, and Kuniyuki KITAGAWA. "Separation of atomic vapor of lead in direct sampling of urine with a separative column atomizer." Analytical Sciences 6, no. 3 (1990): 471–72. http://dx.doi.org/10.2116/analsci.6.471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nowik, Witold, Myriam Bonose, Sylvie Héron, Mateusz Nowik, and Alain Tchapla. "Assessment of Two-Dimensional Separative Systems Using the Nearest Neighbor Distances Approach. Part 2: Separation Quality Aspects." Analytical Chemistry 85, no. 20 (September 25, 2013): 9459–68. http://dx.doi.org/10.1021/ac4012717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marques, Sara S., Inês I. Ramos, Sara R. Fernandes, Luisa Barreiros, Sofia A. C. Lima, Salette Reis, M. Rosário M. Domingues, and Marcela A. Segundo. "Insights on Ultrafiltration-Based Separation for the Purification and Quantification of Methotrexate in Nanocarriers." Molecules 25, no. 8 (April 18, 2020): 1879. http://dx.doi.org/10.3390/molecules25081879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The evaluation of encapsulation efficiency is a regulatory requirement for the characterization of drug delivery systems. However, the difficulties in efficiently separating nanomedicines from the free drug may compromise the achievement of accurate determinations. Herein, ultrafiltration was exploited as a separative strategy towards the evaluation of methotrexate (MTX) encapsulation efficiency in nanostructured lipid carriers and polymeric nanoparticles. The effect of experimental conditions such as pH and the amount of surfactant present in the ultrafiltration media was addressed aiming at the selection of suitable conditions for the effective purification of nanocarriers. MTX-loaded nanoparticles were then submitted to ultrafiltration and the portions remaining in the upper compartment of the filtering device and in the ultrafiltrate were collected and analyzed by HPLC-UV using a reversed-phase (C18) monolithic column. A short centrifugation time (5 min) was suitable for establishing the amount of encapsulated MTX in nanostructured lipid carriers, based on the assumption that the free MTX concentration was the same in the upper compartment and in the ultrafiltrate. The defined conditions allowed the efficient separation of nanocarriers from the free drug, with recoveries of >85% even when nanoparticles were present in cell culture media and in pig skin surrogate from permeation assays.
5

Washino, Takehiro, Mikihide Demura, Shintaro Morisada, Keisuke Ohto, and Hidetaka Kawakita. "Separation of Microalgae by a Dynamic Bed of Magnetite-Containing Gel in the Application of a Magnetic Field." Separations 9, no. 5 (May 12, 2022): 120. http://dx.doi.org/10.3390/separations9050120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Microalgae are now known as potential microorganisms in the production of chemicals, fuel, and food. Since microalgae live in the sea and the river, they need to be harvested and separated and cultured for further usage. In this study, to separate microalgae, a bed of magnetite-containing gel (Mag gel, 190 µm) was packed in the column by the application of a magnetic field for the separative elution of injected microalgae (including mainly four species), cultured at Saga University in Japan. The applied magnetic field was set at a constant and dynamic-convex manner. At a constant magnetic field of 0.4–1.1 T, the elution percentage of the microalgae at less than 5 µm was 30–50%. At 1.1 T, the larger-sized microalgae were eluted at a percentage of 20%, resulting in the structural change of the bed by the applied magnetic field. In a convex-like change of the magnetic field at 1.1 T ⇄ 0.4 T, the smaller-sized microalgae were selectively eluted, whereas at 1.1 T ⇄ 0.8 T, the larger-sized microalgae were eluted. Dynamic convex-like changes by the magnetic field selectively eluted the microalgae, leading to the separation and the extraction of potential microalgae.
6

KITAGAWA, Kuniyuki, Tetsuya TAKEUCHI, and Masaaki YANAGISAWA. "Retention characteristics of a separative column atomizer for atomic absorption spectrometry." Analytical Sciences 5, no. 4 (1989): 445–48. http://dx.doi.org/10.2116/analsci.5.445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Temporini, Caterina, Enrica Calleri, Gloria Brusotti, and Gabriella Massolini. "Protein-Labs on Separative Analytical Scale in Medicinal Chemistry: from the Proof of Concept to Applications." Current Organic Chemistry 20, no. 11 (March 3, 2016): 1169–85. http://dx.doi.org/10.2174/1385272819666150810220825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Arora, M. B., J. A. Hestekin, S. W. Snyder, E. J. St. Martin, Y. J. Lin, M. I. Donnelly, and C. Sanville Millard. "The Separative Bioreactor: A Continuous Separation Process for the Simultaneous Production and Direct Capture of Organic Acids." Separation Science and Technology 42, no. 11 (July 2007): 2519–38. http://dx.doi.org/10.1080/01496390701477238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ruthven, Douglas M. "CO2 capture: Value functions, separative work and process economics." Chemical Engineering Science 114 (July 2014): 128–33. http://dx.doi.org/10.1016/j.ces.2014.04.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

de Andrés, Fernando, and Ángel Ríos. "Carbon dots – Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis." Microchemical Journal 161 (February 2021): 105773. http://dx.doi.org/10.1016/j.microc.2020.105773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Separative chemistry":

1

Vatin, Marin. "Modélisation multi-échelle de solutions organiques et systèmes interfaciaux pour l’extraction liquide-liquide." Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONS009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse présente un ensemble de modèles et de méthodes pour la description structurale et thermodynamique des solutions organiques et des systèmes interfaciaux rencontrées dans le contexte de l’extraction liquide-liquide. Les modèles et méthodes sont basés sur une approche qui est essentiellement à l’échelle moléculaire et ont une forte composante numérique. Une étude basée sur une approche par dynamique moléculaire a été utilisée afin d’étudier la séparation de phase d’un mélange eau-huile. Elle a aussi été utilisée afin de simuler les solutions organiques dont l’organisation supramoléculaire a été vérifiée par des comparaisons entre les spectres de diffusions des rayons X aux petits angles expérimentaux et issus de ces simulations moléculaires. L’organisation supramoléculaire a pu être caractérisée plus finement au cours d’études consacrées à l’agrégation en phase organique en présence de molécules extractantes de type malonamide (DMDOHEMA) et de sels de nitrate d’europium grâce à des traitements numériques poussés présentés dans cette thèse ; notamment par le calcul des distributions moyennes des espèces chimiques formées dans les solutions organiques. A partir de ces distributions, des modèles thermodynamiques des phénomènes d’agrégation en phase organique basés sur des approches numériques et analytiques ont été élaborés. Ces modèles ont notamment permis de calculer les énergies de formation des espèces en solution en fonction de leur composition, des nombres d’agrégation moyen en très bon accord avec les données expérimentales, d’étudier les mécanismes associés au phénomène de « formation de la troisième phase » par un modèle de percolation et l’étude de super-espèces et enfin, de calculer des grandeurs associées à la cinétique de formations des agrégats en phase organique
This thesis presents a set of models and methods for the structural and thermodynamic description of organic solutions and interfacial systems encountered in the context of liquid-liquid extraction. The models and methods are based on an approach that is essentially molecular. It has a strong numerical component. A study based on a molecular dynamics approach was used to investigate the phase separation of a water-oil mixture. It has also been used to simulate organic solutions whose supramolecular organization has been verified by comparisons between the experimental and the molecular simulations signals associated with small angle X-ray scattering. The supramolecular organization has been characterized more finely during studies devoted to the aggregation in organic phase in the presence of extractant malonamide molecules (DMDOHEMA) and of europium nitrate salts thanks to advanced numerical treatments presented in this thesis. These numerical treatments allowed the calculation of the mean distributions of the chemical species formed in the organic solutions. From these distributions, thermodynamic models of the aggregation phenomena in the organic phase based on numerical and analytical approaches have been developed. These models allowed the calculation of the energies of formation of the species in solution according to their composition, and the determination of the mean aggregation numbers in very good agreement with the experimental data, the study of the mechanisms associated with the phenomenon of “third phase formation” thanks to a super-species percolation model and the calculation of quantities associated with the kinetics of formation of aggregates in organic phase
2

El, maangar Asmae. "L’extraction raisonnée de métaux stratégiques par des hydrotropes." Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONS004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’extraction liquide-liquide (L­L) est la technologie principale de séparation employée dans les procédés hydrométallurgiques pour le recyclage des métaux stratégiques nécessaires à l’économie circulaire. La mise en œuvre industrielle du recyclage repose sur le contrôle du transfert d’espèces entre une solution concentrée d’électrolytes contenant les cations métalliques à extraire sélectivement et une solution de tensioactif lipophile associé à un solvant non miscible à l’eau et des « modificateurs de phase ». Une limitation des procédés d’extraction L­L tel qu’utilisés actuellement est la formation de la 3ème phase. De plus, ils induisent un lourd impact environnemental en raison de l’utilisation de volumes élevés de réactifs et l’emploi intensif de solvants organiques non respectueux de l’environnement. Une des stratégies pour répondre à ces problématiques est d’utiliser des systèmes à base d’hydrotropes.Les hydrotropes sont une famille de molécules utilisés pour des applications en biochimie analytique, pharmaceutique et en cosmétique. Ces molécules n’ont jamais été étudiées dans le cadre du recyclage des métaux. Cette thèse est consacrée à la compréhension et la mise en œuvre d’hydrotropes pour l’extraction des métaux, ainsi qu’à l’identification des forces motrices mises en jeu.Ce travail décrit via la démarche « iénaïque », associant les approches supramoléculaire et colloïdale, ce qui se passe lorsque l’on remplace respectivement le diluant, le modificateur de phase et même l’extractant par des hydrotropes. Deux types d’hydrotropes sont étudiés : des hydrotropes qui sont des tensioactifs neutres courts et des hydrotropes électrolytes comme le salicylate de sodium. Dans chaque cas, la détermination des diagrammes de phases et de la nanostructuration des phases sont des préalables nécessaires à la compréhension des forces moléculaires à l’origine des transferts mesurés. L’utilisation des techniques de fluorescence de rayons X, de diffusion de rayons X et des neutrons, de tensiométrie interfaciale ainsi que de calorimétrie ont été déterminantes pour la compréhension des mécanismes sous-jacents à l’extraction hydrotropique.Au prix d’une augmentation de complexité des schémas procédés liés à la solubilité de l’hydrotrope dans les phases aqueuses, nous démontrons que l’emploi d’hydrotropes à la place du diluant ou même à la place de l’extractant, compris par la décomposition « iénaïque », amènent à un gain d’un ordre de grandeur en intensification de procédé et/ou en volume d’effluents produits, ouvrant la voie à l’extraction « raisonnée » des métaux en vue de leur recyclage depuis la mine urbaine
Liquid-liquid extraction (LLE) is the main separation technology used in hydrometallurgical processes for the recycling of strategic metals needed for a circular economy. The industrial implementation of recycling relies on the control of the transfer of species between a concentrated solution of electrolytes containing the metal cations to be selectively extracted and a solution of lipophilic surfactant associated with a water-immiscible solvent and “phase modifiers”. A limitation of LLE processes as currently used is the formation of the 3rd phase. In addition, they induce a heavy environmental impact due to the use of high volumes of reagents and the intensive use of non-environmentally friendly organic solvents. One possible strategy to overcome these problems is by using hydrotrope-based systems.Hydrotropes are a family of molecules used for applications in analytical biochemistry, pharmaceuticals and cosmetics. These molecules have never been studied in the context of metal recycling. This thesis is devoted to the understanding and implementation of hydrotropes for metal extraction, as well as to the identification of the driving forces involved.This work uses the “ienaics” approach to measure and understand what happens when the diluent, the phase modifier and even the extractant are replaced by hydrotropes, respectively. Two types of hydrotropes are studied: hydrotropes that are short neutral surfactants and electrolyte hydrotropes such as sodium salicylate. In each case, the determination of the phase diagrams and the nanostructuration of the phases are necessary prerequisites to understand the molecular forces at the origin of the measured transfers. The use of X-ray fluorescence, X-ray and neutron scattering, interfacial tensiometry and calorimetry techniques have been decisive for the understanding of the mechanisms underlying hydrotropic extraction.At the cost of an increase in complexity of the process schemes related to the solubility of the hydrotrope in the aqueous phases, we demonstrate that the use of hydrotropes instead of the diluent or even instead of the extractant, understood by the “ienaics” decomposition, leads to a gain of an order of magnitude in process intensification and/or in volume of effluents produced, opening the way to the “reasoned” extraction of the metals for their recycling from the urban mine
3

Sebogisi, Baganetsi Karabo. "Separation of racemates via host-guest chemistry." Thesis, Cape Peninsula University of Technology, 2012. http://hdl.handle.net/20.500.11838/730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis submitted in fulfilment of the requirements for the degree Magister Technologiae: Chemistry in the Faculty of Applied Science at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY 2012
Chirality is very important to the pharmaceutical industry as enantiomers have the same macroproperties except for their optical and pharmacological activity. Industrial research has thus focused to find the most effective resolution technique. However, our aim was to obtain more information regarding the discrimination process. In this project the structures of the hydrates of di-quininium L-malate, (2QUIN+)(L-MA2-)•2H2O and the di-quininium D-malate, (2QUIN+)(D-MA2-)•2H2O have been investigated. (-)-Quinine (QUIN) did not show selectivity between the D and L malic acid and the structure of (2QUIN+)(DL-MA2-)•2H2O was obtained. Effect of solvents was demonstrated in the study and the structure of (QUIN+)(D-MA-)•H2O) was reported. The relationship between C-O bonds of the carboxylate and carboxylic moieties and ÄpKa was explored in salt and co-crystal formation. Kinetics of absorption was conducted for the reaction of (+)-deoxycholic acid (DCA) with n-propylamine and DCA with racemic sec-butylamine. The rate constants of the reactions were determined. Kinetics of desolvation was performed on the powder samples of mixtures of DCA and sec-butylamine and DCA with di-n-butylamine. Non-isothermal methods were used where a series of TG analyses was carried out at different heating rates (2, 4, 10, 32 K min-1). The structures of DCA with n-propylamine and di-n-butylamine were elucidated. The selectivity of DCA was investigated. The host compound was found to be able to successfully resolve racemic sec-butylamine (2-BUAM) and 2-amino-3-methylbutane (MeBUAM). The structures of DCA with enantiomers of these guests are reported in the study. The structures of R-BUAM and S-BUAM were solved in different space groups while R-MeBUAM and S-MeBUAM crystallized in the same space group.
4

Valdovinos, H. F., S. Graves, T. Barnhart, and R. J. Nickles. "Simplified targetry and separation chemistry for 68Ge production." Helmholtz-Zentrum Dresden - Rossendorf, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-166311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction 68Ge (t½ = 270.8 d, 100% EC) is an important radionuclide for two reasons: 1) once in equilib-rium with its daughter nuclide 68Ga (t½ = 68 min, 89 % β+, 3 % 1077 keV γ), it can be used as a positron source for attenuation correction and calibration of PET/MRI scanners; and 2) it can be employed as a generator of 68Ga for radiophar-maceutical preparation. Most isotope production facilities produce it using natural gallium (60.1% 69Ga, 39.9% 71Ga, melting point: 39 °C) as target material for proton bombardment at energies > 11.5 MeV, the threshold energy for 69Ga(p,2n)68Ge [1]. A maximum cross section of ~330 mb for natGa(p,x)68Ge occurs at ~20 MeV [1], hence proton energies in this neighborhood are mandatory for large scale production. Galli-um targetry is challenging due to its low melting point and corrosivity, hence compounds such as Ga2O3 (melting point: 1900 °C) or GaxNiy alloys (melting points > 800 °C) [2], have been used as target compounds [3,4,5]. The separation chem-istry technique employed by large-scale produc-tion facilities is liquid-liquid extraction using CCl4 [6,7]. In this work, two simple methods for GaxNiy alloy preparation are presented as well as a simple germanium separation procedure using a commercially available extraction resin. Material and Methods GaxNiy alloys were prepared by two methods (A,B). A) electrodeposition over 1.3 cm2 of a gold disk substrate. Ga2O3 and NiSO4.6H2O were dis-solved in a mixture of (27%) H2SO4 and NH4OH at pH 1.5 in a 3:2 mass ratio so that the Ga:Ni molar ratio was 4:1. The solution was then transferred to a 15 mL plating cell, in which a current of 29 mA/cm2 was applied with a platinum anode at 1 cm from the gold surface. B) Ga pellets were fused together with Ni powder at different Ga:Ni molar ratios using an induction furnace (EIA Power Cube 45/900). The resulting alloy pellets were then rolled to foils using a jeweler’s mill pressed between Nb foils to avoid contamination. Target irradiations were performed on a GE PETtrace at 16 MeV protons. The electroplated alloys were mounted on a custom-made solid target irradiation system with direct water-jet cooling applied to the backside of the gold disk. The alloy foils were placed on top of in a 1.2 cm diameter, 406 μm deep pocket made of Nb and sealed against a 51 μm Nb foil using a teflon O-ring. The alloys were in direct contact with the Nb foil to allow thermal conduction. At the rear of the Nb pocket is a water-cooling stream to transfer heat convectively during irradiation. Ge separation was achieved based on the difference in distribution coefficients between Ge, Ga, Zn, Cu, Ni and Co at different HNO3 molarities in DGA resin (Triskem International). Initial tests on the resin were performed after two pilot irradiations on natural gallium (a,b). a) 16 MeV protons were directed downward on an external beam-line (−30 °) onto 640 mg of molten elemental natGa pooled on a water-cooled niobium support. b) 330 mg natGa pellet was melted in the same Nb pocket well used with the alloys and was also sealed against a 51 μm Nb foil. The irradiated gallium was left to decay for 2 weeks and then was dissolved in 6 mL of concentrated HNO3. The solution was then passed through 200 mg of DGA resin packed in a 5 mm diameter column at a flow rate of 1.1 mL/min. A separation profile for Ge, Ga and Zn was obtained by collecting 0.2–1.0 mL fractions, which were analyzed by gamma ray spectroscopy on a HPGe detector. Two thick NiGa4 foils have been irradiated, one for 69Ge production and for radiocobalt, from 58Ni(p,α), separation quantification; and the other one for 68Ge production with the idea of preparing a mini-generator (< 13 MBq) of 68Ga for local use in phantom imaging work and animal studies. Results and Conclusion A) Each electroplating batch consisted of 66.5 ± 2.9 mg of Ga2O3 mixed with 44.9 ± 3.6 mg of NiSO4.6H2O (n = 9) in the 15 mL plating cell. Higher concentrations resulted in inefficient electroplating yields due to precipitation. 66 ± 6 % of the total Ga+Ni mass in solution, that is 39.5 ± 3.3 mg of Ga-Ni was deposited after 3 d. Three plating batches over one disk resulted in a maximum target thickness of 86.7 mg/cm2. A fourth batch did not add any significant amount of alloy and salt precipitation became a problem. The electroplated surface looked homogeneous at 10× magnification on a microscope and the targets were able to withstand up to 30 μA without presenting any dark spots. B) Alloys with Ga:Ni molar ratios of 1.0, 2.0, 2.9, 3.7 and 5.2 were fused by induction heating. TABLE 1 summarizes the results from manipulating these foils. These alloys were analyzed by X-ray fluorescence using a 109Cd excitation source quantifying the x-rays peaks: 9.26 keV for Ga and 7.48 keV for Ni. A linear relationship between the ratio of count rates of these two peaks to the alloy Ga:Ni molar ratio was found and employed for the characterization of the electroplated Ga-Ni layers. Results from the irradiations over natGa on Nb supports are presented in TABLE 2. TABLE 3 presents the results from irradiating two thick NiGa4 foils made by induction heating. Figure 1 contains the separation profile with DGA. 91% of the 68Ge is eluted in 2 mL of de-ionized water. We developed two simple methods for NiGa4 alloy manufacture. With a melting point > 800 °C and 80% presence of natGa, it is a more convenient target for 68Ge production compared to Ga encapsulated in Nb. The separation method based on the extraction resin DGA yields similar results as the liquid-liquid extraction method mentioned in [6,7], but we believe this is a more convenient method since it only requires a single trap-and-release step and not many extraction steps.
5

Wang, Yafei. "Species Chemistry and Electrochemical Separation in Molten Fluoride Salt." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/102614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fluoride salt-cooled high-temperature reactor (FHR) is a safer and potentially less expensive alternative to light water reactor due to the low pressure of primary system, passive decay heat cooling system, chemically inert coolant salt, and high-temperature power cycle. However, one challenge presented by this reactor is that fission products may leak into the primary system from its TRISO particle fuel during normal operation. Consequently, the circulating fission products within the primary coolant would be a potential radioactive source. On the other hand, the containment material of the molten salt such as nickel-based alloys may be corroded, and its species may stay in the salt. Thus, the installment of the primary coolant clean-up system and the study on the contaminant species' chemistry and separation are necessarily needed. Electrochemical separation technique has been proposed as the online coolant clean-up method for FHR for removing some impurities from the salt such as lanthanides and corrosion products. The present research focuses on the electrochemical separations of fission products and corrosion products in molten FLiNaK salt (46.5LiF-11.5NaF-42KF mol%) which is the surrogate of the primary coolant candidate FLiBe (67LiF-33BeF2, mol%) for FHR. The main objective is to investigate the electrochemical behaviors of fission products and corrosion products in molten FLiNaK salt to achieve its separations, and provide fundamental properties to instruct the conditions needed to be applied for a desired electrochemical separation. La and Ce are two main elements concerned in this study since they are major lanthanide fission products. Electrochemical behavior of LaF3 in molten FLiNaK salt was studied on both W and Mo inert working electrodes. Although the standard reduction potential of La (III) is more cathodic than that of the primary salt melt constituents K (I) and Na (I), the electrochemical separation of La from molten FLiNaK salt was achieved by merely using inert working electrode because of the formed LaF63- when KF or NaF exists as the salt constituents. Fundamental properties of La in molten FLiNaK salt were also studied at various situations by electroanalytical methods including cyclic voltammetry (CV), chronopotentiometry (CP), and potentiodynamic polarization scan (PS). Ce is another fission product to be separated out from molten FLiNaK salt. Both inert (W) and reactive working electrodes (Cu and Ni) were utilized to realize the extraction of Ce. The electrochemical behaviors of Ce observed on inert W electrode are similar to the ones obtained in FLiNaK-LaF3 system. Reactive electrodes Cu and Ni were used to precede the electrochemical deposition potential of Ce by forming intermetallic compounds. It turned out only Ni electrode was feasible for preceding the deposition potential and the intermetallic compound was identified as CeNi5. The dissolution of chromium metal in the form of chromium fluoride into molten FLiNaK salt is the main concern of alloy corrosion in FHR. To understand the alloy corrosion and removal of the corrosion products from the FHR salt coolant, the electrochemical behavior and fundamental properties of Cr in molten FLiNaK salt were investigated in the present study as well. A new analysis method for the Cr two-step electrochemical reaction in the salt was developed. The method can be applied to other two-step reactions as well. Liquid bismuth was proposed to be the extraction media for liquid/liquid multistage separation of fission products in molten salt reactor. It also can be used as the cathode to extract the fission product of which the electrodeposition potential is close to or more negative than that of the main constituents of molten salt. Activity and activity coefficient are essential factors for assessing the extraction behavior and viability of bismuth in separating fission products. Hence, in the present study, the activity and activity coefficient of fission products and alkali metals (Li and K) at different concentrations and temperatures were determined by experiment and simulation methods respectively. To conduct the parametric study for the electrochemical reaction process and predict fundamental properties, an electrochemical model including single-step reversible, irreversible, and quasi-reversible reactions, multiple-reaction, and two-step consecutive charge transfer reaction was developed based on MOOSE. Although the model was not applied to analyze the experimental data in the present study, this model provides an efficient and easy way to understand the effect of various parameters on electrochemical reaction process. The present study supplied a comprehensive study on the electrochemical separation of fission products and corrosion products in molten FLiNaK salt and will contribute greatly to the development of FHR.
Doctor of Philosophy
6

Starkey, Jason A. "Biochemical applications of microcolumn separation techniques." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3278220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Indiana University, Dept. of Chemistry, 2007.
Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 5919. Adviser: Milos V. Novotny. Title from dissertation home page (viewed May 9, 2008).
7

Chen, Jian. "Chemistry and physics in low Reynolds number micro steady streaming devices /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/9928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Davies, Clair. "Capillary Electrophoretic Separation of Sulfoxides." TopSCHOLAR®, 1998. http://digitalcommons.wku.edu/theses/338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Chiral sulfoxides are most widely used in asymmetric synthesis. Their application as chiral synthons has now become a well-established and reliable strategy, mainly due to availability and high asymmetric induction exerted by the chiral sulfinyl group. Very few articles have been published on the separation of chiral sulfoxides; most involve HPLC or GC. The first separation of optically active sulfoxides was described by Phillips and co-workers. To date no work has been reported using capillary electrophoresis for the separation of alkylaryl sulfoxides. A series of alkylaryl sulfoxides were synthesized. Conditions for their separation were investigated using a modified 125 mM Boric acid (pH 8.5)/ 75 mM SDS buffer solution (MEKC buffer). Synthetic procedures for the preparation of these sulfoxides will be presented as well as separation results. The separation is based on the differential partition of solutes between the micelle and the bulk solution.
9

Wildervanck, Alexander Franciscus. "Separation of enantiomers of Baclofen." Master's thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/20462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
(3-(Aminomethyl)-4-chlorobenzenepropanoic acid (Baclofen), 3-(p-chlorophenyl)pyrrolidone (Baclofen lactam) and 3-(p-Chlorophenyl)glutaramide (baclofen's synthetic precursor) were individually used as substrates in co-crystallisation experiments with several resolving agents. Experiments were conducted in the solid state and in solution. The (-) enantiomer of the lactam and the ( +) enantiomer of the glutaramide were found to cocrystallise selectively with (2R,3R)-( +)-tartaric acid and (S)-(-)-a.-Methylbenzylamine respectively. Both these dissociable diastereomers Vere analysed by X-ray crystallography. HPLC analysis of the lactam retrieved from the former co-crystals indicated only partial separation of its (+) and (-) enantiomers. X-ray crystallographic, thermal, and polarimetric analyses were perfom1ed on the ( + )- and (-)-salts of the latter co-crystals. The solubilities of these salts in methanol were found to differ by a factor of 4. A solubility diagram was established showing the phase equilibria of various ratios of these two salts in methanol. The(+) enantiomer of the glutaramide was separated from the methylbenzylamine in the (+) salt by treatment with HCI. This enantiomer was converted to (R)-(-)-Baclofen by means of a Hofinann Rearrangement with an overall yield of 40%. The enantiomeric excess of (R)-(".")-Baclofen was 99.7%.
10

Vujovic, Dejana. "Separation of close isomers by enclathration." Doctoral thesis, University of Cape Town, 2001. http://hdl.handle.net/11427/9744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Includes bibliographical references.
In this thesis the principles of molecular recognition were employed in the separation of closely related guests and guest exchange. The industrially important isomeric compounds such as xylenois, lutidines and cresols were successfully separated using different host compounds. Separation of aminobenzonitrile isomers was investigated in solution and in the solid state.

Книги з теми "Separative chemistry":

1

Macasek, Feodor. Separation chemistry. New York: Ellis Horwood, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Budhiraja, R. P. Separation chemistry. New Delhi: New Age International (P) Ltd., Publishers, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Macášek, Fedor. Separation chemistry. Edited by Navratil James D. 1941-. New York: Ellis Horwood, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ahuja, Satinder, ed. Chromatography and Separation Chemistry. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lees, David. Chemistry: Revision guide : separate. Oxford: Heinemann, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anderson, Richard. Sample pretreatment and separation. Edited by Chapman N. B. 1916- and ACOL (Project). Chichester [West Sussex]: Published on behalf of ACOL, Thames Polytechnic, London, by Wiley, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International Symposium on Flocculation in Biotechnology and Separation Systems (1986 San Francisco). Flocculation in biotechnology and separation systems. Amsterdam: Elsevier, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wankat, Phillip C. Separation process engineering. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aida, Takashi. Cyclic separating reactors. Ames, Iowa: Blackwell Pub., 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McDuell, G. R. OCR science for GCSE: Separate chemistry. Oxford: Heinemann, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Separative chemistry":

1

Lewis, Rob, and Wynne Evans. "Separating Mixtures." In Chemistry, 350–65. London: Macmillan Education UK, 2011. http://dx.doi.org/10.1007/978-0-230-34492-1_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lewis, Rob, and Wynne Evans. "Separating Mixtures." In Chemistry, 337–51. London: Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-14045-9_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lewis, Rhobert, and Wynne Evans. "Separating Mixtures." In Chemistry, 372–86. London: Macmillan Education UK, 2018. http://dx.doi.org/10.1057/978-1-137-61037-9_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kidwai, Mazaahir, and Richa Mohan. "Combinatorial Chemistry on Solid Phases." In Green Separation Processes, 89–102. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606602.ch2c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vogel, Werner. "Microphase Separation." In Glass Chemistry, 92–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78723-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Clark, James H. "Green Chemistry and Environmentally Friendly Technologies." In Green Separation Processes, 1–18. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606602.ch1a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sharon, Maheshwar, and Madhuri Sharon. "Radiochemical Separation Techniques." In Nuclear Chemistry, 201–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62018-9_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Van Hook, W. A. "Isotope Separation." In Handbook of Nuclear Chemistry, 2369–402. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-0720-2_51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vieillescazes, Catherine, Isabel Sierra, and Sonia Morante-Zarcero. "Separation Techniques." In Lecture Notes in Chemistry, 15–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30985-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fink, Johannes Karl. "Separation Science." In Physical Chemistry in Depth, 519–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01014-9_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Separative chemistry":

1

White, A., R. Miller, E. Bellu, and J. J. Wylde. "Adaptation of Test Methodology and the Evolution of a Demulsifier Formulation for a Heavy Oil Start-Up." In SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204293-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Objectives/Scope Selection of "first fill" demulsifiers for new, undeveloped, oil fields has significant limitations, typically relying on data from test work with synthetic emulsion created in a laboratory using highly contaminated drilling samples of crude oil. Additional separation challenges related to offshore production of high viscosity, low API crude oil, from a low temperature reservoir results in a low probability of success in selecting a suitable first fill demulsifier using the traditional bottle test alone. Methods, Procedures, Process To give improved speed of oil/water separation, water quality, interface quality and top oil dehydration, samples of chemical free oil and produced water were used to screen alternative existing products against the base case demulsifier via bottle testing. The emulsions were created using a high shear stirrer to mimic the system conditions of the wells coming online and water droplet size within the emulsion was determined via cross polarizing thermal microscopy. For the purposes of these tests, demulsifier performance was ranked on speed and completeness of separation, interface quality, water quality and grind out (BS&W) characteristics. Results, Observations, Conclusions Several differences were observed between the initial and subsequent test work. The low shear emulsion created in the early work was found to be very unstable, separating easily with no residual emulsion in the crude oil. The emulsion created under high shear conditions gave a much closer correlation in terms of water droplet distribution to that measured during the field test and resulted in a much more stable emulsion that was more difficult to separate and typically left unresolved emulsion in the oil after the bulk of the water had separated. Whilst the original demulsifier recommendation was still able to facilitate separation it was found that it was no longer the optimum product, with other previously disregarded products able to provide a higher level of performance on the high shear emulsion. Novel/Additive Information This paper demonstrates that a higher level of performance was achieved with an enhanced screening process, namely through high shear stirring and confirmation of water droplet size within the emulsion. When added to the standard bottle testing conditions, the development of demulsifiers can better ensure an optimum result, fit for purpose for the application.
2

Yoshida, Zenko, Takaumi Kimura, and Yoshihiro Meguro. "Recent Progress in Actinides Separation Chemistry." In Workshop on Actinides Solution Chemistry, WASC '94. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814530965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andersson, J. D., K. Gagnon, J. S. Wilson, J. Romaniuk, D. N. Abrams, and S. A. McQuarrie. "Separation of molybdenum and technetium." In 14TH INTERNATIONAL WORKSHOP ON TARGETRY AND TARGET CHEMISTRY. AIP, 2012. http://dx.doi.org/10.1063/1.4773975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guo, Xiaotao, Xing Wang, and Ying Zhang. "Separation of Communication Signals Based on Underdetermined Blind Source Separation." In 2016 5th International Conference on Environment, Materials, Chemistry and Power Electronics. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/emcpe-16.2016.54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Amalia, Dwi, Indra Perdana, and Chandra W. Purnomo. "Adsorption of lithium and calcium using cationic resin for separation application." In 4TH INTERNATIONAL SEMINAR ON CHEMISTRY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Caralin, Irmariza S., Alvin R. Widyanto, Nurul Widiastuti, Rika Wijiyanti, Triyanda Gunawan, Zulhairun A. Karim, Mikihiro Nomura, and Yuki Yoshida. "Annealing treatment for enhancing of H2/C3H8 separation performance on polysulfone membrane." In 4TH INTERNATIONAL SEMINAR ON CHEMISTRY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jurisson, S. S., D. E. Wycoff, A. DeGraffenreid, M. F. Embree, A. R. Ketring, C. S. Cutler, M. E. Fassbender, and B. Ballard. "Separation methods for high specific activity radioarsenic." In 14TH INTERNATIONAL WORKSHOP ON TARGETRY AND TARGET CHEMISTRY. AIP, 2012. http://dx.doi.org/10.1063/1.4773971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pahlawan, Ricky Y., Dita A. Nurani, I. Abdullah, and R. Wibowo. "Synthesis and characterization of ion imprinted polymer for selective separation of Cd(II)." In 4TH INTERNATIONAL SEMINAR ON CHEMISTRY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Siikanen, J., M. Peterson, T. A. Tran, P. Roos, T. Ohlsson, and A. Sandell. "A peristaltic pump driven [sup 89]Zr separation module." In 14TH INTERNATIONAL WORKSHOP ON TARGETRY AND TARGET CHEMISTRY. AIP, 2012. http://dx.doi.org/10.1063/1.4773969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Widyanto, Alvin R., Irmariza S. Caralin, Nurul Widiastuti, Triyanda Gunawan, Rika Wijiyanti, Wan N. W. Salleh, Ahmad F. Ismail, Mikihiro Nomura, and Kohei Suzuki. "Improvement N2/SF6 separation performance on P84 derived carbon membrane by incorporating of zeolite-carbon composite." In 4TH INTERNATIONAL SEMINAR ON CHEMISTRY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Separative chemistry":

1

ALena Paulenova, III George F. Vandegrift, and Kenneth R. Czerwinski. Plutonium Chemistry in the UREX+ Separation Processes. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/971510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ensor, D. D. Separation and Analytical Chemistry of the Actinides. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/763051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Colton, N. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/46617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lumetta, Gregg J., Jenifer C. Braley, Sergey I. Sinkov, and Jennifer C. Carter. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1094957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schroeder, Norman C., David L. Blanchard, Jr, and Kenneth R. Ashley. Fundamental chemistry, Characterization, and Separation of Technetium Complexes in Hanford Waste. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/828436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schroeder, Norman C., Kenneth R. Ashley, and David L. Blanchard. Fundamental Chemistry, Characterization, and Separation of Technetium Complexes in Hanford Waste. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/828438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schroeder, Norman C., Kenneth R. Ashley, and David L. Blanchard. Fundamental Chemistry, Characterization, and Separation of Technetium Complexes in Hanford Waste. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/828439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schroeder, N. C., D. L. Jr Blanchard, and K. R. Ashley. Fundamental chemistry, characterization, and separation of technetium complexes in Hanford waste. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/13748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wilbur, Daniel Scott. Evaluation of Novel Wet Chemistry Separation and Purification Methods to Facilitate Automation of Astatine-­211 Isolation. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1335515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

May, Iain, Aaron S. Anderson, Leo J. Jr Bitteker, Michael A. Connors, Roy Copping, Matthew Cover, William J. Crooks, et al. 2012-13 Blue Room Low Enriched Uranium Sample Irradiation, Associated Gas Handling System, and Subsequent Separation Chemistry. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1131014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії