Статті в журналах з теми "SIQO DC-DC converter"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: SIQO DC-DC converter.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-38 статей у журналах для дослідження на тему "SIQO DC-DC converter".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lindiya, Augusti, S. Palani, and K. Vijayarekha. "Compensator Based Perfromance Enhancement Strategy for a SIQO Buck Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 7, no. 3 (September 1, 2016): 800. http://dx.doi.org/10.11591/ijpeds.v7.i3.pp800-815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<span>This paper attempts to design lag and lag-lead compensators for improving the performance of a Single Inductor Quad Output (SIQO) dc-dc buck converter in terms of time domain and frequency domain specifications. It develops the state space averaged model to find the duty ratio of the desired output voltages at steady state. The exercise arrives at the transfer function model from the state space averaged model through the use of its lumped small signal equivalent circuit which allows analyzing the performance of the system in frequency and time domains. The responses are derived in the MATLAB/Simulink® using discrete components incorporating compensators of the converter. The hardware results obtained using Data Acquisition Module DT9834® interfaced to MATLAB/Simulink® and prototype model establish the performance of the compensator based converter and further emphasize its ability to minimize the ripples over a range of operating loads. </span>
2

Wu, Shu, Yasunori Kobori, and Haruo Kobayashi. "A Simple Analog Feed-Forward Controller Design for DC-DC Buck Converter." Key Engineering Materials 643 (May 2015): 61–67. http://dx.doi.org/10.4028/www.scientific.net/kem.643.61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents usage of analog feed-forward control to improve the transient response of DC-DC buck converters with pulse-width-modulation (PWM). The analog feed-forward controller is simple and does not require complicated calculations. Duty cycle is modulated directly based on the charge balance of the output capacitor. Compared with conventional feedback control, this simple feed-forward controller reduces control delay and provides a satisfactory transient response. We apply this technique to a Single-Inductor-Dual-Output (SIDO) buck converter as well as a Single-Inductor-Single-Output (SISO) buck converter, and show that its cross-regulation is improved. We have validated the proposed method with SIMetrix simulations.
3

Rao, S. Nagaraja, D. V. Ashok Kumar, and Ch Sai Babu. "Grid Connected Distributed Generation System with High Voltage Gain Cascaded DC-DC Converter Fed Asymmetric Multilevel Inverter Topology." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (December 1, 2018): 4047. http://dx.doi.org/10.11591/ijece.v8i6.pp4047-4059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper presents distributed generation (DG) system in grid connected mode of operation with asymmetric multi-level inverter (AMLI) topology. Cascaded type DC-DC converter is employed to feed proposed AMLI topology. The DG output voltage (generally low voltage) is stepped up to the required level of voltage using high-gain DC-DC converter. Proposed AMLI topology consists of capacitors at the primary side. The output of high-gain DC-DC converter is fed to split voltage balance single-input multi-output (SIMO) circuit to maintain voltage balance across capacitors of AMLI topology. Cascaded DC-DC converters (both high-gain converter and SIMO circuit) are operated in closed-loop mode. The proposed AMLI feeds active power to grid converting DC type of power generated from DG to AC type to feed the grid. PWM pattern to trigger power switches of AMLI is also presented. The inverting circuit of MLI topology is controlled using simplified Id-Iq control strategy in this paper. With the proposed control theory, the active power fed to grid from DG is controlled and power factor is maintained at unity. The proposed system of DG integration to grid through cascaded DC-DC converters and AMLI structure is validated from fixed active power to grid from DG condition. The proposed system is developed and results are obtained using MATLAB/SIMULINK software.
4

Dhananjaya, Mudadla, and Swapnajit Pattnaik. "Design and implementation of a SIMO DC–DC converter." IET Power Electronics 12, no. 8 (July 2019): 1868–79. http://dx.doi.org/10.1049/iet-pel.2018.6217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chang, Chun-Kai, Paul C. P. Chao, Chun-Kai Cheng, Yuan-Po Cheng, and Durgesh Samadhiya. "MoP-29 Improving Performance of a Single Inductor Multi-Output (SIMO) DC-DC Converter Using Constant On-Time." Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _MoP—29–1_—_MoP—29–3_. http://dx.doi.org/10.1299/jsmemipe.2015._mop-29-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BM, Mmanjunath, Ashok Kumar D V, and Vijaya Kumar M. "A Simplified PWM Technique for Isolated DC-DC Converter Fed Switched Capacitor Multi-Level Inverter for Distributed Generation." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 3 (September 1, 2017): 1230. http://dx.doi.org/10.11591/ijpeds.v8.i3.pp1230-1239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents a novel simplied PWM technique to drive switched capacitor type multi-level inverter fed from isolated type DC-DC converter for distributed generation. Distributed generation (DG) is renowned power generation at point of utility with no environmental aects and reduces transmission line losses. Photo-voltaic system is considered as renewable energy source for DG and the low voltage from PV system is boosted to required voltage using an isolated type single-input multi-output (SIMO) DC-DC converter. DC output from isolated SIMO DC-DC converter is fed to switched capacitor type multi-level inverter (SC-MLI) to feed the AC load. Isolated SIMO DC-DC converter apart from boosting the DG output voltage, also eliminates the problem of voltage unbalancing in SC-MLI topology. Closed loop operation of SIMO DC-DC converter employs only single PI controller instead of three controllers was presented in this paper. Modes of operation of SC-MLI and Novel PWM switching pattern was explained. Simulation of proposed system was developed using MATLAB/SIMULINK software. The prototype was developed for the proposed system and hardware results are also shown.
7

Takai, Nobukazu, Takashi Okada, Kenji Takahashi, Hajime Yokoo, Shunsuke Miwa, Kengo Tsushida, Hiroyuki Iwase, et al. "Single Inductor Bipolar Outputs DC-DC Converter with Current Mode Control Circuit." Key Engineering Materials 534 (January 2013): 220–26. http://dx.doi.org/10.4028/www.scientific.net/kem.534.220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mobile equipment such as organic-EL display, digital still camera and so on re-quire both positive and negative power supply voltage to obtain high quality. Single InductorMultiple-Output (SIMO) DC-DC converter can provide a pair of positive and negative outputvoltages with only one external inductor. This paper describes SIMO DC-DC Converter usingproposed current-mode control (CMC) circuit. The proposed CMC circuit realizes high responsespeed for the change of load current. Spectre simulations with 0.18m CMOS process parameterare performed to verify the validity of the proposed converter. The simulation results indicatethat the proposed converter has higher response time compared with conventional converter.
8

Tanaka, Shunsuke, Tatsunori Nagashima, Yasunori Kobori, Kotaro Kaneya, Takahiro Sakai, Biswas Sumit Kumar, Nobukazu Takai, and Haruo Kobayashi. "Design of Hysteresis Controlled Single-Inductor Multi-Output DC-DC Converter." Key Engineering Materials 643 (May 2015): 69–77. http://dx.doi.org/10.4028/www.scientific.net/kem.643.69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This Paper Describes Application of the Hysteresis Control to the Single-Inductordual-Output (SIDO) Power Supply Circuit to Realize High Performance, Low Cost and Small Sizepower Supply Circuits. the Sidos can Realize Small Number of Inductors (hence Small Size Andlow Cost) in the System where Multiple Power Supplies are Required, but their Performance Isnot Very Good if Conventional SIDO Control Methods are Used. we Show with Simulation Andexperiment that the Hysteresis Control can Realize High Performance SIDO Converters.
9

Shiwalkar, Abhishek Kanchan, and Shilpa Ravindra Shinde. "Multiple output dc-dc converter derived from Cock-Croft Walton voltage multiplier and SIMO converter." International Journal of Research in Engineering and Innovation 4, no. 3 (2020): 137–42. http://dx.doi.org/10.36037/ijrei.2020.4303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lindiya, S. Augusti, N. Subashini, and K. Vijayarekha. "Cross Regulation Reduced Optimal Multivariable Controller Design for Single Inductor DC-DC Converters." Energies 12, no. 3 (February 1, 2019): 477. http://dx.doi.org/10.3390/en12030477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Single Inductor (SI) converters with the advantage of using one inductor for any number of inputs/outputs find wide applications in portable electronic gadgets and electrical vehicles. SI converters can be used in Single Input Multiple Output (SIMO) and Multiple Input Multiple Output (MIMO) configurations but they need controllers to achieve good transient and steady state responses, to improve the stability against load and line disturbances and to reduce cross regulation. Cross regulation is the change in an output voltage due to change in the load current at another output and it is an added constraint in SI converters. In this paper, Single Input Dual Output (SIDO) and Dual Input Dual Output (DIDO) converters with applications capable of handling high load current working in Continuous Conduction Mode (CCM) of operation are taken under study. Conventional multivariable PID and optimal Linear Quadratic Regulator (LQR) controllers are developed and their performances are compared for the above configurations to meet the desired objectives. Generalized mathematical models for SIMO and MIMO are developed and a Genetic Algorithm (GA) is used to find the parameters of a multivariable PID controller and the weighting matrices of optimal LQR where the objective function includes cross regulation as a constraint. The simulated responses reveal that LQR controller performs well for both the systems over multivariable PID controller and they are validated by hardware prototype model with the help of DT9834® Data Acquisition Module (DAQ). The methodologies used here generate a fresh dimension for the case of such converters in practical applications.
11

Ilambirai, R. C., Subhransu Sekhar Dash, and N. K. Rayaguru. "Implementation of a low cost ac-dc converter for high and low power applications." International Journal of Engineering & Technology 7, no. 1.2 (December 28, 2017): 77. http://dx.doi.org/10.14419/ijet.v7i1.2.8998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper proposes an ac-dc converter that gives multiple outputs capable of feeding both high and low power applications. The input ac supply is converted to dc by a diode bridge rectifier, filtered and fed to a modified multiport converter (MPC). This paper focuses on the design of the modified multiport converter that has a cascaded combination of zeta and a buck converter. This is designed as a single input and multiple output converter (SIMO) structure which can operate two loads, one with a high power and other with a low power application, depending on the time instant. The need for opting a multiport converter, reduces the number of switches utilized, thereby reducing the switching losses in the circuit. The zeta in the MPC boosts the input voltage and the buck converter reduces the input voltage and is accordingly fed to the need of the load. The design of the components have been analysed through steady state. MATLAB Simulink has been used to simulate the converter circuit and the varied outputs of the zeta and buck modes are compared. A hardware prototype of the ac-dc converter has been implemented and their results have been shown.
12

Li, Mu Rong, Yasunori Kobori, Feng Zhao, Qiu Lin Zhu, Zachary Nosker, Shu Wu, Shaiful N. Mohyar, Haruo Kobayashi, and Nobukazu Takai. "Single-Inductor Dual-Output DC-DC Converter Design with Exclusive Control." Key Engineering Materials 643 (May 2015): 47–52. http://dx.doi.org/10.4028/www.scientific.net/kem.643.47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper proposes a single inductor dual output (SIDO) DC-DC converter with an exclusive control circuit. We propose two kinds of converter: a buck-buck and a boost-boost converter. Multiple voltage outputs are controlled exclusively, using error voltage feedback. This approach requires a few additional components (a switch, a diode and a comparator), but requires no current sensors and does not depend on the value of output voltage or output current. We describe circuit topologies, operation principles and simulation results.
13

Sun, Shikai, Hui Guo, Yimeng Zhang, Yupeng Jia, Hongliang Lv, Qingwen Song, Xiaoyan Tang, and Yuming Zhang. "Novel modulation method for torque ripple suppression of brushless DC motors based on SIMO DC–DC converter." Journal of Power Electronics 20, no. 3 (March 25, 2020): 720–30. http://dx.doi.org/10.1007/s43236-020-00071-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ko, Younghun, Yeongshin Jang, Sok-Kyun Han, and Sang-Gug Lee. "Load-Balance-Independent High Efficiency Single-Inductor Multiple-Output (SIMO) DC-DC Converters." JSTS:Journal of Semiconductor Technology and Science 14, no. 3 (June 30, 2014): 300–312. http://dx.doi.org/10.5573/jsts.2014.14.3.300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Saadatizadeh, Zahra, Pedram Chavoshipour Heris, Ebrahim Babaei, Frede Blaabjerg, and Carlo Cecati. "SIDO coupled inductor‐based high voltage conversion ratio DC–DC converter with three operations." IET Power Electronics 14, no. 10 (May 31, 2021): 1735–52. http://dx.doi.org/10.1049/pel2.12130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Fong, Yat, Ka Cheng, S. Raman, and Xiaolin Wang. "Multi-Port Zero-Current Switching Switched-Capacitor Converters for Battery Management Applications." Energies 11, no. 8 (July 25, 2018): 1934. http://dx.doi.org/10.3390/en11081934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A novel implementation of multi-port zero-current switching (ZCS) switched-capacitor (SC) converters for battery management applications is presented. In addition to the auto-balancing feature offered by the SC technique, the proposed SC converter permits individual control of the charging or discharging current of the series-connected energy storage elements, such as the battery or super-capacitor cells. This approach enables advanced state control and accelerates the equalizing process by coordinated operation with the battery management system (BMS) and an adjustable voltage source, which can be implemented by a DC-DC converter interfaced to the energy storage string. Different configurations, including the single-input multi-output (SIMO), multi-input single-output (MISO) SC converters, and the corresponding altered circuits for string-to-cells, cells-to-string, as well as cells-to-cells equalizers, are discussed with a circuit analysis and derivation of the associated mathematical representation. The simulation study and experimental results indicated a significant increase in the balancing speed with the presence of BMS and closed-loop control of cell currents.
17

Park, Hyunbin, and Shiho Kim. "Single Inductor Multiple Output Auto-Buck-Boost DC–DC Converter with Error-Driven Randomized Control." Electronics 9, no. 9 (August 19, 2020): 1335. http://dx.doi.org/10.3390/electronics9091335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We propose a single inductor multiple output (SIMO) auto-buck-boost DC–DC converter with error-driven randomized control (EDRC). The conventional controls in a SIMO DC–DC converter supply power to outputs that have been selected in a sequential order. Furthermore, they control the inductor current levels at either edge of a switching period in a steady state to be at the same level to alleviate cross-regulation. However, this limits the flexibility of the converter to respond to changes in load requirements. A sequential selection of light loads results in these loads being selected more often than a load demand, degrading the efficiency for light loads. In addition, limited flexibility leads to delayed responses. This paper introduces an auto-buck-boost topology that selects outputs based on output errors, and instantaneously adjusts the inductor current level. Moreover, we propose a technique for allowing any output to avoid selection when all outputs are fully supplied. The proposed EDRC scheme achieves improvements in efficiency in regards to light loads, cross-regulation, and output driving capability.
18

Oh, Sungjae, Jongseok Bae, Hansik Oh, Wonseob Lim, and Youngoo Yang. "DSS modulator using the SIDO dc−dc converter for the CMOS RF PA integrated circuit." IET Microwaves, Antennas & Propagation 13, no. 5 (February 14, 2019): 597–601. http://dx.doi.org/10.1049/iet-map.2018.5465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Miao, Jie, Houpeng Chen, Yu Lei, Yi Lv, Weili Liu, and Zhitang Song. "Near-threshold SIDO DC-DC converter with a high-precision ZCD for phase change memory chip." IEICE Electronics Express 16, no. 11 (2019): 20190250. http://dx.doi.org/10.1587/elex.16.20190250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Salimath, Arunkumar, Edoardo Botti, Giovanni Gonano, Paolo Cacciagrano, Davide Luigi Brambilla, Tommaso Barbieri, Franco Maloberti, and Edoardo Bonizzoni. "An 86% Efficiency, Wide-V$_{in}$ SIMO DC–DC Converter Embedded in a Car-Radio IC." IEEE Transactions on Circuits and Systems I: Regular Papers 66, no. 9 (September 2019): 3598–609. http://dx.doi.org/10.1109/tcsi.2019.2928310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Nam, Ki-Soo, Whan-Seok Seo, Hyun-A. Ahn, Young-Ho Jung, Seong-Kwan Hong, and Oh-Kyong Kwon. "A Highly Power-Efficient Single-Inductor Multiple-Outputs (SIMO) DC-DC Converter with Gate Charge Sharing Method." JSTS:Journal of Semiconductor Technology and Science 14, no. 5 (October 30, 2014): 549–56. http://dx.doi.org/10.5573/jsts.2014.14.5.549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Alizadeh Pahlavani, Mohammad Reza, and Elias Shokati Asl. "DC–DC SIDO converter with low‐voltage stress on switches: analysis of operating modes and design considerations." IET Power Electronics 13, no. 2 (February 2020): 233–47. http://dx.doi.org/10.1049/iet-pel.2018.6184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Modabbernia, Mohammad Reza, Alireza Akoushideh, and Seyed Yaser Fakhrmoosavi. "Design and Analysis of the Voltage Controller for the Non Isolated Boost DC-DC Convertor." EMITTER International Journal of Engineering Technology 7, no. 1 (June 15, 2019): 14–33. http://dx.doi.org/10.24003/emitter.v7i1.312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a controller has been presented by the root locus method based on the state space average model of the boost switching regulator with all of the converter’s parameters and uncertainties. In this model, the load current is unknown and the inductor, capacitor, diode and active switch are non ideal and have an on-state resistance. Furthermore, an on-state voltage drop has been considered for diode and active switch. By neglecting the load current and assuming the ideal elements the simplified model of the regulator has been caddied out. By these complete and simplified models, a step by step method has been proposed to design a single input single output (SISO), second order controller based on roots locus method. In this regard the controller's electronic circuit has been introduced by operational amplifiers. At the end, by simulation of the complete closed-loop system in MATLAB Simulink environment and comparing its results by the results of the regulator and controller circuits in PLECS, the accuracy of the designed controller performance has been shown.
24

Arif, Muhammad, Mohsin Shahzad, Jawad Saleem, Waheed Malik, and Abdul Majid. "Single Conversion Stage Three Port High Gain Converter for PV Integration with DC Microgrid." Elektronika ir Elektrotechnika 26, no. 3 (June 27, 2020): 69–78. http://dx.doi.org/10.5755/j01.eie.26.3.25763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A high gain three port converter with a unidirectional port for photovoltaic (PV) side and two bidirectional ports one each for the battery and the DC bus for PV integration to DC microgrid is presented. High gain is achieved by a coupled inductor with switched capacitor, whereas single stage conversion is used between the ports to achieve high efficiency. The proposed converter is modelled in PLECS/MATLAB and the simulated results for various operational modes are validated using a 500 W prototype. For main operating mode, i.e., single input single output (SISO), the efficiency is calculated to be as high as 96 %. Similarly, owing to the reduced number of components, the losses are reduced considerably for different operation modes.
25

Pham, Ngoc-Son, Taegeun Yoo, Tony Tae-Hyoung Kim, Chan-Gun Lee, and Kwang-Hyun Baek. "A 0.016 mV/mA Cross-Regulation 5-Output SIMO DC–DC Buck Converter Using Output-Voltage-Aware Charge Control Scheme." IEEE Transactions on Power Electronics 33, no. 11 (November 2018): 9619–30. http://dx.doi.org/10.1109/tpel.2017.2785838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Huang, Ming-Hsin, and Ke-Horng Chen. "Single-inductor dual-output (SIDO) DC–DC converters for minimized cross regulation and high efficiency in soc supplying systems." Analog Integrated Circuits and Signal Processing 60, no. 1-2 (July 31, 2008): 93–103. http://dx.doi.org/10.1007/s10470-008-9199-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Lee, Yu-Huei, Tzu-Chi Huang, Yao-Yi Yang, Wen-Shen Chou, Ke-Horng Chen, Chen-Chih Huang, and Ying-Hsi Lin. "Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS Single-Inductor Dual-Output (SIDO) Step-Down DC-DC Converter." IEEE Journal of Solid-State Circuits 46, no. 11 (November 2011): 2488–99. http://dx.doi.org/10.1109/jssc.2011.2164019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Huang, Ming-Hsin, and Ke-Horng Chen. "Single-Inductor Multi-Output (SIMO) DC-DC Converters With High Light-Load Efficiency and Minimized Cross-Regulation for Portable Devices." IEEE Journal of Solid-State Circuits 44, no. 4 (April 2009): 1099–111. http://dx.doi.org/10.1109/jssc.2009.2014726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

BENADERO, L., V. MORENO-FONT, and A. EL AROUDI. "UNFOLDING NONSMOOTH BIFURCATION PATTERNS IN A 1-D PWL MAP AS A MODEL OF A SINGLE-INDUCTOR TWO-OUTPUT DC–DC SWITCHING CONVERTER." International Journal of Bifurcation and Chaos 23, no. 03 (March 2013): 1330008. http://dx.doi.org/10.1142/s0218127413300085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A piecewise linear (PWL) continuous map is used to analyze the nonsmooth bifurcation phenomena in a single-inductor two-output (SITO) DC–DC converter under a PWM interleaved control scheme. This map models the dynamical behavior of the converter when the waveforms of the inductor current can be approximated by straight lines during each switching subinterval. The parameter space is constrained by the interleaving control and the physical restriction on the values of some parameters. The main focus of this paper is on the existence and stability conditions of the rich variety of k-periodic orbits and the different bifurcation patterns that can be exhibited in this system. The analytical results in the form of 1-D and 2-D bifurcation diagrams are compared with numerical simulations obtained from the circuit-based switched model getting a good agreement between the two approaches.
30

Rodríguez Bustinza, Ricardo, and Ewar Mamani Churayra. "CONTROL DE LA VELOCIDAD EN TIEMPO REAL DE UN MOTOR DC CONTROLADO POR LÓGICA DIFUSA TIPO PD+I USANDO LABVIEW." Revista Cientifica TECNIA 21, no. 1 (April 7, 2017): 5. http://dx.doi.org/10.21754/tecnia.v21i1.92.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
En este artículo, se presenta un método basado en inteligencia artificial para controlar una planta motor DC por un microordenador personal (PC), el que interactuando hardware y software logra el control de la velocidad del motor DC en tiempo real usando el algoritmo de control Difuso-PD+I. La adquisición de datos e identificación de los parámetros del motor DC han sido necesarias para el control de la velocidad del motor DC, por medio de la tarjeta de adquisición de datos PCI NIDAQ 6024E cuya interface corre en tiempo real que usa el Workshop Real-Time (RTW), el archivo de datos es procesado con la herramienta de identificación del programa Matlab llamada IDENT. El prototipo del sistema computadora-controlador se diseña empleando la programación grafica de LabVIEW, en este caso se hace uso de las herramientas Fuzzy Logic Control y Simulation Module. El control en tiempo real del sistema se lleva a cabo en el laboratorio usando el convertidor digital-a-analógico (DAC) y encoder formado por dos sensores de efecto hall de tipo incremental que por medio de un convertidor frecuencia voltaje se logra procesar las señales desde las entradas analógicas de la NIDAQ. Se verifican los resultados de simulación de computadora experimentalmente, los que demuestran que la señal de control diseñada puede hacer que la salida del sistema prototipo siga eficientemente las referencias impuestas con mínimo sobrepaso y error en estado estacionario nulo. Palabras clave.- Motor DC, Adquisición de datos, Identificación de parámetros, Diseño del controlador e implementación. ABSTRACTIn this article, a method is presented based on artificial intelligence to control a plant DC motor for a personal microcomputer (PC), that interacted hardware and software achieves the control of the speed of the DC motor in real time using the control algorithm Fuzzy-PD+I. The acquisition of data and identification of the parameters of the DC motor have been necessary for the control of the speed of the motor DC, by means of the card of acquisition of data PCI NIDAQ 6024E whose interface runs in the real time that the Workshop Real-Time uses (RTW), the file of data is processed with the tool of identification of the program called IDENT of Matlab. The prototype of the system computer-controller is designed using the graphic programming of LabVIEW, in this case use of the tools Fuzzy Logic Control and Simulation Module. The control in real time of the system is carried out in the laboratory using the digital-to-analogical converter (DAC) and incremental encoder formed by two sensors of effect hall that is possible to process the signs from the analogical input of the NIDAQ by means of a convertor frequency voltage. The results of computer simulation are verified experimentally, those that demonstrate that the designed control sign can make that the exit of the system prototype follows the references imposed with minimum overshoot and null steady-state error. Keywords.- DC Motor, Data acquisition, Parameters identification, Control design and implementation.
31

Ming-Hsin Huang, Yu-Nong Tsai, and Ke-Horng Chen. "Sub-1 V Input Single-Inductor Dual-Output (SIDO) DC–DC Converter With Adaptive Load-Tracking Control (ALTC) for Single-Cell-Powered Systems." IEEE Transactions on Power Electronics 25, no. 7 (July 2010): 1713–24. http://dx.doi.org/10.1109/tpel.2010.2042073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kommula, Bapayya Naidu, and Venkata Reddy Kota. "A novel single input double output (SIDO) converter for torque ripple minimization in solar powered BLDC motor." International Journal of Renewable Energy Development 8, no. 2 (June 13, 2019): 161. http://dx.doi.org/10.14710/ijred.8.2.161-168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper proposes a new converter topology for torque ripple reduction in Brushless DC (BLDC) motor. Due to the torque ripple problem, the use of this motor is limited to few applications. In this paper, a Single Input Double Output (SIDO) converter is proposed to suppress the torque ripple in BLDC motor. The proposed SIDO converter provides two output voltages. One for supplying the motor throughout conduction time and second output voltage is given to the non-commutating phase of motor during commutation instants. This proposed SIDO converter is fed from Photo Voltaic (PV) system. This paper also presents a new Maximum Power Point Tracking (MPPT) based on trisection of Power-Voltage characteristics (TPVC) to attain the maximum power from the PV system. This scheme takes only 7 iterations to reach MPP. The intended configuration is developed and simulated in Matlab/Simulink environment. The results justify the superiority of proposed scheme that minimizes torque ripple in BLDC motor to only 6 to 12% from 50 to 80 % in conventional scheme and also extracts maximum power from PV system. ©2019. CBIORE-IJRED. All rights reserved
33

Nakase, Yasunobu, Shinichi Hirose, Hiroshi Onoda, Yasuhiro Ido, Yoshiaki Shimizu, Tsukasa Oishi, Toshio Kumamoto, and Toru Shimizu. "0.5 V Start-Up 87% Efficiency 0.75 mm² On-Chip Feed-Forward Single-Inductor Dual-Output (SIDO) Boost DC-DC Converter for Battery and Solar Cell Operation Sensor Network Micro-Computer Integration." IEEE Journal of Solid-State Circuits 48, no. 8 (August 2013): 1933–42. http://dx.doi.org/10.1109/jssc.2013.2258826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Aden, Ilyass Abdillahi, Hakan Kahveci, and Mustafa Ergin Şahin. "Design and Implementation of Single-Input Multiple-Output DC–DC Buck converter for Electric Vehicles." Journal of Circuits, Systems and Computers, April 16, 2021, 2150228. http://dx.doi.org/10.1142/s0218126621502285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The transportation sector uses a big portion of the world’s petroleum products thus increasing the greenhouse gas (GHG) emissions. Electric vehicles (EVs) have the potential to solve GHG emissions. The requirements for EVs have brought many different problems such as the conversion of voltage level from the battery to other parts of the EV using DC–DC converters. The design and implementation of a nonisolated DC–DC buck converter with single input and dual output are presented, which is also called the single-input multiple-output (SIMO) converter. The converter is designed especially for electric cars. The battery (48[Formula: see text]V) of the electric vehicle is used as an input to the SIMO. Small-signal analysis and effective control strategy for the converter are presented in this paper. The simulation of the system is performed and compared with the experimental results.
35

Liu, Yuyang, Zhaohui Wu, Bin Li, and Yanqi Zheng. "PLL-Based Charge Control Scheme for SIMO Buck DC-DC Converter." IEICE Electronics Express, 2021. http://dx.doi.org/10.1587/elex.18.20210347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

R, Priyanka, and Shanmugalakshmi R. "Integrated Dual Output Converter with Low Electric Stress on Components." International Research Journal of Multidisciplinary Technovation, September 25, 2019, 17–25. http://dx.doi.org/10.34256/irjmt1953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent days there is a vast development in the field of power electronic converters. Necessity of multiple level of voltage demand is raised for single supply system. To meet different level of load demand single input and multiple output topologies (SIMO) are created. There are many such converters fall under SIMO converters. The Integrated Dual Output Converter (IDOC) is one among them. The IDOC is a DC-DC converter that performs boost and buck operations simultaneously with a single input. It is basically evolved from boost converter, replacing a single switch by couple of switches. Both the switches are connected in series not only to perform both buck and boost operation but also to provide continuous input current. Main advantage of IDOC over conventional boost and buck converter is the reduced number of switches. Comparisons among another six buck-boost converters and the proposed IDOC converter are presented. It is found that the proposed converter’s voltage gain is smaller than the other converters’ in step-down mode. Also, based upon the comparisons among the same kind and same number of components, the voltage and current stresses on the power switch of the proposed IDOC converter are less than or equal to those of the comparative converters, and the voltage stress on the charge pump capacitor and the switching device power rating of the proposed IDOC converter are always lower than those of other comparative converters. These advantages make component selection for the proposed converter much easier, and it can be used for industrial application. In order to check the behavior of the converter simulation is carried out in a MATLAB/SIMULINK. The simulation results validated the operation of the converter.
37

"Design of DC-DC Buck Converter for Smartphone Applications Based on FPGA Digital Voltage Controller." Iraqi Journal of Computer, Communication, Control and System Engineering, October 30, 2020, 29–47. http://dx.doi.org/10.33103/uot.ijccce.20.4.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents an enhancement of the output performance of a linear buck converter system for the mobile (smartphone) devices using an adaptive digital Proportional–Integral–Derivative (PID) controller with off-line swarm optimization algorithm. The work focuses on improving the use of using single-input single-output (SISO) digital Field Programmable Gate Array (FPGA)-PID to control the linear buck converter system. The goal of the proposed adaptive SISO-FPGA-PID voltage-tracking controller is to rapidly and precisely identify the optimal voltage control action (optimal on-off duration time) that is used to control the buck converter output voltage level in order to avoid the troubleshooting hardware problem issues on mobile devices. The Particle Swarm Optimization (PSO) algorithms are used to find and tune the three weights of the SISO-FPGA-PID controller. The numerical simulation results and the experimental work using Spartan-3E xc3s500e-4fg320 board with Verilog hardware description language (HDL) show that the proposed controller is more accurate in terms of voltage error and the number of function evolutions are of high reduction. As well as to generate a smooth voltage control response without voltage oscillation in the output by investigating under mobile applications variations such as using Bluetooth, WI-FI, and CPU operating voltage when these results are compared with other controllers.
38

Li, Yujun, Jiapeng Li, Huangqing Xiao, Jianliang Zhang, and Zhengchun Du. "Stability Analysis of Droop-Based Converter Using SISO Method from DC Side Perturbation." IEEE Transactions on Power Delivery, 2020, 1. http://dx.doi.org/10.1109/tpwrd.2020.3034282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії