Добірка наукової літератури з теми "Skeletal muscular system"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Skeletal muscular system".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Skeletal muscular system"
Gerçek, Cem. "Modelling the Subjects of Skeletal and Muscular System: Mobile Applications." Journal of Qualitative Research in Education 7, no. 1 (January 31, 2019): 1–16. http://dx.doi.org/10.14689/issn.2148-2624.1.7c1s.10m.
Повний текст джерелаEndo, Hiroshi, and Mitsuo Wada. "A Musculo-skeletal Mechanism Simulating Human Forearm and Its Control Method." Journal of Robotics and Mechatronics 5, no. 3 (June 20, 1993): 248–52. http://dx.doi.org/10.20965/jrm.1993.p0248.
Повний текст джерелаSchoenau, Eckhard. "Muscular System Is the Driver of Skeletal Development." Annales Nestlé (English ed.) 64, no. 2 (2006): 55–61. http://dx.doi.org/10.1159/000093012.
Повний текст джерелаGimranova, Galina G., A. B. Bakirov, E. R. Shaikhlislamova, L. K. Karimova, N. A. Beigul, and L. N. Mavrina. "MUSCULO-SKELETAL AND PERIPHERAL NERVOUS DISEASES IN EMPLOYEES OF THE OIL INDUSTRY IN CONDITIONS OF THE COMBINED IMPACT OF VIBRATION AND THE HEAVY WORKING PROCESS." Hygiene and sanitation 96, no. 6 (March 27, 2019): 552–55. http://dx.doi.org/10.18821/0016-9900-2017-96-6-552-555.
Повний текст джерелаAkhtaruzzaman, M., A. A. Shafie, and M. R. Khan. "A REVIEW ON LOWER APPENDICULAR MUSCULOSKELETAL SYSTEM OF HUMAN BODY." IIUM Engineering Journal 17, no. 1 (April 30, 2016): 83–102. http://dx.doi.org/10.31436/iiumej.v17i1.571.
Повний текст джерелаStaroseltseva, Natalia. "Muscular pain phenomena." Manual Therapy, no. 1 (May 3, 2022): 78–84. http://dx.doi.org/10.54504/1684-6753-2022-1-78-84.
Повний текст джерелаTripodi, Luana, Chiara Villa, Davide Molinaro, Yvan Torrente, and Andrea Farini. "The Immune System in Duchenne Muscular Dystrophy Pathogenesis." Biomedicines 9, no. 10 (October 11, 2021): 1447. http://dx.doi.org/10.3390/biomedicines9101447.
Повний текст джерелаPowell, Jeanne A. "Muscular dysgenesis: a model system for studying skeletal muscle development." FASEB Journal 4, no. 10 (July 1990): 2798–808. http://dx.doi.org/10.1096/fasebj.4.10.2197156.
Повний текст джерелаPiróg, Katarzyna A., and Michael D. Briggs. "Skeletal Dysplasias Associated with Mild Myopathy—A Clinical and Molecular Review." Journal of Biomedicine and Biotechnology 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/686457.
Повний текст джерелаGolovskoy, B. V., M. D. Berg, I. A. Bulatova, E. I. Voronova, and Ya B. Khovaeva. "Muscular system in maintaining health and preventing chronic non-infectious diseases." Perm Medical Journal 38, no. 1 (April 22, 2021): 72–86. http://dx.doi.org/10.17816/pmj38172-86.
Повний текст джерелаДисертації з теми "Skeletal muscular system"
Pattison, J. Scott. "Understanding muscle wasting through studies of gene expression and function." Free to MU Campus, others may purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164536.
Повний текст джерелаWise, Andrew 1972. "Skeletal muscle : activation strategies, fatigue properties and role in proprioception." Monash University, Dept. of Physiology, 2001. http://arrow.monash.edu.au/hdl/1959.1/8355.
Повний текст джерелаSiles, Mena Laura. "Role of ZEB1 in skeletal muscle: Regulation of cell differentiation, response to tissue damage and regeneration." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/587110.
Повний текст джерелаZEB1 és un factor de transcripció conegut pel seu paper en progressió tumoral i metàstasi. També s’expressa durant el desenvolupament embrionari de diferents teixits tot i que la seva funció i mecanisme d’acció encara no han estat establerts. En aquesta tesi mostro que ZEB1 està implicat en la diferenciació muscular durant el desenvolupament embrionari i que es necessari en la resposta al dany i regeneració muscular. Hem trobat que, en els nuclis dels mioblasts, ZEB1 reprimeix gens de diferenciació muscular per unió directa a seqüències “E-box” amb nucleòtids G/C en posició central en les seves regions reguladores. Encara que en diferents graus, depenent del gen diana, la repressió exercida per ZEB1 es fa mitjançant el reclutament del seu corepressor CtBP. La unió de ZEB1 a aquestes “E-boxes” desplaça MyoD evitant la seva activació transcripcional. Un cop els mioblasts es fusionen, MyoD desplaça ZEB1 de la seva unió a l’ADN donant lloc al procés de diferenciació. D’aquesta manera, la inhibició de Zeb1 indueix els gens de diferenciació muscular accelerant la formació de miotubs. La regeneració desprès del dany muscular depèn de la transició de senyals proinflamatoris a antiinflamatoris. La lesió muscular de ratolins deficients per Zeb1 produeix un elevat nombre de macròfags inflamatoris i l’expressió de citocines pro-inflamatories que retarden el procés regeneratiu. La regeneració del teixit muscular adult requereix la participació d’una població de cèl·lules satèl·lit funcionals. Els nostres resultats demostren que les cèl·lules satèl·lit deficients per Zeb1 s’activen precoçment un cop aïllades i posades en cultiu. Aquesta activació succeeix per la inhibició de Pax7 i de gens associats a la quiescència d’aquestes cèl·lules (Foxo3, Hes) i la activació de Myod1. A més a més, presenten una més alta senescència i la seva capacitat regenerativa és reduïda quan es trasplanten en ratolins mdx en comparació a les wild-type. Aquests resultats situen ZEB1 com un important regulador de la diferenciació i la regeneració muscular per modulació de la resposta inflamatòria i de la progressió de les cèl·lules satèl·lit en la resposta al dany muscular. També suggereixen ZEB1 com una potencial diana terapèutica en distròfies musculars o en resposta a la lesió del múscul esquelètic.
Fernandes, Rui Manuel Pinhão. "Perturbações músculo-esqueléticas na região lombar da coluna-estudo comparativo entre nadadores de lazer e nadadores de competição." Master's thesis, Instituições portuguesas -- UTL-Universidade Técnica de Lisboa -- -Faculdade de Motricidade Humana, 1999. http://dited.bn.pt:80/29194.
Повний текст джерелаCosta, Manuel da Cunha. "Crioterapia-efeitos na homeostasia muscular após o exercício." Phd thesis, Instituições portuguesas -- UP-Universidade do Porto -- -Faculdade de Ciências do Desporto e de Educação Física, 2002. http://dited.bn.pt:80/29515.
Повний текст джерелаAcharyya, Swarnali. "Elucidating molecular mechanisms of muscle wasting in chronic diseases." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180096565.
Повний текст джерелаCruz, Adriana Sarmento de Oliveira. "Efeito do treinamento físico na modulação autonômica cardiovascular e no tecido muscular esquelético em pacientes com cardiopatia chagásica e função sistólica preservada." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/5/5131/tde-29112017-080615/.
Повний текст джерела[thesis]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2017. Background: Patients with chagasic cardiomyopathy have sympathetic nervous system hyperactivity, worsening the prognosis of these patients. The benefits of aerobic training (ET) in cardiovascular autonomic control and skeletal muscle of heart failure patients are well established. The thesis hypothesis was that ET improves cardiovascular autonomic function and structure and metabolism muscle in chronic chagasic cardiopathy (CCC) patients even though preserved systolic function, considering that part of these patients develop the dilated form with ventricular dysfunction and its serious consequences. Objectives: To evaluate the effects of ET on cardiovascular autonomic control and skeletal muscle tissue in CCC patients and preserved systolic function. Methods: Patients with two positive serological reactions for Chagas disease, electrocardiographic alterations, left ventricular ejection fraction >= 55% and age between 30 and 60 years were included. Twenty-four patients underwent the first stage of evaluations and were randomized into two groups: Twelve CCC patients and preserved systolic ventricular function submitted to ET in addition to clinical follow-up (ET group) and twelve CCC patients and preserved systolic ventricular function submitted to only clinical follow-up not submitted to ET (NoET group). After four months, eight patients completed the ET protocol (ET, n = 08) and ten patients completed clinical follow-up (NoET, n = 10). Muscular sympathetic nerve activity (MSNA) was measured using microneurography technique and muscle blood flow (MBF) by the venous occlusion plethysmography technique. Heart rate and blood pressure variability were analyzed using heart rate signals captured by the electrocardiogram and blood pressure signals captured by the finometer. Cardiac baroreflex sensitivity was evaluated by infusion of vasoactive drugs. Functional capacity was determined by cardiopulmonary exercise test. Vastus lateralis muscle biopsy was performed for the histological analysis of muscle fibers and for the Atrogin-1 and MuRF-1 gene expression evaluation. ET program consisted of three 60-minute exercise sessions per week for four months. Results: As ET markers, there was a reduction in resting heart rate and an increase in peak oxygen consumption. ET reduced the sympathetic hyperactivity, contributing to the increase of the MBF. ET reduced both MSNA, as well as cardiac and vasomotor sympathetic activity, and improved cardiac baroreflex sensitivity. Reduction of MSNA was associated with a reduction in cardiovascular hyperactivity, improved cardiac baroreflex sensitivity, and reduced Atrogin-1 and MuRF-1 gene expression. After the four-month period, the ET group presented lower Atrogin-1 gene expression than the NoET group. Conclusion: ET improved significantly autonomic dysfunction, MBF and functional capacity of CCC patients and preserved systolic function. In addition, the reduction of ANSM was associated with improved cardiac baroreflex sensitivity, reduced sympathetic cardiovascular tone, and reduced Atrogin-1 and MuRF-1 gene expression, genes involved in muscle atrophy
Sishi, Balindiwe J. N. "An investigation into the P13-K/AKT signalling pathway in TNF-a-induced muscle proeolysis in L6 myotubes." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/3039.
Повний текст джерелаIntroduction: Skeletal muscle atrophy is a mitigating complication that is characterized by a reduction in muscle fibre cross-sectional area as well as protein content, reduced force, elevated fatigability and insulin resistance. It seems to be a highly ordered and regulated process and signs of this condition are often seen in inflammatory conditions such as cancer, AIDS, diabetes and chronic heart failure (CHF). It has long been understood that an imbalance between protein degradation (increase) and protein synthesis (decrease) both contribute to the overall loss of muscle protein. Although the triggers that cause atrophy are different, the loss of muscle mass in each case involves a common phenomenon that induces muscle proteolysis. It is becoming evident that interactions among known proteolytic systems (ubiquitin-proteosome) are actively involved in muscle proteolysis during atrophy. Factors such as TNF-α and ROS are elevated in a wide variety of chronic inflammatory diseases in which skeletal muscle proteolysis presents a lethal threat. There is an increasing body of evidence that implies TNF-α may play a critical role in skeletal muscle atrophy in a number of clinical settings but the mechanisms mediating its effects are not completely understood. It is also now apparent that the transcription factor NF-κB is a key intracellular signal transducer in muscle catabolic conditions. This study investigated the various proposed signalling pathways that are modulated by increasing levels of TNF-α in a skeletal muscle cell line, in order to synthesize our current understanding of the molecular regulation of muscle atrophy. Materials and Methods: L6 (rat skeletal muscle) cells were cultured under standard conditions where after reaching ± 60-65% confluency levels, differentiation was induced for a maximum of 8 days. During the last 2 days, myotubes were incubated with increasing concentrations of recombinant TNF-α (1, 3, 6 and 10 ng/ml) for a period of 40 minutes, 24 and 48 hours. The effects of TNF-α on proliferation and cell viability were measured by MTT assay and Trypan Blue exclusion technique. Morphological assessment of cell death was conducted using the Hoechst 33342 and Propidium Iodide staining method. Detection of apoptosis was assessed by DNA isolation and fragmentation assay. The HE stain was used for the measurement of cell size. In order to determine the source and amount of ROS production, MitoTracker Red CM-H2 X ROS was utilised. Ubiquitin expression was assessed by immunohistochemistry. PI3-K activity was calculated by using an ELISA assay and the expression of signalling proteins was analysed by Western Blotting using phospho-specific and total antibodies. Additionally, the antioxidant Oxiprovin was used to investigate the quantity of ROS production in TNF-α-induced muscle atrophy. Results and Discussion: Incubation of L6 myotubes with increasing concentrations of recombinant TNF-α revealed that the lower concentrations of TNF-α used were not toxic to the cells but data analysis of cell death showed that 10 ng/ml TNF-α induced apoptosis and necrosis. Long-term treatment with TNF-α resulted in an increase in the upregulation of TNF- α receptors, specifically TNF-R1. The transcription factors NF-κB and FKHR were rapidly activated thus resulting in the induction of the ubiquitin-proteosome pathway. Activation of this pathway produced significant increases in the expression of E3 ubiquitin ligases MuRF-1 and MAFbx. Muscle fibre diameter appeared to have decreased with increasing TNF-α concentrations in part due to the suppressed activity of the PI3-K/Akt pathway as well as significant reductions in differentiation markers. Western blot analysis also showed that certain MAPKs are activated in response to TNF-α. No profound changes were observed with ROS production. Finally, the use Oxiprovin significantly lowered cell viability and ROS production. These findings suggest that TNF-α may elicit strong catabolic effects on L6 myotubes in a dose and time dependent manner. Conclusion: These observations suggest that TNF-α might have beneficial effects in skeletal muscle in certain circumstances. This beneficial effect however is limited by several aspects which include the concentration of TNF-α, cell type, time of exposure, culture conditions, state of the cell (disturbed or normal) and the cells stage of differentiation. The effect of TNF-α can be positive or negative depending on the concentration and time points analysed. This action is mediated by various signal transduction pathways that are thought to cooperate with each other. More understanding of these pathways as well as their subsequent upstream and downstream constituents is obligatory to clarify the central mechanism/s that control physiological and pathophysiological effects of TNF-α in skeletal muscle.
Santos, Marcelo Rodrigues dos. "Efeito do treinamento físico isolado ou associado à reposição de testosterona em pacientes com insuficiência cardíaca." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/5/5131/tde-17012014-122243/.
Повний текст джерелаIntroduction. Heart failure (HF) is characterized by exacerbation of muscle sympathetic nerve activity (MSNA), exercise intolerance and dyspnea. Furthermore, is characteristic in this population the imbalance between anabolism and catabolism which lead to loss of skeletal muscle mass worsening quality of life in HF patients. Prior studies have demonstrated decrease in anabolic hormones such as GH, IGF-1 and testosterone. Testosterone, an important hormone for masculinization feature and maintenance of muscle mass, shows sharp decline in advanced HF. Loss muscle mass leads to cachexia and atrophy which decrease strength and functional capacity in HF patients. Testosterone replacement in these patients has been studied and shows an important therapeutic to enhance functional capacity and muscle strength. However it is not known the role of this medical treatment on muscle anabolic process as well as on body composition. Physical exercise as a non-medication treatment has been widely recommended to reduce MSNA, enhance peripheral blood flow, increase muscle strength and improve quality of life. However, the combination of the strategies of physical exercise associated with testosterone replacement therapy is not known in HF patients. Methods. 24 HF patients were randomized in 3 groups: Training (TR, n=9), Testosterone (T, n=8) and Training+Testosterone (TRT, n=7). MSNA was recorded by microneurography technic. Forearm blood flow was evaluated by venous occlusion plethysmography. Body composition was measured by densitometry (DEXA). Muscle biopsy was done in vastus lateralis to evaluate the cross-sectional area and type of fibers. Quality of life was assessed by Minnesota living with heart failure questionnaire. Aerobic exercise training on a bicycle was performed 3 times per week, with 40 minutes of exercise per session, for a period of 4 months. Testosterone replacement was performed by intramuscular administration of testosterone undecylate for a period of 4 months. Results. After 4 months testosterone levels were restored in all groups. MSNA decreased in TR and TRT groups. There was no increase in blood flow between groups. Oxygen consumption increased in all groups, but only the TRT group showed increase in maximum power to exercise. Lean body mass increased significantly only in the TRT group. We did not observe changes in bone mineral content between groups. Only TRT group significantly increased the cross-sectional area of type I fibers (oxidative). The quality of life improved only in TR and TRT groups. Conclusions. Exercise training associated with testosterone replacement therapy was more effective in reducing MSNA, increase functional capacity, muscle strength, lean mass with a significant increase in type I fibers. Our results emphasize the importance of physical exercise in patients with HF and bring a new perspective to association testosterone for patients with hypogonadism
Corrêa, Lígia de Moraes Antunes. "Efeito do treinamento físico no controle mecanorreflexo e metaborreflexo da atividade nervosa simpática muscular em pacientes com insuficiência cardíaca." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/5/5131/tde-09092013-153651/.
Повний текст джерелаIntroduction. Sympathoexcitation is the hallmark of heart failure. Studies suggest changes in ergoreflex muscle control (mechanoreflex and metaboreflex) as potential mechanisms to explain this autonomic alteration in heart failure. Mechanoreceptors (group III fibers) that are activated by mechanical stimuli and modulated by cyclooxygenase pathway metabolites are hypersensitive in heart failure. In contrast, the sensitivity of metaboreceptors fibers (group IV) that are activated by increases in ischemic metabolites during muscle contractions and modulated by TRPV1 and CB1 receptors is blunted in heart failure. On the other hands, exercise training has been shown to be an important strategy in the treatment of heart failure. It reduces the levels of muscle sympathetic nerve activity (MSNA) at rest and during exercise in patients suffering of this syndrome. Thus, we tested the hypothesis that exercise training would improve the mechanoreflex and metaboreflex control of MSNA in heart failure patients. In addition, we investigated whether the improvement in the mechanoreflex and metaboreflex control is related to changes in the cyclooxygenase pathway and expression of TRPV1 and CB1 receptors, respectively. Methods. Patients with heart failure were consecutively and randomly divided into two groups: heart failure untrained (HFUT, n = 17) and heart failure exercise-trained (HFET, n = 17). MSNA was measured by microneurography technique and muscle blood flow (MBF) by venous occlusion plethysmography. Heart rate (HR) and blood pressure (BP) were assessed by noninvasive measure on a beat-to-beat basis (Finometer). Gene expression analysis was investigated by vastus lateralis muscle biopsy. Aerobic exercise training was performed on a cycle ergometer at moderate intensity, three 40-min session/wk for 16 weeks. Mechanoreflex sensitivity was evaluated by means the absolute difference in MSNA at peak passive exercise and baseline. Metaboreflex sensitivity was calculated by means the absolute difference in MSNA at 1st min after exercise period with muscle circulatory arrest and baseline. Results. Exercise training reduced MSNA and increased MBF. Exercise training significantly decreased MSNA responses during passive exercise. The mean BP response was lower in HFET group when compared to HFUT group. There were no significant changes in HR, systolic and diastolic BP and MBF responses during passive exercise in HFET group. Regarding metaboreflex sensitivity, exercise training significantly increased the MSNA responses at 1st minute of post exercise circulatory arrest. The responses of HR, BP and MBF were unchanged after exercise training. No significant changes were observed in mechanoreflex and metaboreflex control in the HFUT group. Furthermore, exercise training significantly reduced gene expression of COX-2 and EP4 receptor and significantly increased expression of TRPV1 and CB1 receptors. There were no significant changes in the gene expressions in the HFUT group. Conclusions. Exercise training improves mechanoreflex and metaboreflex control of MSNA in heart failure patients. These changes may be associated with changes in gene expression of COX-2 and EP4 receptor and TRPV1 and CB1 receptor, respectively. Together, these findings may explain, at least in part, the decrease in sympathetic nerve activity and the improvement in exercise tolerance in patients with heart failure
Книги з теми "Skeletal muscular system"
Steve, Parker. Muscular and skeletal systems. Mankato, MN: New Forest Press, 2010.
Знайти повний текст джерелаE, Riddle Janet T., Nicoll Kathleen B, and Rowantree Isabella I, eds. The skeletal system and the muscular system. Edinburgh: Churchill Livingstone, 1989.
Знайти повний текст джерелаMovement: The muscular and skeletal system. New York: Dillon Press, 1993.
Знайти повний текст джерелаSamuel, Hiti, and World Book Inc, eds. The skeletal and muscular systems. Chicago: World Book, a Scott Fetzer company, 2014.
Знайти повний текст джерелаCaputo, Christine A. Bones and muscles: The skeletal and muscular system. New York: Scholastic, 2011.
Знайти повний текст джерелаJohns, Deloris M. The skeletal and muscular systems: A laboratory manual. Dubuque, Iowa: Kendall/Hunt Pub. Co., 1996.
Знайти повний текст джерелаClark, Katie. A tour of your muscular and skeletal systems. North Mankato, Minn: Capstone Press, 2013.
Знайти повний текст джерелаBastian, Glenn F. An illustrated review of the skeletal and muscular systems. New York, NY: HarperCollins College Publishers, 1993.
Знайти повний текст джерелаThe muscular system manual: The skeletal muscles of the human body. 2nd ed. St. Louis, Mo: Elsevier Mosby, 2005.
Знайти повний текст джерелаЧастини книг з теми "Skeletal muscular system"
Schramm, Nicolai, Sabine Weckbach, Stephen Eustace, and Niamh M. Long. "Whole-Body MRI for Evaluation of the Entire Muscular System." In Magnetic Resonance Imaging of the Skeletal Musculature, 55–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/174_2013_873.
Повний текст джерелаClément, Gilles. "The Musculo-Skeletal System in Space." In Fundamentals of Space Medicine, 181–216. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9905-4_5.
Повний текст джерелаPelechas, Eleftherios, Evripidis Kaltsonoudis, Paraskevi V. Voulgari, and Alexandros A. Drosos. "Examination of the Musculoskeletal System." In Illustrated Handbook of Rheumatic and Musculo-Skeletal Diseases, 1–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03664-5_1.
Повний текст джерелаBird, Howard A. "The Voice and the Musculo-Skeletal System." In Performing Arts Medicine in Clinical Practice, 39–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12427-8_4.
Повний текст джерелаKherbache, Houda, Lahcene Bouabdellah, Mohamed Mokdad, Ali Hamaïdia, and Abdenacer Tezkratt. "Musculo Skeletal Disorders (MSDs) Among Algerian Nurses." In Advances in Intelligent Systems and Computing, 289–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96098-2_38.
Повний текст джерелаTanabe, Yuzo, Man Woo, and Ikuya Nonaka. "X Chromosome-Linked Muscular Dystrophy (mdx) of the Skeletal Muscle, Mouse." In Cardiovascular and Musculoskeletal Systems, 149–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76533-9_22.
Повний текст джерелаMizuuchi, Ikuo, Yuto Nakanishi, Tomoaki Yoshikai, Masayuki Inaba, and Hirochika Inoue. "Body Information Acquisition System of Redundant Musculo-Skeletal Humanoid." In Springer Tracts in Advanced Robotics, 249–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11552246_24.
Повний текст джерелаOng, Hoo Dennis, Hooshang Hemami, and Sheldon Simon. "Simulation Studies of Musculo-Skeletal Dynamics in Cycling and Sitting on a Chair." In Multiple Muscle Systems, 518–33. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4613-9030-5_32.
Повний текст джерелаCuadrado, Javier, Urbano Lugris, Francisco Mouzo, and Florian Michaud. "Musculo-skeletal Modeling and Analysis for Low-Cost Active Orthosis Customization and SCI Patient Adaptation." In IUTAM Symposium on Intelligent Multibody Systems – Dynamics, Control, Simulation, 41–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00527-6_2.
Повний текст джерелаMarozzi, E., M. Caligara, C. Mecacci, and U. Genovese. "Comparison between Morphine Levels in the Blood and in the Musculo-Skeletal System of Subjects Who Died of Acute Intravenous Narcotism." In Acta Medicinæ Legalis Vol. XLIV 1994, 443–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79523-7_140.
Повний текст джерелаТези доповідей конференцій з теми "Skeletal muscular system"
Chen, Michael Z. Q., Kai Shen, and Chao Zhai. "A biomechanical model of human muscular-skeletal system with inertial effects." In 2016 35th Chinese Control Conference (CCC). IEEE, 2016. http://dx.doi.org/10.1109/chicc.2016.7554841.
Повний текст джерелаHartl, Darren J., Gregory W. Reich, and Philip S. Beran. "Additive Topological Optimization of Muscular-Skeletal Structures via Genetic L-System Programming." In 24th AIAA/AHS Adaptive Structures Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1569.
Повний текст джерелаImamura, Takashi, Chisato Teraoka, Kazuhiko Terashima, and Zhong Zhang. "Muscular Power Estimation in a Tele-Rehabilitation System Using a Skeletal-Linkage Model." In 2006 SICE-ICASE International Joint Conference. IEEE, 2006. http://dx.doi.org/10.1109/sice.2006.315005.
Повний текст джерелаKoeppen, Ryan, Meghan E. Huber, Dagmar Sternad, and Neville Hogan. "Controlling Physical Interactions: Humans Do Not Minimize Muscle Effort." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5202.
Повний текст джерелаSelk Ghafari, Ali, Ali Meghdari, and Gholam Reza Vossoughi. "Modeling of Human Lower Extremity Musculo-Skeletal Structure Using Bond Graph Approach." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41558.
Повний текст джерелаKoganezawa, Koichi, Hiroshi Inomata, and Toshiki Nakazawa. "Stiffness Control of Multi-DOF Joint by Passive/Active Parallel Actuation." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84387.
Повний текст джерелаTigue, James A., Sonoma Harris, Chris Anjewierden, and Stephen A. Mascaro. "Validation of Fingertip Force and Finger Pose in the UART Finger and Bond Graph Tendon Model During Surface Contact." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5245.
Повний текст джерелаForshaw, Robert V., Nicholas W. Snow, Jared M. Wolff, Mansour Zenouzi, and Douglas E. Dow. "Electromyography (EMG) Controlled Assistive Rehabilitation System." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40238.
Повний текст джерелаChen, Kai, and Richard Foulds. "Optimization of Stiffness and Damping in Modeling of Voluntary Elbow Flexions." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62219.
Повний текст джерелаJones, Naveen, Manju Manuel, and Sreelal Pillai. "An embedded musculo-skeletal injury detection system." In 2016 International Conference on Emerging Technological Trends (ICETT). IEEE, 2016. http://dx.doi.org/10.1109/icett.2016.7873773.
Повний текст джерела