Добірка наукової літератури з теми "Skeleton graphs"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Skeleton graphs".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Skeleton graphs":

1

BAI, XIANG, XINGWEI YANG, DEGUANG YU, and LONGIN JAN LATECKI. "SKELETON-BASED SHAPE CLASSIFICATION USING PATH SIMILARITY." International Journal of Pattern Recognition and Artificial Intelligence 22, no. 04 (June 2008): 733–46. http://dx.doi.org/10.1142/s0218001408006405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Most of the traditional methods for shape classification are based on contour. They often encounter difficulties when dealing with classes that have large nonlinear variability, especially when the variability is structural or due to articulation. It is well-known that shape representation based on skeletons is superior to contour based representation in such situations. However, approaches to shape similarity based on skeletons suffer from the instability of skeletons, and matching of skeleton graphs is still an open problem. Using a new skeleton pruning method, we are able to obtain stable pruned skeletons even in the presence of significant contour distortions. We also propose a new method for matching of skeleton graphs. In contrast to most existing methods, it does not require converting of skeleton graphs to trees and it does not require any graph editing. Shape classification is done with Bayesian classifier. We present excellent classification results for complete shapes.
2

Hazlewood, Robert, Iain Raeburn, Aidan Sims, and Samuel B. G. Webster. "Remarks on some fundamental results about higher-rank graphs and their C*-algebras." Proceedings of the Edinburgh Mathematical Society 56, no. 2 (April 30, 2013): 575–97. http://dx.doi.org/10.1017/s0013091512000338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractResults of Fowler and Sims show that every k-graph is completely determined by its k-coloured skeleton and collection of commuting squares. Here we give an explicit description of the k-graph associated with a given skeleton and collection of squares and show that two k-graphs are isomorphic if and only if there is an isomorphism of their skeletons which preserves commuting squares. We use this to prove directly that each k-graph Λ is isomorphic to the quotient of the path category of its skeleton by the equivalence relation determined by the commuting squares, and show that this extends to a homeomorphism of infinite-path spaces when the k-graph is row finite with no sources. We conclude with a short direct proof of the characterization, originally due to Robertson and Sims, of simplicity of the C*-algebra of a row-finite k-graph with no sources.
3

Abreu, Nair Maria Maia de, Liliana Manuela Gaspar Cerveira da Costa, Carlos Henrique Pereira Nascimento, and Laura Patuzzi. "A Note on the Matching Polytope of a Graph." TEMA (São Carlos) 20, no. 1 (May 20, 2019): 189. http://dx.doi.org/10.5540/tema.2019.020.01.189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The matching polytope of a graph G, denoted by M(G), is the convex hull of the set of the incidence vectors of the matchings G. The graph G(M(G)), whose vertices and edges are the vertices and edges of M(G), is the skeleton of the matching polytope of G. In this paper, for an arbitrary graph, we prove that the minimum degree of G(M(G)) is equal to the number of edges of G, generalizing a known result for trees. From this, we identify the vertices of the skeleton with the minimum degree and we prove that the union of stars and triangles characterizes regular skeletons of the matching polytopes of graphs.
4

HUBER, STEFAN, and MARTIN HELD. "A FAST STRAIGHT-SKELETON ALGORITHM BASED ON GENERALIZED MOTORCYCLE GRAPHS." International Journal of Computational Geometry & Applications 22, no. 05 (October 2012): 471–98. http://dx.doi.org/10.1142/s0218195912500124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper deals with the fast computation of straight skeletons of planar straight-line graphs (PSLGs) at an industrial-strength level. We discuss both the theoretical foundations of our algorithm and the engineering aspects of our implementation Bone. Our investigation starts with an analysis of the triangulation-based algorithm by Aichholzer and Aurenhammer and we prove the existence of flip-event-free Steiner triangulations. This result motivates a careful generalization of motorcycle graphs such that their intimate geometric connection to straight skeletons is maintained. Based on the generalized motorcycle graph, we devise a non-procedural characterization of straight skeletons of PSLGs and we discuss how to obtain a discretized version of a straight skeleton by means of graphics rendering. Most importantly, this generalization allows us to present a fast and easy-to-implement straight-skeleton algorithm. We implemented our algorithm in C++ based on floating-point arithmetic. Extensive benchmarks with our code Bone demonstrate an [Formula: see text] time complexity and [Formula: see text] memory footprint on 22 300 datasets of diverse characteristics. This is a linear factor better than the implementation provided by CGAL 4.0, which shows an [Formula: see text] time complexity and an [Formula: see text] memory footprint; the CGAL code has been the only fully-functional straight-skeleton code so far. In particular, on datasets with ten thousand vertices, Bone requires about 0.2–0.6 seconds instead of 4–7 minutes consumed by the CGAL code, and Bone uses only 20 MB heap memory instead of several gigabytes. We conclude our paper with a discussion of the engineering aspects and principles that make Bone reliable enough to compute the straight skeleton of datasets comprising a few million vertices on a desktop computer.
5

WANG, XIUMEI, WEIPING SHANG, YIXUN LIN, and MARCELO H. CARVALHO. "A CHARACTERIZATION OF PM-COMPACT CLAW-FREE CUBIC GRAPHS." Discrete Mathematics, Algorithms and Applications 06, no. 02 (March 19, 2014): 1450025. http://dx.doi.org/10.1142/s1793830914500256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. This paper characterizes claw-free cubic graphs whose 1-skeleton graphs of perfect matching polytopes have diameter 1.
6

De, Nilanjan. "Narumi–Katayama index of total transformation graphs." Discrete Mathematics, Algorithms and Applications 09, no. 03 (March 20, 2017): 1750033. http://dx.doi.org/10.1142/s1793830917500331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Narumi–Katayama index of a graph was introduced in 1984 for representing the carbon skeleton of a saturated hydrocarbons and is defined as the product of degrees of all the vertices of the graph. In this paper, we examine the Narumi–Katayama index of different total transformation graphs.
7

Li, Chaoyue, Lian Zou, Cien Fan, Hao Jiang, and Yifeng Liu. "Multi-Stage Attention-Enhanced Sparse Graph Convolutional Network for Skeleton-Based Action Recognition." Electronics 10, no. 18 (September 8, 2021): 2198. http://dx.doi.org/10.3390/electronics10182198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Graph convolutional networks (GCNs), which model human actions as a series of spatial-temporal graphs, have recently achieved superior performance in skeleton-based action recognition. However, the existing methods mostly use the physical connections of joints to construct a spatial graph, resulting in limited topological information of the human skeleton. In addition, the action features in the time domain have not been fully explored. To better extract spatial-temporal features, we propose a multi-stage attention-enhanced sparse graph convolutional network (MS-ASGCN) for skeleton-based action recognition. To capture more abundant joint dependencies, we propose a new strategy for constructing skeleton graphs. This simulates bidirectional information flows between neighboring joints and pays greater attention to the information transmission between sparse joints. In addition, a part attention mechanism is proposed to learn the weight of each part and enhance the part-level feature learning. We introduce multiple streams of different stages and merge them in specific layers of the network to further improve the performance of the model. Our model is finally verified on two large-scale datasets, namely NTU-RGB+D and Skeleton-Kinetics. Experiments demonstrate that the proposed MS-ASGCN outperformed the previous state-of-the-art methods on both datasets.
8

Di Ruberto, C., and A. G. Dempster. "Attributed skeleton graphs using mathematical morphology." Electronics Letters 37, no. 22 (2001): 1325. http://dx.doi.org/10.1049/el:20010925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Peder, Ahti, Härmel Nestra, Jaan Raik, Mati Tombak, and Raimund Ubar. "Linear algorithms for recognizing and parsing superpositional graphs." Facta universitatis - series: Electronics and Energetics 24, no. 3 (2011): 325–39. http://dx.doi.org/10.2298/fuee1103325p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Structurally synthesized binary decision diagrams (SSBDD) are a special type of BDDs that are generated by superposition according to the structure of propositional formula. Fast algorithms for simulation, diagnostic reasoning and test generation running on SSBDDs exploit their specific properties. Hence the correctness of SSBDDs should be checked before using those algorithms. The problem of recognizing SSBDDs can be reduced to the problem of recognizing their skeleton, namely superpositional graphs, which are a proper subclass of binary graphs. This paper presents linear time algorithms for testing whether a binary graph is a superpositional graph and for restoring the history of its generating process.
10

Bærentzen, Andreas, and Eva Rotenberg. "Skeletonization via Local Separators." ACM Transactions on Graphics 40, no. 5 (October 31, 2021): 1–18. http://dx.doi.org/10.1145/3459233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We propose a new algorithm for curve skeleton computation that differs from previous algorithms by being based on the notion of local separators . The main benefits of this approach are that it is able to capture relatively fine details and that it works robustly on a range of shape representations. Specifically, our method works on shape representations that can be construed as spatially embedded graphs. Such representations include meshes, volumetric shapes, and graphs computed from point clouds. We describe a simple pipeline where geometric data are initially converted to a graph, optionally simplified, local separators are computed and selected, and finally a skeleton is constructed. We test our pipeline on polygonal meshes, volumetric shapes, and point clouds. Finally, we compare our results to other methods for skeletonization according to performance and quality.

Дисертації з теми "Skeleton graphs":

1

Andersson, Filip, and Jonatan Flyckt. "Explaining rifle shooting factors through multi-sensor body tracking : Using transformers and attention to mine actionable patterns from skeleton graphs." Thesis, Jönköping University, JTH, Avdelningen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-53369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There is a lack of data-driven training instructions for sports shooters, as instruction has commonly been based on subjective assessments. Many studies have correlated body posture and balance to shooting performance in rifle shooting tasks, but most of them have focused on single aspects of postural control. This thesis has focused on finding relevant rifle shooting factors by examining the entire body over sequences of time. We performed a data collection with 13 human participants who carried out live rifle shooting scenarios while being recorded with multiple biometric sensors, including several body trackers. An experiment was conducted to identify what aspects of rifle shooting could be predicted and explained using these data. We employed a pre-processing pipeline to produce a novel skeleton sequence representation, and used it to train a transformer model. The predictions from this model could be explained on a per sample basis using the attention mechanism, and visualised in an interactive format for humans to interpret. It was possible to separate the different phases of a shooting scenario from body posture with a high classification accuracy (81%). However, no correlation could be shown between shooting performance and body posture from our data. Future work could focus on novel feature engineering, and on examining alternative machine learning approaches. The dataset and pre-processing pipeline, as well as the techniques for generating explainable predictions presented in this thesis has laid the groundwork for future research in the sports shooting domain.
2

Huber, Stefan [Verfasser]. "Computing Straight Skeletons and Motorcycle Graphs: Theory and Practice / Stefan Huber." Aachen : Shaker, 2012. http://d-nb.info/1069046272/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GALLON, SILVIO M. "Estudo comparativo em enxerto ósseo autógeno em tíbia de coelho, realizado com laser de Er, Cr:YSGG ou com brocas 701." reponame:Repositório Institucional do IPEN, 2006. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2014-10-09T12:54:54Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:07:31Z (GMT). No. of bitstreams: 1 12798.pdf: 1929024 bytes, checksum: c22a6f1976fbfd36f63996f95ebc2302 (MD5)
Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia)
IPEN/D-MPLO
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo, Sao Paulo
4

Klette, Gisela. "Topologic geometric, or graph-theoretic properties of skeletal curves." [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2006. http://irs.ub.rug.nl/ppn/298831856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

RIQUELME, CLAUDIA C. "Efeitos da radiação laser em baixa intensidade no processo de cicatrização óssea em defeitos enxertados com osso bovino e membrana de colágeno reabsorvível: estudo 'in vivo'." reponame:Repositório Institucional do IPEN, 2006. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2014-10-09T12:54:55Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:07:32Z (GMT). No. of bitstreams: 1 12799.pdf: 2207492 bytes, checksum: b4b02c1b606e22ff23dfa5bb5dda46d2 (MD5)
Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia)
IPEN/D-MPLO
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo, Sao Paulo
6

Zanni, Cédric. "Skeleton-based implicit modeling and applications." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM040/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Modéliser avec des squelettes est une alternative très séduisante aux "points de contrôle" souvent placés à l'extérieur des formes : cette approches, analogue à un fil de fer dans une forme modelée, permet de créer des modèles de toutes géométries et topologies. Pour cela, il faut que les formes définies par chacun des squelettes soient capable de se mélanger de manière lisse. Introduites en informatique graphique dans les années 90, les surfaces implicites sont la principale solution à ce problème. Elles constituent un modèle puissant à la fois pour la modélisation d'objets tridimensionnels et pour leur animation : leur construction par squelette et leurs capacités de mélange par sommation des champs potentiels qui les définissent permettent en effet la conception progressive et le stockage compact d'objets volumiques, ainsi que l'animation de déformations pouvant comprendre des changements de topologie. Les surfaces implicites, et plus particulièrement les surfaces de convolution, forment donc un modèle particulièrement adapté à la modélisation par squelette. Toutefois, elles présentent un certain nombre de défaut qui les ont rendu inutilisable en pratique. Cette thèse propose de nouveaux modèles implicites à squelettes, s'inspirant de la convolution mais basés aussi sur des déformations de l'espace. Ils permettent : – une génération plus aisée de forme le long de squelettes formés de courbes (des arc d'hélices), – un meilleur contrôle des formes tant au niveau de leur épaisseur que de leur mélange, notamment nos modèles sont invariant par homothétie ce qui les rend plus intuitif, – la génération de surfaces ayant une topologie plus proche de celle des squelettes, – la génération de détail fins engendrés par un bruit procédural, les détails se comportant de manière cohérentes avec la surface (et les squelettes) sous-jacente
Modeling with skeleton is an attractive alternative to "control points" usually placed outside a shape in order to model it : this paradigm, similar to a wire inside the modeled shape, enables to create model of arbitrary geometry and topology. In order to do so, shapes defined by skeletons should be able to smoothly blend together. Introduced in computer graphics in the 90's, implicit surfaces are one of the main solution to this problem. They are powerful both for the modeling of 3D models and their animations : their construction from a skeleton and their blending capacity by simply summing their scalar field provide an easy way to incrementally create shapes and store them in a compact way, it also ease the animation containing changes in topology. Implicit surfaces, and more specifically Convolution surfaces, are therefore particularly well adapted to skeleton-based modeling. However, they present a number of drawback that make them unusable in practice. This thesis propose new skeleton-based implicit models, inspired not only by convolution but also from space deformations. They enable : – an easier generation of shape along curve skeletons (arcs of helix), – a better control of generated shape both in term of thickness and blending, in particular our model are scale-invariant that make them more intuitive, – the generation of shape which topology better reflects the topology of its skeleton, – the generation of small scale details from a procedural texture, the details behave in a coherent way with the underlying surface (and its skeleton)
7

Song, Mingkui. "A structural skeleton based shape indexing approach for vector images." Diss., Online access via UMI:, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hiransakolwong, Nualsawat. "AUTOMATIC ANNOTATION OF DATABASE IMAGES FOR QUERY-BY-CONCEPT." Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As digital images become ubiquitous in many applications, the need for efficient and effective retrieval techniques is more demanding than ever. Query by Example (QBE) and Query by Concept (QBC) are among the most popular query models. The former model accepts example images as queries and searches for similar ones based on low-level features such as colors and textures. The latter model allows queries to be expressed in the form of high-level semantics or concept words, such as "boat" or "car," and finds images that match the specified concepts. Recent research has focused on the connections between these two models and attempts to close the semantic-gap between them. This research involves finding the best method that maps a set of low-level features into high-level concepts. Automatic annotation techniques are investigated in this dissertation to facilitate QBC. In this approach, sets of training images are used to discover the relationship between low-level features and predetermined high-level concepts. The best mapping with respect to the training sets is proposed and used to analyze images, annotating them with the matched concept words. One principal difference between QBE and QBC is that, while similarity matching in QBE must be done at the query time, QBC performs concept exploration off-line. This difference allows QBC techniques to shift the time-consuming task of determining similarity away from the query time, thus facilitating the additional processing time required for increasingly accurate matching. Consequently, QBC's primary design objective is to achieve accurate annotation within a reasonable processing time. This objective is the guiding principle in the design of the following proposed methods which facilitate image annotation: 1.A novel dynamic similarity function. This technique allows users to query with multiple examples: relevant, irrelevant or neutral. It uses the range distance in each group to automatically determine weights in the distance function. Among the advantages of this technique are higher precision and recall rates with fast matching time. 2.Object recognition based on skeletal graphs. The topologies of objects' skeletal graphs are captured and compared at the node level. Such graph representation allows preservation of the skeletal graph's coherence without sacrificing the flexibility of matching similar portions of graphs across different levels. The technique is robust to translation, scaling, and rotation invariants at object level. This technique achieves high precision and recall rates with reasonable matching time and storage space. 3.ASIA (Automatic Sampling-based Image Annotation) is a technique based on a new sampling-based matching framework allowing users to identify their area of interest. ASIA eliminates noise, or irrelevant areas of the image. ASIA is robust to translation, scaling, and rotation invariants at the object level. This technique also achieves high precision and recall rates. While the above techniques may not be the fastest when contrasted with some other recent QBE techniques, they very effectively perform image annotation. The results of applying these processes are accurately annotated database images to which QBC may then be applied. The results of extensive experiments are presented to substantiate the performance advantages of the proposed techniques and allow them to be compared with other recent high-performance techniques. Additionally, a discussion on merging the proposed techniques into a highly effective annotation system is also detailed.
Ph.D.
School of Computer Science
Engineering and Computer Science
Computer Science
9

Wang, Haolei. "Using density-based clustering to improve skeleton embedding in the Pinocchio automatic rigging system." Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/15102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Master of Science
Department of Computing and Information Sciences
William H. Hsu
Automatic rigging is a targeting approach that takes a 3-D character mesh and an adapted skeleton and automatically embeds it into the mesh. Automating the embedding step provides a savings over traditional character rigging approaches, which require manual guidance, at the cost of occasional errors in recognizing parts of the mesh and aligning bones of the skeleton with it. In this thesis, I examine the problem of reducing such errors in an auto-rigging system and apply a density-based clustering algorithm to correct errors in a particular system, Pinocchio (Baran & Popovic, 2007). I show how the density-based clustering algorithm DBSCAN (Ester et al., 1996) is able to filter out some impossible vertices to correct errors at character extremities (hair, hands, and feet) and those resulting from clothing that hides extremities such as legs.
10

Hayashi, Kazuki. "Reinforcement Learning for Optimal Design of Skeletal Structures." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Skeleton graphs":

1

Barbara, Taylor. Skeleton. New York: DK Pub., 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

DeFelice, Cynthia C. The dancing skeleton. New York: Macmillan Pub., 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

DeFelice, Cynthia C. The dancing skeleton. New York: Aladdin Paperbacks, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ogniewicz, Robert L. Discrete Voronoi skeletons. Konstanz: Hartung-Gorre Verlag Konstanz, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Anderson, Karen C. The bones & skeleton gamebook. New York: Workman Pub., 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anderson, Karen C. The bones & skeleton gamebook. Toronto: Somerville House Publishing, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shone, Rob. Corpses and skeletons: The science of forensic anthropology. New York: Rosen Pub. Group, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Costa, Ben. Rickety Stitch and the gelatinous goo: The road to Epoli. New York: Random House Children's Books, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lovell, Nancy C. Patterns of injury and illness in great apes: A skeletal analysis. Washington: Smithsonian Institution Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sotelo, Roberto. Anacleto, el esqueleto inquieto: Un paseo por el parque. Buenos Aires: Atlántida, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Skeleton graphs":

1

Vrolijk, Benjamin, Freek Reinders, and Frits H. Post. "Feature Tracking with Skeleton Graphs." In Data Visualization, 37–52. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-1177-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jiang, Wei, Kai Xu, Zhi-Quan Cheng, Ralph R. Martin, and Gang Dang. "Curve Skeleton Extraction by Graph Contraction." In Computational Visual Media, 178–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34263-9_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sarnacki, Kacper, and Khalid Saeed. "Character Recognition Based on Skeleton Analysis." In Computer Vision and Graphics, 148–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00692-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Savnik, Iztok, and Kiyoshi Nitta. "Method of Big-Graph Partitioning Using a Skeleton Graph." In Computer Communications and Networks, 3–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13803-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mukundan, Ramakrishnan. "Skeletal Animation." In Advanced Methods in Computer Graphics, 53–76. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2340-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yan, Han-Bing, Shi-Min Hu, and Ralph Martin. "Skeleton-Based Shape Deformation Using Simplex Transformations." In Advances in Computer Graphics, 66–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11784203_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Reinders, Freek, Melvin E. D. Jacobson, and Frits H. Post. "Skeleton Graph Generation for Feature Shape Description." In Eurographics, 73–82. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-6783-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Davy, John R., Hossain Deldari, and Peter M. Dew. "Constructive Solid Geometry using Algorithmic Skeletons." In Programming Paradigms in Graphics, 69–84. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-9457-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Escolano, Francisco, Edwin R. Hancock, and Miguel A. Lozano. "Skeletal Graphs from Schrödinger Magnitude and Phase." In Graph-Based Representations in Pattern Recognition, 335–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18224-7_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chang, Yen-Tuo, Bing-Yu Chen, Wan-Chi Luo, and Jian-Bin Huang. "Skeleton-Driven Animation Transfer Based on Consistent Volume Parameterization." In Advances in Computer Graphics, 78–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11784203_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Skeleton graphs":

1

Rao, Haocong, Shihao Xu, Xiping Hu, Jun Cheng, and Bin Hu. "Multi-Level Graph Encoding with Structural-Collaborative Relation Learning for Skeleton-Based Person Re-Identification." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Skeleton-based person re-identification (Re-ID) is an emerging open topic providing great value for safety-critical applications. Existing methods typically extract hand-crafted features or model skeleton dynamics from the trajectory of body joints, while they rarely explore valuable relation information contained in body structure or motion. To fully explore body relations, we construct graphs to model human skeletons from different levels, and for the first time propose a Multi-level Graph encoding approach with Structural-Collaborative Relation learning (MG-SCR) to encode discriminative graph features for person Re-ID. Specifically, considering that structurally-connected body components are highly correlated in a skeleton, we first propose a multi-head structural relation layer to learn different relations of neighbor body-component nodes in graphs, which helps aggregate key correlative features for effective node representations. Second, inspired by the fact that body-component collaboration in walking usually carries recognizable patterns, we propose a cross-level collaborative relation layer to infer collaboration between different level components, so as to capture more discriminative skeleton graph features. Finally, to enhance graph dynamics encoding, we propose a novel self-supervised sparse sequential prediction task for model pre-training, which facilitates encoding high-level graph semantics for person Re-ID. MG-SCR outperforms state-of-the-art skeleton-based methods, and it achieves superior performance to many multi-modal methods that utilize extra RGB or depth features. Our codes are available at https://github.com/Kali-Hac/MG-SCR.
2

KANONGCHAIYOS, PIZZANU, and YOSHIHISA SHINAGAWA. "ARTICULATED REEB GRAPHS FOR INTERACTIVE SKELETON ANIMATION." In MMM 2000. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791993_0029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Biely, Martin, Peter Robinson, and Ulrich Schmid. "Solving k-Set Agreement with Stable Skeleton Graphs." In Distributed Processing, Workshops and Phd Forum (IPDPSW). IEEE, 2011. http://dx.doi.org/10.1109/ipdps.2011.301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Heszberger, Zalan, Jozsef Biro, Andras Gulyas, Laszlo Balazs, and Andras Biro. "The Skeleton of Hyperbolic Graphs for Greedy Navigation." In 2019 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2019. http://dx.doi.org/10.1109/csci49370.2019.00092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ergun, Asli, Serkan Ergun, Mehmet Zubeyir Unlu, and Cengiz Gungor. "Registration and optimization in entropic graphs using branch skeleton features." In 2017 25th Signal Processing and Communications Applications Conference (SIU). IEEE, 2017. http://dx.doi.org/10.1109/siu.2017.7960448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gao, Wei, Shuming Gao, and Yusheng Liu. "3D CAD Model Similarity Assessment and Retrieval Using DBS." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Similarity assessment and retrieval of 3D CAD models play a key role in achieving reuse of huge amount of 3D CAD models. In this paper, a new approach to similarity assessment and retrieval of 3D CAD models based on dilation based skeleton (DBS) is presented. First the DBS of a 3D CAD model is introduced; Then the detailed algorithms of generating and refining the DBS of a 3D CAD model are described; Furthermore the method of performing similarity assessment and retrieval of 3D CAD models based on the matching of the DBS graphs derived from the DBS representations and containing both primary topological and geometric information of the models is presented; Finally some preliminary test results are given.
7

Hou, Suyu, and Karthik Ramani. "Dynamic Query Interface for 3D Shape Search." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Our 3D Engineering Shape Search System (3DESS), which uses the skeletal graph as one of its shape features to represent objects, has revealed the potential of graph-based representation for searching 3D models. In this paper, a dynamic user interface, which allows a user to customize the query by reusing the existing skeletal graph, shows another merit of the skeletal graph representation. This innovative user interface serves two purposes: (i) an iconic object for sketching and visualizing the skeletal abstraction, which is a 3D geometric representation of the skeletal graph, and (ii) a dynamic query interface which enables the user to customize the skeletal abstraction of the retrieved model as a new query. In order to more closely represent the original model and more precisely evaluate the shape similarity during the search process, a method of refining the preliminary skeletal graph is presented and implemented. This process elaborates the skeletal abstraction to be closer to the shape of the model. Thus, the skeletal graph contains both the essential topology and the geometry information of the original model. The results show that the retrieved skeletal abstraction matches the skeleton of the original model effectively, and the search retrieval based on the customized skeletal graph is sensitive to the user’s intention.
8

Wan, Jian, Nanxin Wang, and Robert Pakko. "A Method of Generating Swept Volume From Motion Captured With Depth Sensors Using an Open Source Graphic System." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One of the common usages of a captured human body motion in automotive application is creating swept volumes of the body surfaces based on the trajectories of its motion. Recent development of depth sensors enables fast and natural motion capture without attaching markers on subjects’ bodies. Microsoft Kinect is one of widely used depth sensors. It can track a whole body motion and output a skeleton model. A new method is developed to create the swept volumes from the motion captured by Kinect using an open source graphic system. The skeleton motion is recorded in a file format that is flexible to retain the skeleton’s structure and acceptable to various graphic systems. The motion is then bound with a surface manikin model in the graphic system, where the swept volumes are generated. This method is more flexible and portable than utilizing a commercial digital manikin, and potentially provides more accurate result.
9

Kamisawa, Kazuma, Koji Sakai, Koji Koyamada, and Akio Doi. "A Technique for Skeletonizing a Scalar Field Using a Critical Point Graph: Application to a Weather Simulation." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present a visualization technique which a large scale detects the structure at all scales removing from the user the responsibility of extracting information implicit in the data, and presenting the structure explicitly for analysis and retrieval. In typical scientific applications, data is represented at the nodes of a mesh of elements and interpolated linearly across the interior of the elements. A critical point exists in the gradient field of the Scalar filed. It is possible at few cost to express the Scalar field using the graph which connected the critical point. In past, we proposed a technique for calculating isosurfaces efficiently using an extrema skeleton, which consists of elements and connects all extrema points [3]. In this algorithm, extrema points in a scalar field are first extracted. A graph is then generated in which the extrema points are taken as nodes. And our work can be regarded as an extension of our original technique, because our new skeleton connects saddle points in addition to extrema points. To confirm the effectiveness of our technique, we extract features skeletons of CFD results for forecasting weather and determine linear correlation between multiple scalar variables such as wind velocity, temperature, and humidity.
10

Das, Pratyusha, and Antonio Ortega. "Graph-based skeleton data compression." In 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2020. http://dx.doi.org/10.1109/mmsp48831.2020.9287103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії