Добірка наукової літератури з теми "Shortwave fluxes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Shortwave fluxes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Shortwave fluxes":

1

McFarlane, Sally A., and K. Franklin Evans. "Clouds and Shortwave Fluxes at Nauru. Part II: Shortwave Flux Closure." Journal of the Atmospheric Sciences 61, no. 21 (November 1, 2004): 2602–15. http://dx.doi.org/10.1175/jas3299.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The datasets currently being collected by the Atmospheric Radiation Measurement (ARM) program on the islands of Nauru and Manus represent the longest time series of ground-based cloud measurements in the tropical western Pacific region. In this series of papers, a shortwave flux closure study is presented using observations collected at the Nauru site between June 1999 and May 2000. The first paper presented frequency of occurrence of nonprecipitating clouds detected by the millimeter-wavelength cloud radar (MMCR) at Nauru and statistics of their retrieved microphysical properties. This paper presents estimates of the cloud radiative effect over the study period and results from a closure study in which retrieved cloud properties are input to a radiative transfer model and the modeled surface fluxes are compared to observations. The average surface shortwave cloud radiative forcing is 48.2 W m−2, which is significantly smaller than the cloud radiative forcing estimates found during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) field project. The difference in the estimates during the two periods is due to the variability in cloud amount over Nauru during different phases of the El Niño–Southern Oscillation (ENSO). In the closure study, modeled and observed surface fluxes show large differences at short time scales, due to the temporal and spatial variability of the clouds observed at Nauru. Averaging over 60 min reduces the average root-mean-square difference in total flux to 10% of the observed flux. Modeled total downwelling fluxes are unbiased with respect to the observed fluxes while direct fluxes are underestimated and diffuse fluxes are overestimated. Examination of the differences indicates that cloud amount derived from the ground-based measurements is an overestimate of the radiatively important cloud amount due to the anisotropy of the cloud field at Nauru, interpolation of the radar data, uncertainty in the microwave brightness temperature measurements for thin clouds, and the uncertainty in relating the sixth moment of the droplet size distribution observed by the radar to the more radiatively important moments.
2

Ma, Yingtao, Rachel T. Pinker, Margaret M. Wonsick, Chuan Li, and Laura M. Hinkelman. "Shortwave Radiative Fluxes on Slopes." Journal of Applied Meteorology and Climatology 55, no. 7 (July 2016): 1513–32. http://dx.doi.org/10.1175/jamc-d-15-0178.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractSnow-covered mountain ranges are a major source of water supply for runoff and groundwater recharge. Snowmelt supplies as much as 75% of the surface water in basins of the western United States. Net radiative fluxes make up about 80% of the energy balance over snow-covered surfaces. Because of the large extent of snow cover and the scarcity of ground observations, use of remotely sensed data is an attractive option for estimating radiative fluxes. Most of the available methods have been applied to low-spatial-resolution satellite observations that do not capture the spatial variability of snow cover, clouds, or aerosols, all of which need to be accounted for to achieve accurate estimates of surface radiative fluxes. The objective of this study is to use high-spatial-resolution observations that are available from the Moderate Resolution Imaging Spectroradiometer (MODIS) to derive surface shortwave (0.2–4.0 μm) downward radiative fluxes in complex terrain, with attention on the effect of topography (e.g., shadowing or limited sky view) on the amount of radiation received. The developed method has been applied to several typical melt seasons (January–July during 2003, 2004, 2005, and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability of shortwave fluxes. Issues of scale in both the satellite and ground observations are also addressed to illuminate difficulties in the validation process of satellite-derived quantities. It is planned to apply the findings from this study to test improvements in estimation of snow water equivalent.
3

Rodriguez-Puebla, C., R. T. Pinker, and S. Nigam. "Relationship between downwelling surface shortwave radiative fluxes and sea surface temperature over the tropical Pacific: AMIP II models versus satellite estimates." Annales Geophysicae 26, no. 4 (May 13, 2008): 785–94. http://dx.doi.org/10.5194/angeo-26-785-2008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Incident shortwave radiation at the Earth's surface is the driving force of the climate system. Understanding the relationship between this forcing and the sea surface temperature, in particular, over the tropical Pacific Ocean is a topic of great interest because of possible climatic implications. The objective of this study is to investigate the relationship between downwelling shortwave radiative fluxes and sea surface temperature by using available data on radiative fluxes. We assess first the shortwave radiation from three General Circulation Models that participated in the second phase of the Atmospheric Model Intercomparison Project (AMIP II) against estimates of such fluxes from satellites. The shortwave radiation estimated from the satellite is based on observations from the International Satellite Cloud Climatology Project D1 data and the University of Maryland Shortwave Radiation Budget model (UMD/SRB). Model and satellite estimates of surface radiative fluxes are found to be in best agreement in the central equatorial Pacific, according to mean climatology and spatial correlations. We apply a Canonical Correlation Analysis to determine the interrelated areas where shortwave fluxes and sea surface temperature are most sensitive to climate forcing. Model simulations and satellite estimates of shortwave fluxes both capture well the interannual signal of El Niño-like variability. The tendency for an increase in shortwave radiation from the UMD/SRB model is not captured by the AMIP II models.
4

Scott, James D., and Michael A. Alexander. "Net Shortwave Fluxes over the Ocean." Journal of Physical Oceanography 29, no. 12 (December 1999): 3167–74. http://dx.doi.org/10.1175/1520-0485(1999)029<3167:nsfoto>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ma, Y., and R. T. Pinker. "Modeling shortwave radiative fluxes from satellites." Journal of Geophysical Research: Atmospheres 117, no. D23 (December 4, 2012): n/a. http://dx.doi.org/10.1029/2012jd018332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wilber, Anne C., G. Louis Smith, Shashi K. Gupta, and Paul W. Stackhouse. "Annual Cycles of Surface Shortwave Radiative Fluxes." Journal of Climate 19, no. 4 (February 15, 2006): 535–47. http://dx.doi.org/10.1175/jcli3625.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The annual cycles of surface shortwave flux are investigated using the 8-yr dataset of the surface radiation budget (SRB) components for the period July 1983–June 1991. These components include the downward, upward, and net shortwave radiant fluxes at the earth's surface. The seasonal cycles are quantified in terms of principal components that describe the temporal variations and empirical orthogonal functions (EOFs) that describe the spatial patterns. The major part of the variation is simply due to the variation of the insolation at the top of the atmosphere, especially for the first term, which describes 92.4% of the variance for the downward shortwave flux. However, for the second term, which describes 4.1% of the variance, the effect of clouds is quite important and the effect of clouds dominates the third term, which describes 2.4% of the variance. To a large degree the second and third terms are due to the response of clouds to the annual cycle of solar forcing. For net shortwave flux at the surface, similar variances are described by each term. The regional values of the EOFs are related to climate classes, thereby defining the range of annual cycles of shortwave radiation for each climate class.
7

Winton, Michael. "Simple Optical Models for Diagnosing Surface–Atmosphere Shortwave Interactions." Journal of Climate 18, no. 18 (September 15, 2005): 3796–805. http://dx.doi.org/10.1175/jcli3502.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A technique is developed for diagnosing effective surface and atmospheric optical properties from climate model shortwave flux diagnostics. These properties can be used to distinguish the contributions of surface and atmospheric optical property changes to shortwave flux changes at the surface and top of the atmosphere. In addition to the four standard shortwave flux diagnostics (upward, downward, surface, and top of atmosphere), the technique makes use of surface-down and top-up fluxes over a zero-albedo surface obtained from an auxiliary online shortwave calculation. The simple model optical properties, when constructed from the time-mean fluxes, are effective optical properties, useful for predicting the time-mean response to optical property changes. The technique is tested against auxiliary online shortwave calculations at four validation albedos and shown to predict the monthly mean surface absorption with an rms error of less than 2% over the globe. The reasons for the accuracy of the technique are explored. Less accurate techniques that make use of existing shortwave diagnostics are presented and compared.
8

Sai Krishna, S. V. S., P. Manavalan, and P. V. N. Rao. "Estimation of Net Radiation using satellite based data inputs." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-8 (November 28, 2014): 307–13. http://dx.doi.org/10.5194/isprsarchives-xl-8-307-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Daily net surface radiation fluxes are estimated for Indian land mass at spatial grid intervals of 0.1 degree. Two approaches are employed to obtain daily net radiation for four sample days viz., November 19, 2013, December 16, 2013, January 8, 2014 and March 20, 2014. Both the approaches compute net shortwave and net longwave fluxes, separately and sum them up to obtain net radiation. The first approach computes net shortwave radiation using daily insolation product of Kalpana VHRR and 15 days time composited broadband albedo product of Oceansat OCM2. The net outgoing longwave radiation is computed using Stefan Boltzmann equation corrected for humidity and cloudiness. In the second approach, instantaneous clear-sky net-shortwave radiation is estimated using computed clear-sky incoming shortwave radiation and the gridded MODIS 16-day time composited albedo product. The net longwave radiation is obtained by estimating outgoing and incoming longwave radiation fluxes, independently. In this, MODIS derived surface emissivity and skin temperature parameters are used for estimating outgoing longwave radiation component. In both the approaches, surface air temperature data required for estimation of net longwave radiation fluxes are extracted from India Meteorological Department’s (IMD) Automatic Weather Station (AWS) records. Estimates by the two different approaches are evaluated by comparing daily net radiation fluxes with CERES based estimates corresponding to the sample days, through statistical measures. The estimated all sky daily net radiation using the first approach compared well with CERES SYN1deg daily average net radiation with r<sup>2</sup> values of the order of 0.7 and RMS errors of the order of 8&ndash;16 w/m<sup>2</sup>.
9

Key, Jeffrey R., Yong Liu, and Robert S. Stone. "Development and evaluation of surface shortwave flux parameterizations for use in sea-ice models." Annals of Glaciology 25 (1997): 33–37. http://dx.doi.org/10.3189/s0260305500013756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The surface radiation budget of the polar regions strongly influences ice growth and melt. Thermodynamic sea-ice models therefore require accurate yet computationally efficient methods of computing radiative fluxes. In this paper a new parameterization of the downwelling shortwave radiation flux at the Arctic surface is developed and compared to a variety of existing schemes. Parameterized llnxes are compared to in situ measurements using data for one year at Barrow, Alaska. Our results show that the new parameterization can estimate the downwelling shortwave flux with mean and root mean square errors of 1 and 5%, respectively, for clear conditions and 5 and 20% for cloudy conditions. The new parameterization offers a unified approach to estimating downwelling shortwave fluxes under clear and cloudy conditions, and is more accurate than existing schemes.
10

Key, Jeffrey R., Yong Liu, and Robert S. Stone. "Development and evaluation of surface shortwave flux parameterizations for use in sea-ice models." Annals of Glaciology 25 (1997): 33–37. http://dx.doi.org/10.1017/s0260305500013756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The surface radiation budget of the polar regions strongly influences ice growth and melt. Thermodynamic sea-ice models therefore require accurate yet computationally efficient methods of computing radiative fluxes. In this paper a new parameterization of the downwelling shortwave radiation flux at the Arctic surface is developed and compared to a variety of existing schemes. Parameterized llnxes are compared to in situ measurements using data for one year at Barrow, Alaska. Our results show that the new parameterization can estimate the downwelling shortwave flux with mean and root mean square errors of 1 and 5%, respectively, for clear conditions and 5 and 20% for cloudy conditions. The new parameterization offers a unified approach to estimating downwelling shortwave fluxes under clear and cloudy conditions, and is more accurate than existing schemes.

Дисертації з теми "Shortwave fluxes":

1

Guilbert, Simonne. "Comparaisons des flux ondes courtes POLDER / PARASOL et CERES / Aqua : amélioration des flux ondes courtes POLDER / PARASOL." Thesis, Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILR027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le contexte actuel du changement climatique, il est essentiel de bien caractériser et de pouvoir suivre dans le temps le bilan d'énergie radiative terrestre au sommet de l'atmosphère et à la surface. Du point de vue de la mesure, obtenir une estimation correcte du bilan radiatif passe par la détermination précise des flux radiatifs solaire et infra-rouge. L'objectif de cette thèse est d'étudier les flux radiatifs solaires obtenus à partir du radiomètre français POLDER embarqué sur le microsatellite PARASOL du CNES. Une première partie des travaux de thèse présentés consiste à comparer les produits opérationnels actuels de POLDER avec les flux de référence obtenus par les radiomètres à large bande spectrale CERES sur les plates-formes spatiales américaines Aqua et Terra. La comparaison est faite sur deux périodes, la première pour laquelle nous disposons de mesures coïncidentes (2005-2009), et la seconde qui correspond à une période de dérive du satellite PARASOL (2010-2013). Nous montrons que cette dérive a eu un impact direct sur les observations, avec des répercussions sur les flux calculés. En effet, sur la période de coïncidence des mesures les flux POLDER sont très proches des flux CERES pour deux des produits étudiés (SSF1deg, SYN1deg) avec des différences relatives inférieures à 2% jusqu'en décembre 2009. Après cette date, la différence relative augmente. Un effet de compensation terres/océans est par ailleurs mis en évidence. Les résultats obtenus suite à cette comparaison nous ont menés à étudier plus particulièrement la composante de l'algorithme qui permet d'obtenir les moyennes mensuelles des flux POLDER. Celle-ci concerne l'extrapolation diurne, utilisée pour obtenir des estimations de l'albédo à toutes les heures de la journée à partir d'une seule observation en utilisant des modèles qui dépendent de la scène observée. Les modèles utilisés actuellement sont issus de quatre mois d'observations POLDER-1 (1996-1997) et nous avons décidé de mettre à profit les données obtenues sur l'ensemble de la mission PARASOL pour améliorer ces modèles. Les flux solaires obtenus avec les nouveaux modèles présentent moins de dépendance à la dérive au-dessus des océans mais une tendance encore visible au-dessus des terres. Ces résultats nous ont amenés à proposer plusieurs pistes d'amélioration, principalement en augmentant le nombre de modèles POLDER. Ces travaux, basés sur les mesures de POLDER qui a cessé de fonctionner en décembre 2013 mais dont les données sont disponibles, seront en grande partie réutilisables pour le futur radiomètre multispectral, multi-angulaire et polarisé 3MI, développé par l'ESA et EUMETSAT et qui sera embarqué sur la prochaine mission spatiale opérationnelle EPS-SG d'EUMETSAT à partir de 2024 pour une durée d'environ 20 ans
In the context of climate change, it is essential to estimate precisely and be able to monitor over time the energy balance of the Earth at the top of the atmosphere and at the surface. In terms of measurement, obtaining a correct estimate of the radiative balance requires a precise determination of the shortwave (solar) and longwave (infrared) radiative fluxes. The objective of this thesis is to assess the solar radiative fluxes obtained from the French radiometer POLDER on board the PARASOL microsatellite supported by CNES. A first part of the thesis presents a comparison between the operational products computed from POLDER observations with the reference fluxes obtained through the broadband radiometers CERES on the NASA space platforms Aqua and Terra. The comparisons are made over two periods: first a period with coincident measurements (2005-2009), then a second period which corresponds to the drift of the PARASOL satellite (2010-2013). We show that this drift had an impact on the observations, with strong repercussions on the calculated fluxes. Over the period of coincidence of the measurements, POLDER fluxes are very close to the fluxes from CERES for two of the products studied (CERES SSF1deg and CERES SYN1deg) with relative differences under 2% until December 2009. After 2010, the relative difference increases with the drift. A land/ocean compensation effect is also revealed. The results obtained through these comparisons led us to study in detail the component of the algorithm used to obtain the monthly means of POLDER shortwave fluxes. This part of the algorithm is the diurnal extrapolation, used to estimate a value of albedo at all hours of the day from a single observation using models that are scene-dependent. The models used for the operational products were built using four months of POLDER-1 observations (1996-1997). We decided to take advantage of the data obtained throughout the entire PARASOL mission to improve these models. The shortwave fluxes obtained with the new models show less dependence on the drift over oceans but a drift is still present over lands. These results led to several propositions that could improve POLDER's shortwave fluxes, mainly by increasing the number of POLDER models. This work, based on measurements from POLDER-3, which was shut down in December 2013, but whose data is available, will be largely reusable for the future multispectral, multi-angular and polarized radiometer 3MI, developed by ESA and EUMETSAT and which will fly onboard the EPS-SG mission supported by EUMETSAT from 2024, for approximately 20 years
2

Maria, Dulce Filomena Lajas 1972. "Improving the retrieval of downwelling surface shortwave fluxes using data from geostationary satellites." Doctoral thesis, 2012. http://hdl.handle.net/10451/7107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Shortwave radiation is a key quantity to estimate the surface radiation budget which has a close relationship with the climate of a given region. Shortwave radiation is affected by aerosols and clouds. Aerosols modify the Earth’s radiation budget and boundary layer meteorology by reflecting sunlight to space and absorbing radiation in the atmosphere. Clouds modulate the vertical and horizontal distributions of solar radiative heating, latent heat, and cooling by thermal radiation that drive the atmospheric circulation. The main objective of this thesis is to analyze in detail the methodology presently used to derive the Downwelling Surface Shortwave Flux (DSSF) based on information from geostationary satellites. The study is closely related to operational activities developed within the framework of the Satellite Application Facility on Land Surface Analysis (LSA SAF). An already existing operational DSSF algorithm, developed within the framework of the Ocean and Sea Ice (O&SI) SAF, is tested and improved for clear and cloudy sky conditions. In the case of clear sky, the parameterisation for atmospheric absorption accounts for the variation of the concentration of the atmospheric components. In the case of cloudy sky, radiation interactions are more complex and, besides the interaction with the atmosphere, the parameterisation scheme accounts for cloud albedo and relies on a predefined value characterizing the absorption by clouds. Both methodologies are analyzed and two parameterizations are proposed; for cloudy sky pixels the new parameterisation takes cloud types into account whereas, in the clear sky case, diffuse radiation is explicitly included in the DSSF model, based on information about aerosol optical thickness. Model performance is significantly improved and for both methodologies an approach to their integration in an operational environment is proposed.
A elaboração de cenários do clima futuro pressupõe um conhecimento sólido do estado do clima, quer do passado, quer do presente. O Sol é a fonte primária de energia do sistem climático, estando na origem das circulações oceânica e atmosférica que modulam as interacções entre a atmosfera e a hidrosfera, bem como entre estas e as restantes componentes do Sistema Climático, nomeadamente a criosfera, a litosfera e a biosfera. Os ciclos hidrológico e do carbono constituem exemplos de tais interacções e o seu conhecimento afigura-se crucial para que se possam antecipar possíveis comportamentos do clima no futuro. No contexto acima descrito, o conhecimento do balanço radiativo à superfície do solo é fundamental em inúmeras aplicações, tais como na previsão numérica do estado do tempo e na gestão de recursos naturais. Em particular, revela-se essencial possuir um conhecimento aprofundado das interacções da energia solar com a atmosfera e com a superficíe do solo a fim de que se possa dar resposta a um leque vasto de questões relacionadas com a evolução do clima actual. Assim é, por exemplo, que o facto de a absorção de pequeno comprimento de onda ter vindo a ser subestimada, seja em condições de céu limpo, seja de céu nublado, tem implicações profundas para o balanço energético nos modelos de circulação global. Nesta conformidade, uma maior precisão na estimativa da radiação de pequeno comprimento de onda deverá ter repercussões positivas na caracterização do clima e na elaboração de cenários do clima futuro.
Fundação para a Ciência e a Tecnologia

Частини книг з теми "Shortwave fluxes":

1

Ustin, Susan L., and Stéphane Jacquemoud. "How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality." In Remote Sensing of Plant Biodiversity, 349–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33157-3_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractLeaves absorb, scatter, and transmit sunlight at all wavelengths across the visible, near-infrared, and shortwave-infrared spectrum. The optical properties of a leaf are determined by its biochemical and biophysical characteristics, including its 3-D cellular organization. The absorption and scattering properties of leaves together create the shape of their reflectance spectra. Terrestrial seed plant species share similar physiological and metabolic processes for fluxes of gases (CO2, O2, H2O), nutrients, and energy, while differences are primarily consequences of how these properties are distributed and their physical structures. Related species generally share biochemical and biophysical traits, and their optical properties are also similar, providing a mechanism for identification. However, it is often the minor differences in spectral properties throughout the wavelengths of the solar spectrum that define a species or groups of related species. This chapter provides a review and summary of the most common interactions between leaf properties and light and the physical processes that regulate the outcomes of these interactions.
2

Shklyaev, Sergey, and Alexander Nepomnyashchy. "Longwave Modulations of Shortwave Patterns." In Longwave Instabilities and Patterns in Fluids, 287–327. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7590-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anyamba, Assaf, and Compton J. Tucker. "Monitoring Drought Using Coarse Resolution Polar-Orbiting Satellite Data." In Monitoring and Predicting Agricultural Drought. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195162349.003.0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There are two distinct categories of remotely sensed data: satellite data and aerial data or photographs. Unlike aerial photographs, satellite data have been routinely available for most of the earth’s land areas for more than two decades and therefore are preferred for reliably monitoring global vegetation conditions. Satellite data are the result of reflectance, emission, and/or back scattering of electromagnetic energy from earth objects (e.g., vegetation, soil, and water). The electromagnetic spectrum is very broad, and only a limited range of wavelengths is suitable for earth resource monitoring and applications. The gaseous composition (O2, O3, CO2, H2O, etc.) of the atmosphere, along with particulates and aerosols, cause significant absorption and scattering of electromagnetic energy over some regions of the spectrum. This restricts remote sensing of the earth’s surface to certain “atmospheric windows,” or regions in which electromagnetic energy can pass through the atmosphere with minimal interference. Some such windows include visible, infrared, shortwave, thermal, and microwave ranges of the spectrum. The shortwave-infrared (SWIR) wavelengths are sensitive to moisture content of vegetation, whereas the thermal-infrared region is useful for monitoring and detecting plant canopy stress and for modeling latent and sensible heat fluxes. Thermal remote sensing imagery is acquired both during the day and night, and it measures the emitted energy from the surface, which is related to surface temperatures and the emissivity of surface materials. This chapter focuses on the contribution of visible and infrared wavelengths to global drought monitoring, and chapter 6 discusses visible, infrared, and thermal wave contributions. Under microwave windows, the satellite data can be divided into two categories: active microwave and passive microwave. Chapters 7 and 8 describe applications of passive and active microwave remote sensing to drought monitoring, respectively. Early use of satellite data was pioneered by the Landsat series originally known as the Earth Resource Technology Satellite (ERTS; http://landsat7. usgs.gov/index.php). Landsat was the first satellite specifically designed for broad-scale observation of the earth’s land surface.
4

K. Ronoh, Erick. "Radiation Exchange at Greenhouse Tilted Surfaces under All-Sky Conditions." In Next-Generation Greenhouses for Food Security. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Greenhouses generally exhibit a greater degree of thermal radiation interaction with the surroundings than other buildings. A number of greenhouse thermal environment analyses have handled the thermal radiation exchange in different ways. Thermal radiation exchange at greenhouse surfaces is of great interest for energy balance. It dominates the heat transfer mechanisms especially between the cover material surface and the surrounding atmosphere. At these surfaces, the usual factors of interest are local temperatures and energy fluxes. The greenhouse surfaces are inclined and oriented in various ways and thus can influence the radiation exchange. The scope of this work is determination of the thermal radiation exchange models as well as effects of surface inclination and orientation on the radiation exchange between greenhouse surfaces and sky. Apart from the surface design and the thermal properties of the cover, the key meteorological parameters influencing longwave and shortwave radiation models were considered in detail. For the purpose of evaluating surface inclination and orientation effects, four identical thermal boxes were developed to simulate the roof and wall greenhouse surfaces. The surface temperatures and atmospheric parameters were noted under all-sky conditions (clear-sky and overcast). Differences in terms of surface-to-air temperature differences at the exposed roof and wall surfaces as influenced by surface inclination and orientation are discussed in this work. Overall, the findings of this work form a basis for decisions on greenhouse design improvements and climate control interventions in the horticultural industry.

Тези доповідей конференцій з теми "Shortwave fluxes":

1

Zhuravleva, Tatiana B. "Shortwave radiative fluxes in one-layer (water-droplet) broken clouds." In Fifth International Symposium on Atmospheric and Ocean Optics, edited by Vladimir E. Zuev and Gennadii G. Matvienko. SPIE, 1999. http://dx.doi.org/10.1117/12.337004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tianxing Wang, Guangjian Yan, Jiancheng Shi, Xihan Mu, Ling Chen, Huazhong Ren, Zhonghu Jiao, and Jing Zhao. "Topographic correction of retrieved surface shortwave radiative fluxes from space under clear-sky conditions." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6946806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wild, Martin. "Changes in shortwave and longwave radiative fluxes as observed at BSRN sites and simulated with CMIP5 models." In RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2016): Proceedings of the International Radiation Symposium (IRC/IAMAS). Author(s), 2017. http://dx.doi.org/10.1063/1.4975554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Ling, Guangjian Yan, Huazhong Ren, and Tianxing Wang. "A simple fusion algorithm of polar-orbiting and geostationary satellite data for the estimation of surface shortwave fluxes." In IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7729686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, P., H. Klein Baltink, W. H. Knap, and P. Stammes. "Shortwave flux profile analysis at the Cabauw BSRN site." In RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS). AIP, 2013. http://dx.doi.org/10.1063/1.4804855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ying, Wangmin, Ruibo Wang, Lu Niu, and Hua Wu. "A Comprehensive Assessment of Modis-Derived Instantaneous Net Surface Shortwave Radiation using the in-Situ Fluxnet Database." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8899249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ceamanos, Xavier, Jean-Louis Roujean, Dominique Carrer, and Catherine Meurey. "Downwelling shortwave surface flux from MSG geostationary satellite: Impact assessment on Land Surface Models and improvements on consideration of aerosol effects." In IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6723474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Goto, Daisuke, Shuhei Kanazawa, Teruyuki Nakajima, and Toshihiko Takemura. "Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of a global aerosol-transport model and in-situ measurements." In RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS). AIP, 2013. http://dx.doi.org/10.1063/1.4804861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії