Добірка наукової літератури з теми "Solute permeability"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Solute permeability".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Solute permeability"
Cordeiro, Margarida M., Armindo Salvador, and Maria João Moreno. "Calculation of Permeability Coefficients from Solute Equilibration Dynamics: An Assessment of Various Methods." Membranes 12, no. 3 (February 23, 2022): 254. http://dx.doi.org/10.3390/membranes12030254.
Повний текст джерелаAdamson, R. H., V. H. Huxley, and F. E. Curry. "Single capillary permeability to proteins having similar size but different charge." American Journal of Physiology-Heart and Circulatory Physiology 254, no. 2 (February 1, 1988): H304—H312. http://dx.doi.org/10.1152/ajpheart.1988.254.2.h304.
Повний текст джерелаFu, Bingmei M., Roger H. Adamson, and Fitz-Roy E. Curry. "Determination of Microvessel Permeability and Tissue Diffusion Coefficient of Solutes by Laser Scanning Confocal Microscopy." Journal of Biomechanical Engineering 127, no. 2 (September 18, 2004): 270–78. http://dx.doi.org/10.1115/1.1865186.
Повний текст джерелаFu, Bingmei M., and Shang Shen. "Structural mechanisms of acute VEGF effect on microvessel permeability." American Journal of Physiology-Heart and Circulatory Physiology 284, no. 6 (June 1, 2003): H2124—H2135. http://dx.doi.org/10.1152/ajpheart.00894.2002.
Повний текст джерелаNiles, W. D., F. S. Cohen, and A. Finkelstein. "Hydrostatic pressures developed by osmotically swelling vesicles bound to planar membranes." Journal of General Physiology 93, no. 2 (February 1, 1989): 211–44. http://dx.doi.org/10.1085/jgp.93.2.211.
Повний текст джерелаMullen, T. L., M. Muller, and J. T. Van Bruggen. "Role of solute drag in intestinal transport." Journal of General Physiology 85, no. 3 (March 1, 1985): 347–63. http://dx.doi.org/10.1085/jgp.85.3.347.
Повний текст джерелаVarunkumar, M., and P. Muthu. "Fluid Flow and Solute Transfer in a Tube with Variable Wall Permeability." Zeitschrift für Naturforschung A 74, no. 12 (December 18, 2019): 1057–67. http://dx.doi.org/10.1515/zna-2019-0071.
Повний текст джерелаAntonenkov, Vasily D., and J. Kalervo Hiltunen. "Peroxisomal membrane permeability and solute transfer." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1763, no. 12 (December 2006): 1697–706. http://dx.doi.org/10.1016/j.bbamcr.2006.08.044.
Повний текст джерелаZaheer, Muhammad, Hadayat Ullah, Saad Ahmed Mashwani, Ehsan ul Haq, Syed Husnain Ali Shah, and Fawaz Manzoor. "SOLUTE TRANSPORT MODELLING IN LOW-PERMEABILITY HOMOGENEOUS AND SATURATED SOIL MEDIA." Rudarsko-geološko-naftni zbornik 36, no. 2 (2021): 25–32. http://dx.doi.org/10.17794/rgn.2021.2.3.
Повний текст джерелаKevil, Christopher G., Tadayuki Oshima, Brett Alexander, Laura L. Coe, and J. Steven Alexander. "H2O2-mediated permeability: role of MAPK and occludin." American Journal of Physiology-Cell Physiology 279, no. 1 (July 1, 2000): C21—C30. http://dx.doi.org/10.1152/ajpcell.2000.279.1.c21.
Повний текст джерелаДисертації з теми "Solute permeability"
Kemp, Paul J. "Ion and solute transport in alveolar type II pneumocytes." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253135.
Повний текст джерелаKellen, Michael R. "A model for microcirculatory fluid and solute exchange in the heart /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/8124.
Повний текст джерелаOrsi, Mario. "The development of a coarse-grain biomembrane model and its use in multiscale simulations of solute permeability." Thesis, University of Southampton, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496091.
Повний текст джерелаLarsbo, Mats. "An improved dual-permeability model of solute transport in structured soils : model development and parameter identification in laboratory and field experiments /." Uppsala : Dept. of Soil Sciences, Swedish University of Agricultural Sciences, 2005. http://epsilon.slu.se/200551.pdf.
Повний текст джерелаSedin, John. "Prevention of Postoperative Duodenal Ileus by COX-2 Inhibition Improves Duodenal Function in Anaesthetised Rats." Doctoral thesis, Uppsala universitet, Fysiologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198049.
Повний текст джерелаTang, Zhenye, Jide Zhong, Xianqing Feng, Yafei Zhang, Yadi Hu, Hui Liu, Jie Liu, Cem Emre Ferah, and Keyong Tang. "Effects of soluble soybean polysaccharide as filling agent on the properties of leathers - 224." Verein für Gerberei-Chemie und -Technik e. V, 2019. https://slub.qucosa.de/id/qucosa%3A34318.
Повний текст джерелаBielinski, Clément. "Impact of the flow on mass transfer from particles : biomedical applications." Thesis, Compiègne, 2021. https://bibliotheque.utc.fr/Default/doc/SYRACUSE/2021COMP2630.
Повний текст джерелаMass transfer from particles is encountered in many biomedical applications, such as controlled drug delivery, cell culture, or in designing bioartificial organs. In operating conditions, particles are subjected to various flows, whose effect on solute transport is still not well understood and controlled. In this PhD thesis, we study the effect of the flow on mass transfer from core-shell capsules and fibers, using numerical simulations. Solute release from a core-shell fiber confined in a channel and subjected to Poiseuille flow is studied using two-dimensional lattice Boltzmann simulations. The combined effects of the flow and the shell permeability on mass transfer are analyzed over a wide range of Reynolds number covering both steady and unsteady flows. A new correlation giving the Sherwood number (the dimensionless mass transfer coefficient) as a function of the shell permeability, the Reynolds number, and the Schmidt number is proposed. The shell permeability is difficult to measure. Current characterization methods only allow the determination of an effective permeability for the whole particle (core and shell combined), and not specifically the shell permeability. A novel method to characterize capsules shell permeability is proposed and validated on both numerical and experimental data. This method consists in extracting the capsule permeability by fitting the release curves with numerical solutions of Fick’s second law of diffusion computed in one dimension using the finite difference method, by assuming spherical symmetry. Solute release from a capsule placed in a shear flow is also analyzed by the mean of three-dimensional simulations coupling the lattice Boltzmann method and the immersedboundary method for the fluid-structure interaction. The flow is found to enhance the masstransfer efficiency by forced convection. The effect of the boundary conditions set at the surface of the capsule is examined, as well. Considering Dirichlet boundary conditions at the particle surface, as classically done in literature, leads to significantly higher Sherwood numbers as compared to the case of continuity of both the concentration and the mass flux, which is more adapted to model solute release. The suspension dynamics of soft capsules in a microfluidic constriction is also studied. A state diagram describing the transition from capsule passage to blockage is determined as a function of their geometrical and mechanical properties. It can be used, for example, to optimize the design of microfluidic devices in order to enhance the mass transfer efficiency
Colace, Gianmarco. "Modification of Poly(vinyl alcohol) film to maximize barrier properties." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668477.
Повний текст джерелаEl alcohol polivinílico (PVA) es el polímero sintético más producido en el mundo. La excelente resistencia química y propiedades físicas de la resina de PVA han generado un amplio uso a nivel industrial. Los films de alcohol polivinílico exhiben alta resistencia a la tensión, resistencia a la abrasión y propiedades barrera al oxígeno, que en absencia de humedad son muy superiores a la de la mayoría de polímeros. Los films de PVA son ampliamente utilizados en aplicaciones de embalaje, donde la permeabilidad llega a ser una propiedad crítica a medir. Una amplia serie de modificaciones pueden ser aplicadas para cambiar la difusión a través de los films. Para este trabajo fueron elegidas dos tipos de modificaciones: la mezcla con otros polímeros hidrosolubles y la preparación de un material compuesto. Según Robeson, un modelo en serie de matriz y partículas conduce a un sistema tortuoso que, para un espesor dado, disminuye la permeabilidad, mientras los modelos de Bharadwaj para mezclas de polímeros fueron utilizados para la predicción de la permeabilidad. La producción de film se basa en la evaporación del solvente: el polímero se disuelve y forma una solución con una determinada concentración y viscosidad; luego las partículas o el segundo polímero son añadidos al sistema; la mezcla viscosa es vertida encima de un soporte de vidrio y distribuida manualmente sobre el soporte con una cuchilla aplicador regulado con diferentes distancias. Los experimentos de solubilidad fueron realizados midiendo el tiempo de disolución de los films modificados y del polímero de partida y no se observaron diferencias después de las modificaciones. Los experimentos con el método de dry cup fueron llevados a cabo para medir la permeabilidad al vapor de agua, registrando una disminución en los valores.
Poly(vinyl alcohol) (PVA), a polyhydroxy polymer, is the largest volume, synthetic water-soluble polymer produced in the world. The excellent chemical resistance and physical properties of PVA resins have resulted in broad industrial use. Poly(vinyl alcohol) films exhibit high tensile strength, abrasion resistance, and oxygen barrier properties which under dry conditions are superior to those of most polymers. PVA films are broadly used in packaging applications, where permeability became a critical property to evaluate. A wide range of modifications can be applied to change the moisture diffusion through the film; two types were chosen for the work: blending with other water-soluble polymers and preparation of a composite. According to Robeson, a series model of polymeric matrix and particles, leads to a tortuous system, which, for a given thickness, decreases the permeability, meanwhile Bharadwaj models for blended polymer were used for permeability prediction. The film casting is based on solvent evaporation: the polymer is dissolved and forms a solution with a certain concentration and viscosity; then the particles or the second water-soluble polymer are loaded in the system; the viscous mixture is poured on a glass support and spread across it manually with a casting knife set at different gaps. So, the wet film is left to stand to evaporate the solvent and leave a dry film. Solubility experiments were performed, by measuring the dissolution time of the film, and it was not significantly influenced by the material modification. Dry cup method experiments were run to measure the water vapor permeability, recording a decreasing values of permeabilities.
Sobecki, Nicolas. "Upscaling of Thermodynamic Properties for Flow Simulation in Low Permeability Unconventional Reservoirs." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS005/document.
Повний текст джерелаTight oil and shale gas reservoirs have a significant part of their pore volume occupied by micro (below 2nm) and mesopores (between 2 and 50nm). This kind of environment creates strong interaction forces in the confined fluid with pore walls as well as between its own molecules and then changes dramatically the fluid phase behavior. An important work has therefore to be done on developing upscaling methodology of the pore size distribution for large scale reservoir simulations. Firstly, molecular simulations are performed on different confined fluids in order to get reference thermodynamic properties at liquid/vapor equilibrium for different pore sizes. Then, the comparison with commonly used modified equation of state (EOS) in the literature highlighted the model of flash with capillary pressure and critical temperature and pressure shift as the best one to match reference molecular simulation results. Afterwards fine grid matrix/fracture simulations have been built and performed for different pore size distributions. Then, coarse grid upscaling models have then been performed on the same synthetic case and compared to the reference fine grid results. A new triple porosity model considering fracture, small pores and large pores with MINC (Multiple Interacting Continua) approach, has shown very good match with the reference fine grid results. Finally a large scale stimulated reservoir volume with different pore size distribution inside the matrix has been built using the upscaling method developed here
Wang, Zhenyu. "Rôle de l’adénylate cyclase soluble, de phosphodiesterases et d’Epac dans la fonction mitochondriale cardiaque et la mort cellulaire." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS186/document.
Повний текст джерелаCAMP is an important messenger in neurohormonal regulation of the heart. By activating its effectors, cAMP regulates many cellular functions such as gene expression, excitation-contraction coupling and cellular metabolism. In mammals, cAMP is produced by a family of adenylyl cyclase with various subcellular locations and membrane anchorage. The existence and role of cyclic nucleotide signaling in mitochondria has been postulated, but has not yet been demonstrated. Moreover, its implication in the regulation of cell death is still unknown. In this thesis, we demonstrated the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1) and showed a protective role for sACt against cell death, apoptosis as well as necrosis, in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3-) and Ca2+, sACt produces cAMP, which in turn stimulates oxygen consumption, increased the mitochondrial membrane potential (∆Ψm) and ATP production. cAMP is rate-limiting for matrix Ca2+ entry via the mitochondrial calcium uniporter (MCU) and, as a consequence, prevented mitochondrial permeability transition (MPT). In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3- rescued the sensitization of mitochondria to Ca2+-induced MPT. We also found that PDE2, 3 and 4 families are located in cardiac mitochondria. They form a local signaling pathway with soluble AC in the matrix, which regulates cardiac mitochondrial functions. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism, some PDEs and cell death in the heart, which is independent of cytosolic cAMP signaling. This might constitute a novel cardioprotective mechanism through mitochondrial function preservation in pathophysiological conditions
Книги з теми "Solute permeability"
Bundschuh, Jochen. Introduction to the numerical modeling of groundwater and geothermal systems: Fundamentals of mass, energy, and solute transport in poroelastic rocks. Boca Raton: CRC Press, 2010.
Знайти повний текст джерелаPolishchuk, Alexandre Ya. Multicomponent transport in polymer systems for controlled release. Australia: Gordon and Breach Science publishers, 1997.
Знайти повний текст джерелаEfremovich, Zaikov Gennadiĭ, ed. Multicomponent transport in polymer systems for controlled release. Amsterdam, The Netherlands: Gordon and Breach Science, 1997.
Знайти повний текст джерелаWater and Solute Permeability of Plant Cuticles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-68945-4.
Повний текст джерелаWater And Solute Permeability Of Plant Cuticles Measurement And Data Analysis. Springer, 2009.
Знайти повний текст джерела1955-, Roth Kurt, ed. Field-scale water and solute flux in soils. Basel: Birkhäuser Verlag, 1990.
Знайти повний текст джерелаJavier, Alvarez-Benedí, and Muñoz Carpena Rafael, eds. Soil-water-solute process characterization: An integrated approach. Boca Raton: CRC Press, 2005.
Знайти повний текст джерелаStochastic Dynamics: Modeling Solute Transport in Porous Media (North-Holland Series in Applied Mathematics and Mechanics). North Holland, 2002.
Знайти повний текст джерела(Editor), Javier Alvarez-Benedi, and Rafael Munoz-Carpena (Editor), eds. Soil-Water-Solute Process Characterization: An Integrated Approach. CRC, 2004.
Знайти повний текст джерелаContaminants Transport in Soils: Principles and Applications. Taylor & Francis Group, 2014.
Знайти повний текст джерелаЧастини книг з теми "Solute permeability"
Cooper, Gordon J., Ram Dixit, June Nasrallah, and Walter F. Boron. "The Permeability of MIPS to Gases." In Molecular Biology and Physiology of Water and Solute Transport, 275–82. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1203-5_38.
Повний текст джерелаVolobuyeva, Olga V., Ludmila P. Khokhlova, Gennady A. Velikanov, and Oleg A. Opanasyuk. "Genotypically Determined Actin-Regulated Water Permeability of Two Plasmodematal Transport Channels." In Molecular Biology and Physiology of Water and Solute Transport, 347–56. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1203-5_47.
Повний текст джерелаMathai, John C., and Mark L. Zeidel. "Measurement of Water and Solute Permeability by Stopped-Flow Fluorimetry." In Methods in Membrane Lipids, 323–32. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-519-0_21.
Повний текст джерелаWang, Chi-Yuen, and Michael Manga. "Groundwater Flow and Transport." In Lecture Notes in Earth System Sciences, 9–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64308-9_2.
Повний текст джерелаBarrieu, François, Raphael Morillon, and Maarten J. Chrispeels. "Modulation of Aquaporin Gene Expression in Arabidopsis Leads to Altered Membrane Water Permeability." In Molecular Biology and Physiology of Water and Solute Transport, 255–59. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1203-5_35.
Повний текст джерелаLuther, Emmanuel E., Seyed M. Shariatipour, Michael C. Dallaston, and Ran Holtzman. "Solute Driven Transient Convection in Layered Porous Media." In Springer Proceedings in Energy, 3–9. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_1.
Повний текст джерелаDevuyst, Olivier, Sophie Combet, Jean-Luc Balligand, Eric Goffin, and Jean-Marc Verbavatz. "Expression and Regulation of Aquaporin-1 and Endothelial Nitric Oxide Synthase in Relationship with Water Permeability Across the Peritoneum." In Molecular Biology and Physiology of Water and Solute Transport, 69–75. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1203-5_10.
Повний текст джерелаLarsen, Erik Hviid, and Jens Nørkær Sørensen. "Stationary and Nonstationary Ion and Water Flux Interactions in Kidney Proximal Tubule: Mathematical Analysis of Isosmotic Transport by a Minimalistic Model." In Reviews of Physiology, Biochemistry and Pharmacology, 101–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/112_2019_16.
Повний текст джерелаEgan, Edmund A. "Effect of Lung Inflation on Alveolar Permeability to Solutes." In Ciba Foundation Symposium 38 - Lung Liquids, 101–24. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470720202.ch7.
Повний текст джерелаFink, M. P. "Alterations in Gastrointestinal Barrier Function in Sepsis: The Effect of Lipopolysaccharide on Mucosal Permeability to Hydrophilic Solutes." In Yearbook of Intensive Care and Emergency Medicine, 248–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84734-9_24.
Повний текст джерелаТези доповідей конференцій з теми "Solute permeability"
Sciortino, Antonella, Feike J. Leij, and Nobuo Toride. "Solute Transport in Dual-Permeability Porous Media." In World Environmental And Water Resources Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412312.017.
Повний текст джерелаWei Yuan, Yonggang Lv, Min Zeng, and Bingmei M. Fu. "Non-invasive measurement of solute permeability of rat pial microvessels." In 2007 IEEE 33rd Annual Northeast Bioengineering Conference. IEEE, 2007. http://dx.doi.org/10.1109/nebc.2007.4413340.
Повний текст джерелаKatkov, Igor I. "Bi-Phasic Reverse Movement of Permeable Solute(s) in Cells is Predicted by the Relativistic Permeability Approach." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80008.
Повний текст джерелаGu, Wei Yong, and Hai Yao. "Constitutive Modeling of Solute Diffusivity in Hydrated Soft Tissues." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59833.
Повний текст джерелаFu, Bingmei M., Roger H. Adamson, and Fitz-Roy E. Curry. "In Vivo Measurement of Microvessel Permeability and Tissue Diffusion Coefficient in Frog Mesentery by Confocal Microscopy." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0599.
Повний текст джерелаHuang, Zhonping, Anil C. Attaluri, Amit Belwalkar, William Van Geertruyden, Dayong Gao, and Wojciech Misiolek. "An Experimental Study of Transport Properties of Ceramic Membranes for Use in Hemodialysis." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192808.
Повний текст джерелаHuang, Lining, James D. Benson, and Mahmoud Almasri. "A microfluidic sensor for evaluation of solute and solvent membrane permeability in individual cells." In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994093.
Повний текст джерелаShin, Da Wi, Niranjan Khadka, Jie Fan, Marom Bikson, and Bingmei M. Fu. "Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo." In SPIE Medical Imaging, edited by Barjor Gimi and Andrzej Krol. SPIE, 2016. http://dx.doi.org/10.1117/12.2218197.
Повний текст джерелаZhou, Xiaozhou, John E. Novotny, and Liyun Wang. "Modeling Fluorescence Recovery After Photobleaching in Cyclically Loaded Bone: Potential Application in Quantitatively Measuring Load-Induced Solute Flows." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193018.
Повний текст джерелаChen, Baoming, Fang Liu, Aimin Liu, and Wenguang Geng. "Influence of Interfacial Effect Between a Porous Wall and an Air Region on Natural Convection." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82234.
Повний текст джерелаЗвіти організацій з теми "Solute permeability"
Snadra L. Fox, X. Xie, K. D. Schaller, E. P. Robertson, and G. A. Bala. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/910609.
Повний текст джерелаCesar, J. R., and O. H. Ardakani. Organic geochemistry of the Montney Formation: new insights about the source of hydrocarbons, their accumulation history and post accumulation processes. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329788.
Повний текст джерелаRusso, David, Daniel M. Tartakovsky, and Shlomo P. Neuman. Development of Predictive Tools for Contaminant Transport through Variably-Saturated Heterogeneous Composite Porous Formations. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7592658.bard.
Повний текст джерелаFallik, Elazar, Robert Joly, Ilan Paran, and Matthew A. Jenks. Study of the Physiological, Molecular and Genetic Factors Associated with Postharvest Water Loss in Pepper Fruit. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7593392.bard.
Повний текст джерела