Добірка наукової літератури з теми "Smoothing Newton method"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Smoothing Newton method".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Smoothing Newton method"
Zhu, Jianguang, and Binbin Hao. "A new smoothing method for solving nonlinear complementarity problems." Open Mathematics 17, no. 1 (March 10, 2019): 104–19. http://dx.doi.org/10.1515/math-2019-0011.
Повний текст джерелаWU, CAIYING, and GUOQING CHEN. "PREDICTOR–CORRECTOR SMOOTHING NEWTON METHOD FOR SOLVING SEMIDEFINITE PROGRAMMING." Bulletin of the Australian Mathematical Society 79, no. 3 (April 17, 2009): 367–76. http://dx.doi.org/10.1017/s0004972708001214.
Повний текст джерелаFeng, Ning, Zhi Yuan Tian, and Xin Lei Qu. "A Smoothing Newton Method for Nonlinear Complementarity Problems." Applied Mechanics and Materials 475-476 (December 2013): 1090–93. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.1090.
Повний текст джерелаYong, Longquan. "A Smoothing Newton Method for Absolute Value Equation." International Journal of Control and Automation 9, no. 2 (February 28, 2016): 119–32. http://dx.doi.org/10.14257/ijca.2016.9.2.12.
Повний текст джерелаLi, Dong-Hui, Liqun Qi, Judy Tam, and Soon-Yi Wu. "A Smoothing Newton Method for Semi-Infinite Programming." Journal of Global Optimization 30, no. 2-3 (November 2004): 169–94. http://dx.doi.org/10.1007/s10898-004-8266-z.
Повний текст джерелаTang, Jingyong, Li Dong, Jinchuan Zhou, and Liang Fang. "A smoothing Newton method for nonlinear complementarity problems." Computational and Applied Mathematics 32, no. 1 (March 26, 2013): 107–18. http://dx.doi.org/10.1007/s40314-013-0015-9.
Повний текст джерелаLi, Meixia, and Haitao Che. "A Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem." Mathematical Problems in Engineering 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/401835.
Повний текст джерелаQi, L., and D. Sun. "Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems." Journal of Optimization Theory and Applications 113, no. 1 (April 2002): 121–47. http://dx.doi.org/10.1023/a:1014861331301.
Повний текст джерелаYin, Hongxia. "An Adaptive Smoothing Method for Continuous Minimax Problems." Asia-Pacific Journal of Operational Research 32, no. 01 (February 2015): 1540001. http://dx.doi.org/10.1142/s0217595915400011.
Повний текст джерелаMeng, Wei, Zhi Yuan Tian, and Xin Lei Qu. "A Smoothing Method for Solving the NCP Based on a New Smoothing Approximate Function." Applied Mechanics and Materials 462-463 (November 2013): 294–97. http://dx.doi.org/10.4028/www.scientific.net/amm.462-463.294.
Повний текст джерелаДисертації з теми "Smoothing Newton method"
Ferzly, Joëlle. "Adaptive inexact smoothing Newton method for nonlinear systems with complementarity constraints. Application to a compositional multiphase flow in porous media." Thesis, Sorbonne université, 2022. http://www.theses.fr/2022SORUS376.
Повний текст джерелаWe consider variational inequalities written in the form of partial differential equations with nonlinear complementarity constraints. The discretization of such problems leads to nonlinear non-differentiable discrete systems that can be solved employing an iterative linearization method of semismooth type like, e.g., the Newton-min algorithm. Our goal in this thesis is to conceive a simple smoothing approach that involves approximating the problem as a system of nonlinear smooth (differentiable) equations. In this setting, a direct application of classical Newton-type methods is possible. We construct a posteriori error estimates that lie at the foundation of an adaptive inexact smoothing Newton algorithm for a solution of the considered problems. We first present the strategy in a discrete framework. Then, we develop the method for the model problem of contact between two membranes. Last, an application to a compositional multiphase flow industrial model is introduced. In Chapter 1, we are concerned about nonlinear algebraic systems with complementarity constraints arising from numerical discretizations of PDEs with nonlinear complementarity problems. We produce a smooth approximation of a nonsmooth function, reformulating the complementarity conditions. The ensuing nonlinear system is solved employing the Newton method, together with an iterative linear algebraic solver to approximately solve the linear system. We establish an upper bound on the considered system’s residual and design a posteriori error estimators identifying the smoothing, linearization, and algebraic error components. These ingredients are used to formulate efficient stopping criteria for the nonlinear and algebraic solvers. With the same methodology, an adaptive interior-point method is proposed. We apply our algorithm to the algebraic system of variational inequalities describing the contact between two membranes and a two-phase flow problem. We provide numerical comparison of our approach with a semismooth Newton method, possibly combined with a path-following strategy, and a nonparametric interior-point method. In Chapter 2, in an infinite-dimensional framework, we consider as a model problem the contact problem between two membranes. We employ a finite volume discretization and apply the smoothing approach proposed in Chapter 1 to smooth the non-differentiability in the complementarity constraints. The resolution of the arising nonlinear smooth system is again realized thanks to the Newton method, in combination with an iterative algebraic solver for the solution of the resulting linear system. We design H1-conforming potential reconstructions as well as H(div)-conforming discrete equilibrated flux reconstructions. We prove an upper bound for the total error in the energy norm and conceive discretization, smoothing, linearization, and algebraic estimators reflecting the errors stemming from the finite volume discretization, the smoothing of the non-differentiability, the linearization by the Newton method, and the algebraic solver, respectively. This enables us to establish adaptive stopping criteria to stop the different solvers in the proposed algorithm and design adaptive algorithm steering all these four components. In Chapter 3, we consider a compositional multiphase flow (oil, gas, and water) with phase transitions in a porous media. A finite volume discretization yields a nonlinear non-differentiable algebraic system which we solve employing our inexact smoothing Newton technique. Following the process of Chapter 1, we build a posteriori estimators by bounding the norm of the discrete system’s residual, resulting in adaptive criteria that we incorporate in the employed algorithm. Throughout this thesis, numerical experiments confirm the efficiency of our estimates. In particular, we show that the developed adaptive algorithms considerably reduce the overall number of iterations in comparison with the existing methods
Lin, Tzu-Ching, and 林子靖. "A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/hg76p7.
Повний текст джерела國立臺灣師範大學
數學系
97
We present a smooth approximation for the generalized Fischer-Burmeister function where the 2-norm in the FB function is relaxed to a general p-norm (p > 1), and establish some favorable properties for it, for example, the Jacobian consistency. With the smoothing function, we transform the mixed complementarity problem (MCP) into solving a sequence of smooth system of equations.
Книги з теми "Smoothing Newton method"
Ulbrich, Michael, Liqun Qi, and Defeng Sun. Semismooth and Smoothing Newton Methods. Springer, 2021.
Знайти повний текст джерелаЧастини книг з теми "Smoothing Newton method"
Zhang, Jie, and Shao-Ping Rui. "Globally Convergent Inexact Smoothing Newton Method for SOCCP." In Advances in Intelligent and Soft Computing, 427–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22833-9_52.
Повний текст джерелаSolodov, Michael V., and Benav F. Svaiter. "A Globally Convergent Inexact Newton Method for Systems of Monotone Equations." In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, 355–69. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6388-1_18.
Повний текст джерелаLiu, Lixia, and Sanyang Liu. "A New Smoothing Newton Method for Symmetric Cone Complementarity Problems." In Algorithmic Aspects in Information and Management, 199–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14355-7_21.
Повний текст джерелаChen, Weibing, Hongxia Yin, and Yingjie Tian. "Smoothing Newton Method for L 1 Soft Margin Data Classification Problem." In Lecture Notes in Computer Science, 543–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01973-9_61.
Повний текст джерелаQi, L., and G. Zhou. "A Smoothing Newton Method for Ball Constrained Variational Inequalities with Applications." In Topics in Numerical Analysis, 211–25. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6217-0_16.
Повний текст джерелаFang, Liang, Xianming Kong, Xiaoyan Ma, Han Li, and Wei Zhang. "A One-Step Smoothing Newton Method Based on a New Class of One-Parametric Nonlinear Complementarity Functions for P 0-NCP." In Advances in Neural Networks - ISNN 2010, 110–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13278-0_15.
Повний текст джерелаChen, Xiaojun, Nami Matsunaga, and Tetsuro Yamamoto. "Smoothing Newton Methods for Nonsmooth Dirichlet Problems." In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, 65–79. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6388-1_4.
Повний текст джерелаChristensen, Peter W., and Jong-Shi Pang. "Frictional Contact Algorithms Based on Semismooth Newton Methods." In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, 81–116. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6388-1_5.
Повний текст джерелаLi, Wu, and John Swetits. "Regularized Newton Methods for Minimization of Convex Quadratic Splines with Singular Hessians." In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, 235–57. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6388-1_12.
Повний текст джерелаQi, L., and D. Sun. "A Survey of Some Nonsmooth Equations and Smoothing Newton Methods." In Applied Optimization, 121–46. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4613-3285-5_7.
Повний текст джерелаТези доповідей конференцій з теми "Smoothing Newton method"
Yu, Haodong. "A Smoothing Active-Set Newton Method for Constrained Optimization." In 2012 Fifth International Joint Conference on Computational Sciences and Optimization (CSO). IEEE, 2012. http://dx.doi.org/10.1109/cso.2012.95.
Повний текст джерелаJiang, Xiaoqin. "A Smoothing Newton Method for Solving Absolute Value Equations." In 2nd International Conference On Systems Engineering and Modeling. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/icsem.2013.94.
Повний текст джерелаChi, Xiaoni, and Xiaoyong Liao. "A Squared Smoothing Newton Method for Second-Order Cone Programming." In 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.185.
Повний текст джерелаSu, Ke, and Xiaoli Lu. "A New Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem." In 2013 Sixth International Conference on Business Intelligence and Financial Engineering (BIFE). IEEE, 2013. http://dx.doi.org/10.1109/bife.2013.130.
Повний текст джерелаYousefian, Farzad, Angelia Nedic, and Uday V. Shanbhag. "A smoothing stochastic quasi-newton method for non-lipschitzian stochastic optimization problems." In 2017 Winter Simulation Conference (WSC). IEEE, 2017. http://dx.doi.org/10.1109/wsc.2017.8247960.
Повний текст джерелаZhao, Huali, and Hongwei Liu. "Predictor-Corrector Smoothing Newton Method for Solving the Second-Order Cone Complementarity." In 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2010. http://dx.doi.org/10.1109/icicta.2010.590.
Повний текст джерелаHe, Yanling, and Chunyan Liu. "Sub-quadratic convergence of a smoothing Newton method for symmetric cone complementarity problems." In 2015 27th Chinese Control and Decision Conference (CCDC). IEEE, 2015. http://dx.doi.org/10.1109/ccdc.2015.7162450.
Повний текст джерелаZhao, Hua-Li, and Hong-Wei Liu. "A Predictor-corrector Smoothing Newton Method for Solving the Second-order Cone Complementarity." In 2010 International Conference on Computational Aspects of Social Networks (CASoN 2010). IEEE, 2010. http://dx.doi.org/10.1109/cason.2010.66.
Повний текст джерелаHao, Muting, Feng Wang, Joshua Hope-Collins, Max E. Rife, and Luca di Mare. "Template-Based Hexahedral Mesh Generation for Turbine Cooling Geometries." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14660.
Повний текст джерелаKumar, Prabhat, Roger A. Sauer, and Anupam Saxena. "On Synthesis of Contact Aided Compliant Mechanisms Using the Material Mask Overlay Method." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47064.
Повний текст джерела