Добірка наукової літератури з теми "Smart processes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Smart processes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Smart processes"
Haidar, Adonis, Jason Underwood, and Paul Coates. "Smart processes for smart buildings: ‘sustainable processes’, ‘recyclable processes’ and ‘building seeds’ in parametric design." Architectural Engineering and Design Management 15, no. 5 (February 5, 2019): 402–29. http://dx.doi.org/10.1080/17452007.2018.1564645.
Повний текст джерелаBerger, Thierry, and Damien Trentesaux. "Intelligent, smart products, and processes." Concurrent Engineering 25, no. 1 (March 2017): 3–4. http://dx.doi.org/10.1177/1063293x17701188.
Повний текст джерелаKonyha, József, and Tamás Bányai. "Sensor Networks for Smart Manufacturing Processes." Solid State Phenomena 261 (August 2017): 456–62. http://dx.doi.org/10.4028/www.scientific.net/ssp.261.456.
Повний текст джерелаAlizadeh, Tooran, and Jathan Sadowski. "Smart urbanism: Processes, practices, and parameters." Telematics and Informatics 55 (December 2020): 101493. http://dx.doi.org/10.1016/j.tele.2020.101493.
Повний текст джерелаBott, Thomas, Wolfgang Gerlinger, and Johannes Barth. "Tailor Made Products by Smart Processes." Macromolecular Reaction Engineering 9, no. 5 (March 17, 2015): 396–400. http://dx.doi.org/10.1002/mren.201400069.
Повний текст джерелаSchioenning Larsen, Maria Stoettrup, and Astrid Heidemann Lassen. "Design parameters for smart manufacturing innovation processes." Procedia CIRP 93 (2020): 365–70. http://dx.doi.org/10.1016/j.procir.2020.04.068.
Повний текст джерелаChelyshkov, Pavel, and Nataliya Mokrova. "Decomposition of management processes in “Smart city”." IOP Conference Series: Materials Science and Engineering 869 (July 10, 2020): 022012. http://dx.doi.org/10.1088/1757-899x/869/2/022012.
Повний текст джерела., Aayush Srivastava. "SMART TASK MANAGER FOR USER DEFINED PROCESSES." International Journal of Research in Engineering and Technology 05, no. 07 (July 25, 2016): 267–71. http://dx.doi.org/10.15623/ijret.2016.0507041.
Повний текст джерелаShang, Zong Min. "An Exception Handling Approach for Service-Based Business Processes." Advanced Materials Research 605-607 (December 2012): 1700–1704. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.1700.
Повний текст джерелаAntzoulatos, Gerasimos, Christos Mourtzios, Panagiota Stournara, Ioannis-Omiros Kouloglou, Nikolaos Papadimitriou, Dimitrios Spyrou, Alexandros Mentes, et al. "Making urban water smart: the SMART-WATER solution." Water Science and Technology 82, no. 12 (August 18, 2020): 2691–710. http://dx.doi.org/10.2166/wst.2020.391.
Повний текст джерелаДисертації з теми "Smart processes"
Cañellas, Román Santiago. "Smart Catalytic Systems for Batch and Continuous Flow Enantioselective Processes." Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/665104.
Повний текст джерелаEl objetivo principal de esta tesis puede resumirse al desarrollo de nuevos procesos catalíticos para la síntesis eficiente de compuestos orgánicos relevantes a través de la organocatálisis y la catálisis de níquel, tanto en lotes como en flujo continuo. Tras una introducción general, tres proyectos de investigación conforman esta tesis. El primer proyecto muestra el desarrollo de un nuevo organocatalizador quiral soportado en poliestireno para la anelación de Robinson enantioselectiva. Esta reacción da lugar a varios intermedios clave para la síntesis de un gran número de compuestos bioactivos. Con este nuevo protocolo, la cetona Wieland-Miescher se preparo en tiempos de reacción tan cortos como una hora obteniendo resultados excelentes. Además, la naturaleza heterogénea del catalizador ha permitido el desarrollado de la primera versión de esta reacción en flujo continuo. En el segundo proyecto se trata la síntesis de un nuevo tipo de catalizadores con simetría C2. Estos compuestos se prepararon en escala de multigramos evitando la necesidad de purificación por cromatografía. Después, su actividad catalítica se probó en la reacción aldólica entre cetonas e isatinas. Notablemente, estos catalizadores pudieron acortar los tiempos de reacción típicamente necesarios para esta reacción, mostrando además mejores enantio- y diastereoselectividades que su análogo sin simetría C2. Adicionalmente, estos catalizadores se pudieron recuperar tras la reacción utilizando técnicas de extracción simples. Finalmente, el tercer capítulo muestra el descubrimiento de una transformación catalizada por níquel. Esta reacción, una cicloadición reductiva [2+2] de alquinos a ciclobutenos, fue descubierta por el uso de una ligando inusual en catálisis de níquel, una aminofosfina. La versatilidad de los ciclobutenos obtenidos se mostró con la síntesis del producto natural, el ácido epi-truxílico, así como otros productos estereodefinidos cíclicos y acíclicos. Además, las características mecanísticas de esta reacción también se han investigado.
The main goal of this thesis is the development of new catalytic processes for the efficient synthesis of relevant chiral organic compounds via organocatalysis and nickel catalysis, either in batch and continuous flow manner. After a general introduction, three research projects are collected in this thesis. The first one shows the development of a new polystyrene-supported chiral organocatalyst for the enantioselective Robinson annulation reaction. Importantly, this reaction gives rise to several important intermediates for the synthesis of many bioactive compounds. With this new protocol, the representative Wieland-Miescher ketone was prepared in reaction times as short as one hour achieving excellent results. Furthermore, a continuous flow synthesis of these bicyclic enones was performed for the first time using this supported catalyst. The second project illustrates the synthesis of a new class of C2-symmetric chiral triamines. These compounds were prepared in multigram scale avoiding the need of chromatographic purifications. Then, their catalytic activity was tested on the model aldol reaction of ketones with isatins. Notably, they were able to shorten the reaction times usually needed for this reaction, displaying an improved diastereo- and enantioselectivities in comparison with its non-symmetric counterpart. Additionally, the catalyst was demonstrated to be recoverable by using simple extraction techniques. Finally, the third project shows the discovery of a new nickel-catalyzed transformation. This reaction, a reductive [2+2] cycloaddition reaction of alkynes to cyclobutenes, was found out due to the use of an unusual aminophosphine ligand. The versatility of the cyclobutene products was showcased by the synthesis of the natural product epi-truxillic acid, as well as some cyclic and acyclic stereodefined products. Furthermore, the mechanistic features of this transformation were also investigated.
Seifert, Fanny. "Smart Maintenance." Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV, 2018. https://slub.qucosa.de/id/qucosa%3A32446.
Повний текст джерелаTemtem, Márcio Milton Nunes. "Development of biocompatible and “smart” porous structures using CO2-assisted processes." Doctoral thesis, FCT - UNL, 2009. http://hdl.handle.net/10362/1978.
Повний текст джерелаOver the past three decades the use of supercritical carbon dioxide (scCO2) has received much attention as a green alternative in the synthesis and processing of polymers. The scope of this thesis is the development of biocompatible and “smart” porous structures using CO2-assisted processes. This thesis is organized in four main chapters. The first one reviews and highlights some potentialities of supercritical fluid technology and the following ones compile the experimental work developed. The work is divided in three main parts: in the first part (2nd chapter) a CO2-assisted phase inversion method was developed in order to prepare porous structures, namely membranes. In the second part (3rd chapter) the focus was the synthesis of “smart” polymers,especially thermo and pH sensitive polymers. Finally, these two areas were combined (4th chapter) for the preparation of “smart” porous structures. The common guide line was the preparation or processing of biodegradable and/or biocompatible materials with special emphasis on the preparation of porous matrices, namely membranes and scaffolds, with controlled morphology. For membrane preparation a new high pressure apparatus and a new high pressure cell were developed. Polysulfone membranes (a biocompatible polymer with numerous applications in the medical field) were prepared and the effect of the solvent affinity and depressurization rate in the morphology and in the performance in terms of pure water flux of the membranes was investigated. The incorporation of a foaming agent was also analyzed and the high pressure CO2 capability to swell and melt polycaprolactone (PCL) was used to produce and control the porosity and the properties of the membranes. Finally, a natural and water soluble polymer (chitosan) was processed. The presence of water in the casting solution introduced extraordinary difficulties due to the low affinity between water and CO2. To induce the phase inversion a co-solvent (ethanol)was introduced in the CO2 stream. The obtained devices (membranes and beads) were fabricated using moderate temperatures and “green” solvents (ethanol, water and CO2). The morphology and the three dimensional (3D) structures were controlled by altering the co-solvent (ethanol) composition in the CO2 non-solvent stream during the demixing induced process. Microarchitectural analysis by scanning electron microscopy identified the formation of particulate agglomerates when 10% of ethanol in the scCO2 stream was used and detected the development of porous membranes with different morphologies and mechanical properties depending on the programmed gradient mode and the entrainer percentage (2.5-5%) added to the scCO2 stream. These chitosan matrices exhibited low solubility at neutral pH conditions, with no further modifications, demonstrating their applicability in bioreactors as static (membranes) or stirred (beads) culture devices. It was also demonstrated that the current method is able to prepare, in a single-step, an implantable antibiotic release system by co-dissolving gentamicin with chitosan and the solvent. In addition, the cytotoxicity as well as the ability of these structures to support the adhesion and proliferation of human mesenchymal stem cells (hMSC) in vitro were also addressed. After 2 weeks in culture, a 9-fold increase was obtained (versus 6 of the control). More importantly, cells maintained their clonogenic potential and immunophenotype (>95% CD 105+ Cells after 7 days of culture). In this chapter, a hypothetical schematic ternary diagram for the systems polymer–solvent–CO2 is used to discuss and explain the results. Another goal of this thesis was the synthesis of “smart” polymers. Chapter 3, addresses the precipitation polymerization of a thermoresponsive hydrogel, poly(N-isopropylacrylamide)(PNIPAAm), in scCO2. This hydrogel has a transition temperature, hereinafter called low critical solution temperature (LCST), around 32 ºC in an aqueous solution, close to body temperature. A strategy of solvent-free impregnation/coating of polymeric surfaces with PNIPAAm was suggested, in order to further extend the applications of membranes or porous bulky systems. The in situ synthesis of PNIPAAm within a chitosan scaffold was tested as a proof of concept, in order to produce smart partially-biodegradable scaffolds for tissue engineering applications. The LCST was tuned by copolymerization or graft polymerization of NIPAAm with other monomers. Copolymerization with hydroxyethyl methacrylate (HEMA) was used to decrease the LCST temperature from 32.2 ºC to approximately 27.7 ºC. Cloud point measurements of CO2 + HEMA system were used to optimize the polymerization temperature. Experimental data were obtained at 40 ºC, 50 ºC and 65 ºC and pressures up to 21.1 MPa. Soave-Redlich-Kwong equation of state with Mathias-Klotz-Prausnitz mixing rule was used to model experimental results and a good correlation was achieved. To increase the LCST, polyethylene oxide (an hydrophilic polymer) was grafted to PNIPPAAm. Dual stimulus (thermo and pH responsive) hydrogels were also prepared by copolymerizing methacrylic acid with PNIPAAm. As a proof of concept fluorouracil was incorporated in the hydrogels network and their release was controlled by temperature and pH stimulus. In chapter 4 the concepts of the previous chapters were put together envisaging the preparation of“smart” functional polymeric devices with targeted physical and chemical properties namely: (i) chitosan-based dual stimulus scaffolds (temperature and pH responsive); (ii) polysulfone-based thermoresponsive membranes and (iii) polymethylmethacrylate-based membranes. The chitosan scaffolds (pH sensitive) were coated/impregnated with a thermoresponsive polymer,poly(N-isopropylacrylamide) (PNIPAAm), using scCO2 as a carrier to homogeneously distribute the hydrogels monomer within the chitosan scaffolds and as a solvent to perform the polymerization reaction.
Fundação para a Ciência e Tecnologia através da bolsa de Doutoramento (SFRH/BD/16908/2004) e do projecto PTDC/CTM/70513/2006
Pearce, Eric L. "Designing active smart features to provide nesting forces in exactly constrained assemblies /." Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd202.pdf.
Повний текст джерелаHargreaves, Nigel. "Novel processes for smart grid information exchange and knowledge representation using the IEC common information model." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7671.
Повний текст джерелаVeja, Priti. "An investigation of integrated woven electronic textiles (e-textiles) via design led processes." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/10528.
Повний текст джерелаTuffaha, Mutaz. "An evaluation of a new Pricing technique to integrate Wind energy using two Time scales scheduling." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17370.
Повний текст джерелаGONZáLEZ, GóMEZ Mauricio. "Jeux stochastiques sur des graphes avec des applications à l’optimisation des smart-grids." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN064.
Повний текст джерелаWithin the research community, there is a great interest in exploring many applications of energy grids since these become more and more important in our modern world. To properly design and implement these networks, advanced and complex mathematical tools are necessary. Two key features for their design are correctness and optimality. While these last two properties are in the core of formal methods, their effective application to energy networks remains largely unexploited. This constitutes one strong motivation for the work developed in this thesis. A special emphasis is made on the generic problem of scheduling power consumption. This is a scenario in which the consumers have a certain energy demand and want to have this demand fulfilled before a set deadline (e.g., an Electric Vehicle (EV) has to be recharged within a given time window set by the EV owner). Therefore, each consumer has to choose at each time the consumption power (by a computerized system) so that the final accumulated energy reaches a desired level. The way in which the power levels are chosen is according to a ``strategy’’ mapping at any time the relevant information of a consumer (e.g., the current accumulated energy for EV-charging) to a suitable power consumption level. The design of such strategies may be either centralized (in which there is a single decision-maker controlling all strategies of consumers), or decentralized (in which there are several decision-makers, each of them representing a consumer). We analyze both scenarios by exploiting ideas originating from formal methods, game theory and optimization. More specifically, the power consumption scheduling problem can be modelled using Markov decision processes and stochastic games. For instance, probabilities provide a way to model the environment of the electrical system, namely: the noncontrollable part of the total consumption (e.g., the non-EV consumption). The controllable consumption can be adapted to the constraints of the distribution network (e.g., to the maximum shutdown temperature of the electrical transformer), and to their objectives (e.g., all EVs are recharged). At first glance, this can be seen as a stochastic system with multi-constraints objectives. Therefore, the contributions of this thesis also concern the area of multi-criteria objective models, which allows one to pursue several objectives at a time such as having strategy designs functionally correct and robust against changes of the environment
Abi, Assaf Maroun. "Integration framework for artifact-centric processes in the internet of things." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI059/document.
Повний текст джерелаThe emergence of fixed or mobile communicating objects poses many challenges regarding their integration into business processes in order to develop smart services. In the context of the Internet of Things, connected devices are heterogeneous and dynamic entities that encompass cyber-physical features and properties and interact through different communication protocols. To overcome the challenges related to interoperability and integration, it is essential to build a unified and logical view of different connected devices in order to define a set of languages, tools and architectures allowing their integrations and manipulations at a large scale. Business artifact has recently emerged as an autonomous (business) object model that encapsulates attribute-value pairs, a set of services manipulating its attribute data, and a state-based lifecycle. The lifecycle represents the behavior of the object and its evolution through its different states in order to achieve its business objective. Modeling connected devices and smart objects as an extended business artifact allows us to build an intuitive paradigm to easily express integration data-driven processes of connected objects. In order to handle contextual changes and reusability of connected devices in different applications, data-driven processes (or artifact processes in the broad sense) remain relatively invariant as their data structures do not change. However, service-centric or activity-based processes often require changes in their execution flows. This thesis proposes a framework for integrating artifact-centric processes and their application to connected devices. To this end, we introduce a logical and unified view of a "global" artifact allowing the specification, definition and interrogation of a very large number of distributed artifacts, with similar functionalities (smart homes or connected cars, ...). The framework includes a conceptual modeling method for artifact-centric processes, inter-artifact mapping algorithms, and artifact definition and manipulation algebra. A declarative language, called AQL (Artifact Query Language) aims in particular to query continuous streams of artifacts. The AQL relies on a syntax similar to the SQL in relational databases in order to reduce its learning curve. We have also developed a prototype to validate our contributions and conducted experimentations in the context of the Internet of Things
Bergkvist, Erik, and Tommy Sabbagh. "Smart Future Solutions for Maintenance of Aircraft : Enhancing Aircraft Maintenance at Saab AB." Thesis, Linköpings universitet, Industriell Produktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176561.
Повний текст джерелаКниги з теми "Smart processes"
Koulopoulos, Thomas M. Smart companies, smart tools: Transforming business processes into business assets. New York: Van Nostrand Reinhold, 1997.
Знайти повний текст джерелаSmart contracting for local government services: Processes and experience. Westport, Conn: Praeger, 1999.
Знайти повний текст джерелаL, Kennedy Scott, ed. Manufacturing in real-time: Managers, engineers and an age of smart machines. Amsterdam: Butterworth-Heinemann, 2003.
Знайти повний текст джерелаLuo, Zongwei. Smart manufacturing innovation and transformation: Interconnection and intelligence. Hershey, PA: Business Science Reference, 2014.
Знайти повний текст джерелаSolovev, Denis B., ed. Smart Technologies and Innovations in Design for Control of Technological Processes and Objects: Economy and Production. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18553-4.
Повний текст джерелаSolovev, Denis B., ed. Smart Technologies and Innovations in Design for Control of Technological Processes and Objects: Economy and Production. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15577-3.
Повний текст джерелаThink smart: A neuroscientist's prescription for improving your brain's performance. New York: Riverhead Books, 2009.
Знайти повний текст джерелаMaurice, Ades, Griebenow Ron, Society for Computer Simulation, and Advanced Simulation Technologies Conference (1998 : Boston, Mass.), eds. Proceedings of the Simulators International XV: 1998 Advanced Simulation Technologies Conference (ASTC '98) : Boston, Massachusetts, April 5-9, 1998, Boston Park Plaza Hotel. San Diego, Calif: Society for Computer Simulation International, 1998.
Знайти повний текст джерелаBagajewicz, Miguel J. Smart process plants: Software and hardware solutions for accurate data and profitable operations. New York: McGraw-Hill, 2010.
Знайти повний текст джерелаЧастини книг з теми "Smart processes"
Chung, Deborah D. L. "Intrinsically smart structural composites." In Engineering Materials and Processes, 253–84. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-3732-0_13.
Повний текст джерелаIordache, Octavian. "Processes Synthesis." In Implementing Polytope Projects for Smart Systems, 25–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52551-8_2.
Повний текст джерелаVyas, Parag K. "Taxonomy of Jewellery Manufacturing Processes According to Root Processes." In Smart Innovation, Systems and Technologies, 157–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5974-3_14.
Повний текст джерелаRaj, Pethuru, and Sathish A. P. Kumar. "Big Data Analytics Processes and Platforms Facilitating Smart Cities." In Smart Cities, 23–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119226444.ch2.
Повний текст джерелаCroce, G., A. Andreini, L. Cerati, G. Meneghesso, and L. Sponton. "ESD in Smart Power Processes." In Analog Circuit Design, 169–206. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/0-306-48707-1_8.
Повний текст джерелаHewitt, Andrew D., and Andrew J. Hebden. "Finishing Processes and Recent Developments." In Fibres to Smart Textiles, 201–20. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2020] | Series: Textile Institute professional publications: CRC Press, 2019. http://dx.doi.org/10.1201/9780429446511-11.
Повний текст джерелаDonato, Laura, Rosalinda Mazzei, Catia Algieri, Emma Piacentini, Teresa Poerio, and Lidietta Giorno. "Molecular Recognition-Driven Membrane Processes." In Smart Membranes and Sensors, 269–300. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119028642.ch10.
Повний текст джерелаRial, Alfredo, and George Danezis. "Privacy-Preserving Smart Metering." In ISSE 2012 Securing Electronic Business Processes, 105–15. Wiesbaden: Springer Fachmedien Wiesbaden, 2012. http://dx.doi.org/10.1007/978-3-658-00333-3_11.
Повний текст джерелаHybl, Jiri. "The Czech Social Security Smart Card." In Securing Electronic Business Processes, 197–203. Wiesbaden: Vieweg+Teubner Verlag, 2004. http://dx.doi.org/10.1007/978-3-322-84982-3_23.
Повний текст джерелаPadaki, Naveen V., Brojeswari Das, Subhas V. Naik, and Sanganna A. Hipparagi. "Preparatory Chemical Processes and Recent Developments." In Fibres to Smart Textiles, 153–67. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2020] | Series: Textile Institute professional publications: CRC Press, 2019. http://dx.doi.org/10.1201/9780429446511-8.
Повний текст джерелаТези доповідей конференцій з теми "Smart processes"
Qin, Ivy, Aashish Shah, Basil Milton, Gary Schulze, Andrew Chang, and Nelson Wong. "Smart Wire Bonding Processes for Smart Factories." In 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC). IEEE, 2018. http://dx.doi.org/10.1109/eptc.2018.8654365.
Повний текст джерелаSchmidt, Thilo, Andreas Wagener, Jens Popp, and Kai Hahn. "Technology interfaces to microsystem and nanoelectronic processes." In Smart Materials, Nano-, and Micro-Smart Systems, edited by Said F. Al-Sarawi. SPIE, 2005. http://dx.doi.org/10.1117/12.581830.
Повний текст джерелаBukantaite, Simona. "Factors of Smart Production Processes Modernization." In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). IEEE, 2020. http://dx.doi.org/10.1109/hora49412.2020.9152832.
Повний текст джерелаWang, Jianqun, Thermpon Ativanichayaphong, Ying Cai, Wen-Ding Huang, Lun-Chen Hsu, W. Alan Davis, Mu Chiao, and J. C. Chiao. "Fabrication processes of MEMS phase shifters on polymer-based substrates." In Smart Materials, Nano- and Micro-Smart Systems, edited by Jung-Chih Chiao, Andrew S. Dzurak, Chennupati Jagadish, and David V. Thiel. SPIE, 2006. http://dx.doi.org/10.1117/12.695577.
Повний текст джерелаHeading, E., H. J. Hansen, and M. E. Parker. "Modelling of coplanar waveguide transmission lines in multiple metal layer processes." In Smart Materials, Nano- and Micro-Smart Systems, edited by Said F. Al-Sarawi. SPIE, 2006. http://dx.doi.org/10.1117/12.695676.
Повний текст джерелаTseng, Ching-Chang, Chen-Wei Chiu, Kai-Xiang Zhung, Jiun-Haw Lee, and Guo-Dung John Su. "Thin silicon shadow masks for organic light-emitting diodes (OLED) deposition processes." In Smart Materials, Nano- and Micro-Smart Systems, edited by Said F. Al-Sarawi. SPIE, 2006. http://dx.doi.org/10.1117/12.692440.
Повний текст джерелаHaferkamp, Heinz, Stefan Paschko, and Martin Goede. "New laser machining processes for shape memory alloys." In Smart Materials and MEMS, edited by Alan R. Wilson and Hiroshi Asanuma. SPIE, 2001. http://dx.doi.org/10.1117/12.424393.
Повний текст джерелаJaworski, Artur J., Tomasz Dyakowski, and Graham A. Davies. "Smart Sensors for Controlling Oil-Water Separation Processes." In ASME 2001 Engineering Technology Conference on Energy. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/etce2001-17102.
Повний текст джерелаKamm, Michael, Michael Gau, Johannes Schneider, and Jan Vom Brocke. "Smart Waste Collection Processes - A Case Study about Smart Device Implementation." In Hawaii International Conference on System Sciences. Hawaii International Conference on System Sciences, 2020. http://dx.doi.org/10.24251/hicss.2020.810.
Повний текст джерелаLi, ChanPang, and I. K. Hui. "Environmental impact assessment model for manufacturing processes." In Intelligent Systems and Smart Manufacturing, edited by Surendra M. Gupta. SPIE, 2001. http://dx.doi.org/10.1117/12.417267.
Повний текст джерелаЗвіти організацій з теми "Smart processes"
Boyce, J. R., S. Prior, E. Hanson, and B. Morgan. The Work Smart Standards process at Jefferson Lab. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/555472.
Повний текст джерелаBoyce, J. R., S. Prior, E. Hanson, and B. Morgan. The Work Smart Standards process at Jefferson Lab. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/10163174.
Повний текст джерелаMAITRA, ARINDAM, RAY LITWIN, Jason lai, and David Syracuse. Ultrafast Power Processor for Smart Grid Power Module Development. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1124624.
Повний текст джерелаJames L. Nagle. Smart Trigger Pre-Processor Custom Electronics for the PHENIX Experiment. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/822657.
Повний текст джерелаCarlucci, D., R. Pellen, J. Pritchard, and W. Demassi. Smart Projectiles: Design Guidelines and Development Process Keys to Success. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada531374.
Повний текст джерелаIGNATENKOVA, ANNA. EXHAUST GAS LIQUID CONDENSATION AS PART OF THE SMART COMBUSTION PROCESS. Intellectual Archive, August 2019. http://dx.doi.org/10.32370/iaj.2165.
Повний текст джерелаCao, Shoufeng, Uwe Dulleck, Warwick Powell, Charles Turner-Morris, Valeri Natanelov, and Marcus Foth. BeefLedger blockchain-credentialed beef exports to China: Early consumer insights. Queensland University of Technology, May 2020. http://dx.doi.org/10.5204/rep.eprints.200267.
Повний текст джерелаBerndt, Christian. RV SONNE Fahrtbericht / Cruise Report SO277 OMAX: Offshore Malta Aquifer Exploration, Emden (Germany) – Emden (Germany), 14.08. – 03.10.2020. GEOMAR Helmholtz Centre for Ocean Research Kiel, January 2021. http://dx.doi.org/10.3289/geomar_rep_ns_57_20.
Повний текст джерелаAppleyard, Bruce, Jonathan Stanton, and Chris Allen. Toward a Guide for Smart Mobility Corridors: Frameworks and Tools for Measuring, Understanding, and Realizing Transportation Land Use Coordination. Mineta Transportation Institue, December 2020. http://dx.doi.org/10.31979/mti.2020.1805.
Повний текст джерелаLangner, Margarete R., Rois Langner, and Thien-Kim L. Trenbath. Integrating Smart Plug and Process Load Controls into Energy Management Information System Platforms: A Landscaping Study. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1530714.
Повний текст джерела