Добірка наукової літератури з теми "Sharks Physiology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sharks Physiology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Sharks Physiology":

1
Leigh, Samantha C., Yannis Papastamatiou, and Donovan P. German. "The nutritional physiology of sharks." Reviews in Fish Biology and Fisheries 27, no. 3 (May 2017): 561–85. http://dx.doi.org/10.1007/s11160-017-9481-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Kelly, Michael L., Errol R. P. Murray, Caroline C. Kerr, Craig A. Radford, Shaun P. Collin, John A. Lesku, and Jan M. Hemmi. "Diverse Activity Rhythms in Sharks (Elasmobranchii)." Journal of Biological Rhythms 35, no. 5 (June 2020): 476–88. http://dx.doi.org/10.1177/0748730420932066.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sharks are an interesting group of vertebrates, as many species swim continuously to “ram” oxygen-rich seawater over their gills (ram ventilators), whereas other species “pump” seawater over their gills by manipulating buccal cavity volume while remaining motionless (buccal pumpers). This difference in respiratory physiology raises the question: What are the implications of these differences in lifestyle for circadian rhythms? We investigated the diel activity patterns of 5 species of sharks, including 3 ram ventilating species: the school shark ( Galeorhinus galeus), the spotted estuary smooth-hound ( Mustelus lenticulatus), and the spiny dogfish ( Squalus acanthias); and 2 buccal pumping species: the Port Jackson ( Heterodontus portusjacksoni) and draughtsboard ( Cephaloscyllium isabellum) sharks. We measured the amount, duration, and distance traveled while swimming over multiple days under a 12:12 light:dark light regime for all species and used modified light regimes for species with a clear diel rhythm in activity. We identified a surprising diversity of activity rhythms. The school shark and smooth-hound swam continuously; however, whereas the school shark swam at the same speed and covered the same distance during the day and night, the smooth-hound swam slower at night and traversed a shorter distance. A similar pattern was observed in the spiny dogfish, although this shark swam less overall. Both the Port Jackson and draughtsboard sharks showed a marked nocturnal preference for swimming. This pattern was muted and disrupted during constant light and constant dark regimes, although circadian organization of this pattern was maintained under certain conditions. The consequences of these patterns for other biological processes, such as sleep, remain unclear. Nonetheless, these 5 species demonstrate remarkable diversity within the activity rhythms of sharks.
3
Hussey, Nigel E., Sabine P. Wintner, Sheldon F. J. Dudley, Geremy Cliff, and David T. Cocks. "Questioning maternal resource allocation in sharks." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153, no. 2 (June 2009): S65. http://dx.doi.org/10.1016/j.cbpa.2009.04.006.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Walker, Terence I. "The biology of sharks and rays." Marine and Freshwater Behaviour and Physiology 47, no. 2 (February 2014): 129–33. http://dx.doi.org/10.1080/10236244.2014.889376.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Robinson, Phyllis. "Sharks." American Biology Teacher 78, no. 7 (September 2016): 614. http://dx.doi.org/10.1525/abt.2016.78.7.614.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Glaze-Crampes, Amanda L. "Sharks." American Biology Teacher 82, no. 9 (November 2020): 643. http://dx.doi.org/10.1525/abt.2020.82.9.643c.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Dewart, Mark. "Sharks." American Biology Teacher 65, no. 1 (January 2003): 75. http://dx.doi.org/10.2307/4451441.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Bernal, Diego, Douglas Syme, Jeanine Donley, and Chugey Sepulveda. "Divergent locomotor muscle design among thresher sharks." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153, no. 2 (June 2009): S67. http://dx.doi.org/10.1016/j.cbpa.2009.04.013.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Blackburn, L. "HOW SHARKS SENSE SMELLS." Journal of Experimental Biology 210, no. 11 (June 2007): iii. http://dx.doi.org/10.1242/jeb.007427.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Fudge, D. "CHILLY WATERS, HOT SHARKS." Journal of Experimental Biology 208, no. 23 (December 2005): vii. http://dx.doi.org/10.1242/jeb.01944.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Sharks Physiology":

1
Dowd, W. Wesley. "Metabolic Rates and Bioenergetics of Juvenile Sandbar Sharks (Carcharhinus plumbeus)." Text, W&M ScholarWorks, 2001. https://scholarworks.wm.edu/etd/1539617798.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The lower Chesapeake Bay and adjacent coastal waters serve as the primary summer nursery areas for juvenile sandbar sharks (Carcharhinus plumbeus) in the Northwest Atlantic Ocean. The large population of juvenile sandbar sharks in this ecosystem benefits from increased food availability that fuels rapid growth and from limited exposure to large shark predators. Juvenile growth and survival is the most critical life history stage for sandbar sharks, and juvenile nursery grounds will continue to play an important role in the slow recovery of this stock from severe population declines due to overfishing. The goal of this study was to assess the possible impacts of juvenile sandbar sharks as apex predators on the lower Chesapeake Bay ecosystem and to evaluate the energetic benefits of using this nursery. The bioenergetics model was used as a tool to predict energy consumption rates of individual sandbar sharks based on their energetic demands: metabolism, growth, and loss of waste. Metabolic rate is the largest and most variable component of the energy budget, particularly for species such as the sandbar shark that must swim continuously to ventilate their gills. The standard (basal) and routine metabolic rates of juvenile sandbar sharks were measured in two laboratory respirometry systems, using oxygen consumption rate as a proxy for metabolic rate. These data span the entire range of body sizes and water temperatures characteristic of the Chesapeake Bay population. Standard metabolic rates of sandbar sharks were similar to values obtained for related shark species by extrapolation of power-performance curves. The effects of body size and temperature on standard metabolic rate were similar to previous results for elasmobranchs and teleost fishes. In fifteen sharks, routine metabolic rate while swimming averaged 1.8 times the standard metabolic rate when the sharks were immobilized. Data obtained from the literature support the theory that limited gill surface areas and narrow metabolic scopes of many elasmobranchs help to explain their slow growth rates, since growth has the lowest rank of the multiple metabolic demands placed on the oxygen delivery system. These new metabolic rate data were then combined with other species-specific data to construct a bioenergetics model for juvenile sandbar sharks for the time they spend in Chesapeake Bay each summer. This model predicted higher daily rations than previous estimates for this species that were based on simple bioenergetics models or stomach contents and gastric evacuation rate models. However, the predicted rations agree with reconstructed meal sizes of juvenile sandbar sharks and are comparable to those of ecologically similar shark species. When extrapolated from individuals to the population level, the model predicted a negligible effect of predation by juvenile sandbar sharks on the lower Chesapeake Bay ecosystem; the consumption rate of juvenile sandbar sharks pales in comparison to other carnivorous fishes and to humans, the true apex predators in the system.
2
Söderblom, Fredrik. "Disparity of Early Cretaceous Lamniformes sharks." Student thesis, Uppsala universitet, Institutionen för geovetenskaper, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256605.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The geological range of lamniform sharks stretches from present day species such as Carcharodon carcharias (great white shark) back to the at the moment oldest undoubted fossil finds during the Early Cretaceous. In this paper a geometric morphometric analysis was performed on images of Early Cretaceous lamniform teeth collected from published literature in order to examine the change in disparity (range of morphological variation within a group) throughout the time period. Due to limited availability of published material and time constraints only the Barremian and Albian ages were investigated. The Barremian exhibited tall and narrow tooth morphologies while the Albian showed a wide range of morphological variation including more robust, wide and sometimes triangular shapes but also displayed further specialization of the tall and narrow forms. This change is likely indicative of a dietary and ecological expansion from only eating for example small fish and soft-bodied creatures to a wide range of prey for the group, including larger and more robust animals such as marine turtles and large bony fish. This in combination with the decline of some marine predators as well as the diversification of possible prey is interpreted as that an adaptive radiation of the Lamniformes could have taken place during the latter half of the Early Cretaceous.
Morfologisk disparitet är ett mått på hur stor utsträckningen av morfologisk variation är. Detta mått räknas ut genom att jämföra landmärken utplacerade på bilder av föremål som ska undersökas. I detta projekt undersöktes den morfologiska dispariteten hos tänder från håbrandsartade hajar (Lamniformes) under tidig krita. Att just deras tänder undersöktes beror på att den större delen av hajars skelett är gjort av brosk vilket lätt bryts ned efter djuret avlidit. Deras tänder är dock gjorda av ben vilket har lättare att bli bevarat som fossil. Utöver detta så kan formen på tänder beskriva djurs födoval och levnadssätt. Gruppens tänder undersöktes därför även för att belysa eventuella förändringar i diet och ekologi under tidig krita. Resultatet av denna analys visar på en expansion av tandform under denna period från långa och smala tänder under Barremium till en större variation under Albium där även mer triangelformade och robusta tänder dyker upp. Detta har tolkats som en adaptiv artbildningsperiod för gruppen då både nya byten (t.ex. teleostfiskar och havs-sköldpaddor) diversifierade och uppkom samtidigt som vissa marina predatorer (ichthyosaurer och plesiosaurer) minskade i antal under denna tidsperiod. Detta ändrade troligen de selektiva trycken på håbrandsartade hajars tandmorfologi samt lämnade ekologiska nischer öppna som dessa kunde anpassa sig till vilket i sin tur ledde till expansioner i morfologisk disparitet, diet och ekologi.
3
Testerman, Christine B. "Molecular Ecology of Globally Distributed Sharks." Dissertation, NSUWorks, 2004. https://nsuworks.nova.edu/occ_stuetd/6.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many sharks have life history characteristics (e.g., slow growth, late age at maturity, low fecundity, and long gestation periods) that make their populations vulnerable to collapse due to overfishing. The porbeagle (Lamna nasus), bull shark (Carcharhinus leucas), great hammerhead (Sphyrna mokarran), and smooth hammerhead (S. zygaena), are all commercially exploited. The population genetic structure of these species was assessed based on globally distributed sample sets using mitochondrial control region (mtCR) sequences and/or nuclear markers. Complex patterns of evolutionary and demographic history were inferred using coalescent and statistical moment-based methods. All four species showed statistically significant genetic partitioning on large scales, i.e., between hemispheres (L. nasus mtCR φST = 0.8273) or oceanic basins (C. leucas nuclear FST = 0.1564; S. mokarran mtCR φST = 0.8745, nuclear FST = 0.1113; S. zygaena mtCR φST = 0.8159, nuclear FST = 0.0495). Furthermore, S. zygaena mtCR sequences indicated statistically significant matrilineal genetic structuring within oceanic basins, but no intrabasin structure was detected with nuclear microsatellites. S. mokarran showed statistically significant genetic structure between oceanic basins with both nuclear and mitochondrial data, albeit with some differences between the two marker types in fine scale patterns involving northern Indian Ocean samples. A microsatellite assessment of C. leucas demonstrated no population structuring within the Atlantic or Indo-Pacific, with the exception that samples from Fiji were differentiated from the remaining Indo- Pacific Ocean locations. In contrast, the L. nasus mitochondrial and nuclear ITS2 sequences revealed strong northern vs. southern hemispheric population differentiation, but no differentiation within these hemispheres. These geographic patterns of genetic structure were used to determine the source of fins obtained from the international fin trade and to develop forensic tools for conservation.
4
Powlik, James. "Feeding structures of the white shark, Carcharodon Carcharias (Linnaeus), with notes on other species." Thesis/Dissertation, University of British Columbia, 1989. http://hdl.handle.net/2429/29758.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fresh and prepared museum specimens of the white shark Carcharodon carcharias, bull shark Carcharhinus leucas, and salmon shark Lamna ditropis were measured and compared with respect to tooth position and anterior buccal cavity dimensions. Coordinates of functional tooth position were defined by 1) deviation from the midline and 2) degree of erection. Tooth positions were not unique in any region of the mouth/ but demonstrated less variablity within 30° of the midline, particularly for male specimens of all three species (71.48° +- 10° erect) and all Carcharhinus leucas specimens (46.58° +-.96° erect). Analysis of high-speed videotape of white shark feeding indicated a 15.7° reduction in tooth cutting angle with jaw adduction following upper jaw protraction. It is suggested that such changes in tooth cutting angles during feeding are principally the result of jaw flexure, and may make the teeth more effective by angling them inward towards the gullet. Values for tooth removal from fresh-frozen white shark material using a tensile testing apparatus ranged from 12 kg (for a 110° erect tooth) to 70 kg (for a 59° erect tooth). Removal load was applied directly outward from the mouth to simulate a resistant prey item, and was not significantly different for degree of erection or tooth position on the jaw margin. Tooth position is seen to change with jaw protraction, however this change does not enhance tooth functionality by increasing the load required to remove the tooth.
Science, Faculty of
Zoology, Department of
Graduate
5
Sundberg, Nilas. "Quantifying Dental Morphological Variation in Lamniform Sharks." Student thesis, Uppsala universitet, Institutionen för geovetenskaper, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234749.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Huber, Daniel Robert. "Cranial biomechanics and feeding performance of sharks." Text, Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/2566.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The elasmobranch fishes possess a remarkable diversity of feeding mechanisms for a group containing relatively few species (~1200). The three most prevalent of these mechanisms involve prey capture during which the predator overtakes its prey (ram), prey is drawn into the mouth of the predator (suction), and relatively stationary consumption of sessile or substrate affixed prey (biting). Biomechanical modeling of cranial force distributions, in situ bite performance trials, and kinematic analysis of prey capture behaviors were employed to identify morphological and behavioral specializations and constraints associated with these feeding mechanisms in lemon Negaprion brevirostris (ram), whitespotted bamboo Chiloscyllium plagiosum (suction), and horn Heterodontus francisci (biting) sharks. Biomechanical modeling of the forces generated by the cranial musculature was used to theoretically estimate the maximum bite force and mechanical loadings occurring throughout the hyostyl ic jaw suspension mechanisms of each species, characterized by suspensory hyomandibular cartilages between the back of the jaws and cranium and anterior ligamentous attachments. To assess the mechanical factors involved in the evolution of elasmobranch jaw suspension mechanisms, the feeding mechanism of the sharpnose sevengill shark Heptranchias perlo was modeled as well. Heptranchias perlo possesses an ancestral amphistylic jaw suspension mechanism including non-suspensory hyomandibular cartilages, a large post-orbital articulation between the jaws and cranium, and anterior ligamentous attachments. Theoretical estimates of maximum bite force were compared to voluntary bite forces measured during in situ bite performance trials. Voluntary bite force measurements allowed the quantification of discrete behavioral attributes of bite force application in each species. To further assess the behavioral specializations associated with these feeding mechanisms, high-speed digital videography w as used to analyze the prey capture cranial kinematics of species. Collectively, these analyses have developed a morphological and behavioral basis from which to understand the functional diversity of the ram, suction, and biting feeding mechanisms in elasmobranchs.
7
Abercrombie, Debra. "Efficient PCR-Based Identification of Shark Products in Global Trade: Applications for the Management and Conservation of Commercially Important Mackerel Sharks (Family Lamnidae), Thresher Sharks (Family Alopiidae) and Hammerhead Sharks (Family Sphyrnidae)." Text, NSUWorks, 2001. http://nsuworks.nova.edu/occ_stuetd/131.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Shark populations worldwide are suspected to be in severe decline due to domestic and international markets for trade in shark products, especially dried fins in Asian markets, and as a result of bycatch mortality in multi-species fisheries. The management of sharks on a species-specific basis has become imperative for shark conservation, particularly in regions where numerous species are heavily fished, because sharks with differing life-history characteristics respond differently to exploitation. However, many commercially exploited sharks are morphologically similar and not easily identifiable to the species level. This problem is exacerbated when it comes to identifying detached fins, processed carcasses (logs), and filets or steaks at the dock or in trade. To address these species-identification problems and make available an accurate but practical, DNA-based forensic method for use in conservation and management of sharks, I have developed a highly streamlined genetic assay based on multiplex polymerase chain reaction (PCR) and species-specific primers derived from interspecific DNA sequence differences in the nuclear ribosomal internal transcribed spacer 2 (ITS2) locus of sharks. This forensic assay allows accurate identification of body parts from ten shark species commonly exploited worldwide for their meat and/or fins. In this thesis, I report on the development and use of this assay in the form of two separate suites of species-specific PCR primers that can be used in a high-density multiplex format to achieve rapid and accurate species identification. Chapter 1 of this thesis describes a suite of species-specific primers and multiplex PCR assay that simultaneously distinguishes among seven pelagic shark species: four species of mackerel sharks: shortfin mako (Isurus oxyrinchus), longfin mako (Isurus paucus), porbeagle (Lamna nasus) and salmon (Lamna ditropis); and the three species of alopiid (thresher) sharks: common thresher (Alopias vulpinus), bigeye thresher (Alopias superciliosus) and pelagic thresher (Alopias pelagicus). The second species-specific primer suite, described in chapter 2, simultaneously identifies the three globally distributed and most commercially important species of hammerheads: the great hammerhead (Sphyrna mokarran), scalloped hammerhead (Sphyna lewini) and the smooth hammerhead (Sphyrna zygaena). The species-specific PCR primers and forensic approach described here provide an efficient, straightforward technique that can be used in conservation and management relevant contexts where large volumes of samples need to be screened quickly. Preliminary testing of dried fins from the Hong Kong market and confiscated fins from U.S. and South African law enforcement activities suggests that this genetic technique will be useful for large-scale survey applications, such as monitoring the species composition of the fin trade as well as improving fisheries law enforcement capabilities. The efficient nature of the general forensic approach reported here may also make it useful as a model applicable to monitoring trade in other wildlife products on a global scale.
8
Dulvy, Nicholas K. "Life histories and conservation of sharks and rays." Electronic Thesis or Dissertation, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267726.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Smith, Lauren E. "Behavioural and neural correlates of hydrostatic pressure sensing in sharks." Electronic Thesis or Dissertation, University of Aberdeen, 2008. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=25327.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The normal depth usage of the juvenile lemon shark, Negaprion brevirostris was determined using data storage tags which logged pressure and temperature.  Sharks were found to predominantly occupy water depths between the surface and 1m.  A diel rhythm and a tidal rhythm were found for the pressure data.  Simultaneous acoustic tracking showed shallow water use despite the availability of deeper areas within the sharks’ home ranges.  All sharks mainly occupied a narrow range of temperatures (29°C - 31°C) at the high end of their range.  Temperature data showed mainly diel rhythms with slight tidal influence.  Pressures and temperatures used by the sharks seemed to be affected by size of home range, individual preference and predator avoidance.  The behaviour of the lesser spotted dogfish Scyliorhinus canicula was investigated during controlled small steps of pressure inside a hypobaric chamber.  Swimming occurred in response to decreasing pressure with increased swimming speed and duration suggesting enhanced sensitivity of the shark pressure sensor within  a narrow range between 39mbar above and down to 195mbar below barometric pressure.  Further studies using a novel tidal tank system showed that Scyliorhinus synchronised their activity with a 12.5 hour tidal cycle but not with a 9  hour cycle.  When different resting depths were made available, they were utilised by dogfish, suggesting an individual preference independent of environmental cues or the presence of the opposite sex.  Isolated vestibular systems were challenged over a range of pressures. Hair cell afferent activity showed responses to sinuosoidal cycles and step changes of pressure.  Temperature effects are complex but were small compared with pressure effects.  Knowledge of the pressure sensor and vertical range used by sharks is essential in the present development of marine protected areas in an attempt to ultimately aid the conservation of sharks.
10
梁澤昌 and Chak-cheong Leung. "Trace metals in sharks' fins: potential health consequences for consumers." PG_Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B45013767.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Sharks Physiology":

1
Anton, Tina. Sharks, sharks, sharks. Milwaukee: Raintree Publishers, 1989.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Carrier, Jeffrey C. Sharks and their relatives II: Biodiversity, adaptive physiology, and conservation. Boca Raton, FL: CRC Press/Taylor & Francis, 2010.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Perrine, Doug. Sharks. Grantown-on-Spey, Scotland: Colin Baxter Photography, 1995.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Lopez, Gary. Sharks. [Mankato, MN]: Child's World, 1991.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Oakley, Mark. Sharks. Loughborough: Ladybird, 1995.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Stevens, J. D. Sharks. New York, N.Y: Facts on File Publications, 1987.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Hamilton, Sue L. Sharks. Edina, MN: ABDO Pub. Co., 2010.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Penny, Malcolm. Sharks. London: Puffin, 1992.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Rowland, Della. Sharks. New York: Trumpet Club, 1990.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Arnold, Nick. Sharks. London: Scholastic, 2011.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Sharks Physiology":

1
Westbrook, Vivienne, Shaun Collin, Dean Crawford, and Mark Nicholls. "Prose sharks." In Sharks in the Arts, 123–42. New York : Routledge, 2018. | Series: Routledge environmental humanities: Routledge, 2018. http://dx.doi.org/10.4324/9781315681078-6.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Westbrook, Vivienne, Shaun Collin, Dean Crawford, and Mark Nicholls. "Sharks in poetry." In Sharks in the Arts, 48–79. New York : Routledge, 2018. | Series: Routledge environmental humanities: Routledge, 2018. http://dx.doi.org/10.4324/9781315681078-3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Westbrook, Vivienne, Shaun Collin, Dean Crawford, and Mark Nicholls. "Sharks on film." In Sharks in the Arts, 143–56. New York : Routledge, 2018. | Series: Routledge environmental humanities: Routledge, 2018. http://dx.doi.org/10.4324/9781315681078-7.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Appleby, Roslyn. "Surfing With Sharks." In Sexing the Animal in a Posthumanist World, 43–55. London ; New York : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9781351271486-4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Haberski, Raymond J. "Sharks, Aliens, and Nazis." In A Companion to Steven Spielberg, 433–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118726747.ch24.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Fabiano, Pedro. "Swimming with the Sharks." In Fraud Casebook, 455–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119196631.ch48.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Hetherington, Stuart J., and Victoria A. Bendall. "People, Sharks and Science." In Collaborative Research in Fisheries, 263–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26784-1_16.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Wasserman, Michael. "Swimming with the Sharks." In The Business of Geriatrics, 59–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28546-7_8.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Kuba, Michael. "Waterspouts (Archerfish, Sharks, Rays)." In Encyclopedia of Evolutionary Psychological Science, 1–3. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16999-6_3170-1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Ballantyne, J. S., and J. W. Robinson. "CHONDRICHTHYES | Physiology of Sharks, Skates, and Rays." In Encyclopedia of Fish Physiology, 1807–18. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-374553-8.00043-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Sharks Physiology":

1
Rowat, David R. L., Savinien T. Leblond, Bruno Pardigon, Michel Vely, Daniel Jouannet, and Imogen A. Webster. "Djibouti – a kindergarten for whale sharks?" In The 4th International Whale Shark Conference. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qproc.2016.iwsc4.54.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Pena, Alvaro, Noel Perez, Diego S. Benitez, and Alex Hearn. "Tracking Hammerhead Sharks With Deep Learning." In 2020 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI). IEEE, 2020. http://dx.doi.org/10.1109/colcaci50549.2020.9247911.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Pai, Dinesh K., Kees van den Doel, Timothy Edmunds, Benjamin Gilles, David I. W. Levin, Shinjiro Sueda, Qi Wei, and Sang Hoon Yeo. "Sensorimotor physiology." In ACM SIGGRAPH 2010 Talks. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1837026.1837053.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Tamez-Galvan, Evan Michelle, Scott C. McKenzie, and Scott C. McKenzie. "MAZON CREEK SHARKS AND THEIR EGG CASES." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-333504.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Fontes, Jorge, Niall McGinty, Miguel Machete, and Pedro Afonso. "Whale sharks, tunas and Azorean fisherman, BFF?" In The 4th International Whale Shark Conference. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qproc.2016.iwsc4.17.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
CLAES, J. M., and J. MALLEFET. "BIOLUMINESCENCE OF SHARKS, A CASE STUDY: ETMOPTERUS SPINAX." In Proceedings of the 15th International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812839589_0002.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Perez, Victor J., and Kent J. Crippen. "SWIMMING INTO SCIENCE: SHARKS AND MINNOWS SUMMER CAMP." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-337388.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Robinson, David P., Steffen S. Bach, Ali A. Abdulrahman, and Mohammad Al-Jaidah. "Satellite tracking of whale sharks from Al Shaheen." In The 4th International Whale Shark Conference. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qproc.2016.iwsc4.52.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Steves, J., and M. J. Hegewald. "Human Snorkeling Physiology." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2380.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Beekman, Daniel W., and Mark E. Falco. "Physiology of microsystems." In SPIE Defense, Security, and Sensing, edited by Thomas George, M. Saif Islam, and Achyut K. Dutta. SPIE, 2009. http://dx.doi.org/10.1117/12.817878.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Sharks Physiology":

1
Kipke, Daryl R., Jeffrey Carrier, and David J. Anderson. Implantable Neural Interfaces for Sharks. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada470127.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Brendan Talwar, Brendan Talwar. Deep sea sharks: Do they survive? Experiment, January 2014. http://dx.doi.org/10.18258/1820.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Rachael Karns, Rachael Karns. Sharks host bacteria, but what are they? Experiment, June 2016. http://dx.doi.org/10.18258/7225.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
David Shiffman, David Shiffman. What are the feeding habits of threatened sharks? Experiment, January 2014. http://dx.doi.org/10.18258/1856.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
McMahon, Chris. Physiology of ejaculation. BJUI Knowledge, October 2019. http://dx.doi.org/10.18591/bjuik.0456.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
James Anderson, James Anderson. Stealth tagging of adult Scalloped Hammerhead sharks in Hawai'i. Experiment, March 2015. http://dx.doi.org/10.18258/4907.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Lang, Kevin, Kaiwen Leong, Huailu Li, and Haibo Xu. Lending to the Unbanked: Relational Contracting with Loan Sharks. Cambridge, MA: National Bureau of Economic Research, October 2019. http://dx.doi.org/10.3386/w26400.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Charlie Underwood, Charlie Underwood. Tooth plates in chimaeras and their relationship to teeth in sharks. Experiment, May 2016. http://dx.doi.org/10.18258/7163.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Forger, Daniel. Modeling the Physiology of Circadian Timekeeping. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada564079.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Chan, Lewis, and Thomas King. Physiology of micturition and bladder controls. BJUI Knowledge, October 2019. http://dx.doi.org/10.18591/bjuik.0034.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити