Добірка наукової літератури з теми "Spark Plasma Sintering (SPS)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spark Plasma Sintering (SPS)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Spark Plasma Sintering (SPS)"

1

Muhammad, Wan Nur Azrina Wan, Yoshiharu Mutoh, and Yukio Miyashita. "Microstructure and Mechanical Properties of Magnesium Prepared by Spark Plasma Sintering." Advanced Materials Research 129-131 (August 2010): 764–68. http://dx.doi.org/10.4028/www.scientific.net/amr.129-131.764.

Повний текст джерела
Анотація:
Magnesium powders were sintered by using spark plasma sintering (SPS) and conventional pressureless sintering (PLS) techniques at sintering temperatures ranged from 552°C to 605°C to investigate effect of sintering method on microstructure and mechanical properties of sintered magnesium. High densed magnesium could be obtained by using spark plasma sintering technique compared to conventional presureless sintering at the same sintering temperature. It was found that the ultimate tensile strength increased with increasing sintering temperature for both the materials sintered by PLS and SPS. The
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nisar, Ambreen, Cheng Zhang, Benjamin Boesl, and Arvind Agarwal. "Unconventional Materials Processing Using Spark Plasma Sintering." Ceramics 4, no. 1 (2021): 20–39. http://dx.doi.org/10.3390/ceramics4010003.

Повний текст джерела
Анотація:
Spark plasma sintering (SPS) has gained recognition in the last 20 years for its rapid densification of hard-to-sinter conventional and advanced materials, including metals, ceramics, polymers, and composites. Herein, we describe the unconventional usages of the SPS technique developed in the field. The potential of various new modifications in the SPS technique, from pressureless to the integration of a novel gas quenching system to extrusion, has led to SPS’ evolution into a completely new manufacturing tool. The SPS technique’s modifications have broadened its usability from merely a densif
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nisar, Ambreen, Cheng Zhang, Benjamin Boesl, and Arvind Agarwal. "Unconventional Materials Processing Using Spark Plasma Sintering." Ceramics 4, no. 1 (2021): 20–40. http://dx.doi.org/10.3390/ceramics4010003.

Повний текст джерела
Анотація:
Spark plasma sintering (SPS) has gained recognition in the last 20 years for its rapid densification of hard-to-sinter conventional and advanced materials, including metals, ceramics, polymers, and composites. Herein, we describe the unconventional usages of the SPS technique developed in the field. The potential of various new modifications in the SPS technique, from pressureless to the integration of a novel gas quenching system to extrusion, has led to SPS’ evolution into a completely new manufacturing tool. The SPS technique’s modifications have broadened its usability from merely a densif
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Drouet, Christophe, C. Largeot, G. Raimbeaux, et al. "Bioceramics: Spark Plasma Sintering (SPS) of Calcium Phosphates." Advances in Science and Technology 49 (October 2006): 45–50. http://dx.doi.org/10.4028/www.scientific.net/ast.49.45.

Повний текст джерела
Анотація:
Calcium phosphates (Ca-P) are major constituents of calcified tissues, and are also extensively used for the elaboration of biomaterials. However, the usual high-temperature sintering processes generally lead to strong alterations of their chemical, physical and biological properties. Spark plasma sintering (SPS) is a non-conventional sintering technique based on the use of pulsed current, enabling fast heating and cooling rates, and lower sintering temperatures are often observed. The sintering of several orthophosphates (DCPD, amorphous TCP, beta-TCP, OCP, HA and biomimetic nanocrystalline a
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Olevsky, Eugene, S. Kandukuri, and Ludo Froyen. "Analysis of Mechanisms of Spark-Plasma Sintering." Key Engineering Materials 368-372 (February 2008): 1580–84. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1580.

Повний текст джерела
Анотація:
Spark-Plasma Sintering (SPS) involves rapid heating of powder by electric current with simultaneous application of external pressure. Numerous experimental investigations point to the ability of SPS to render highly-dense powder products with the potential of grain size retention. The latter ability is of significance for the consolidation of nano-powder materials where the grain growth is one of the major problems. A model for spark-plasma sintering taking into consideration various mechanisms of material transport is developed. The results of modeling agree satisfactorily with the experiment
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sebayang, Darwin, Deni S. Khaerudini, Hendi Saryanto, et al. "Microstructure and Mechanical Properties of Nanocrystalline FeCr Alloy Prepared by Spark Plasma Sintering." Applied Mechanics and Materials 52-54 (March 2011): 2197–202. http://dx.doi.org/10.4028/www.scientific.net/amm.52-54.2197.

Повний текст джерела
Анотація:
This paper investigates the efficiency of two consolidation processing techniques prepared by spark plasma sintering (SPS) and hot pressing (HP) which allow obtaining fully dense nanostructured materials. FeCr powders were sintered by using spark plasma sintering (SPS) and hot pressing (HP) sintering techniques over sintering temperature up to 1000oC. The microstructures of the sintered end-products were characterized by Scanning Electron Microscopy (SEM). X-rays diffraction line profile analysis was adopted to analyze the crystallite size of starting and sintered FeCr using Williamson–Hall me
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huang, Qing, Yong Huang, Chang An Wang, and Hou Xing Zhang. "Fabrication Processes and Properties of Highly Pure MgAlON Materials." Materials Science Forum 561-565 (October 2007): 543–46. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.543.

Повний текст джерела
Анотація:
In this paper, the MgAlON ceramic was fabricated by Spark Plasma Sintering (SPS) and hot press sintering respectively. The results showed that highly pure and single-phase MgAlON could be fabricated at lower sintering temperature in a short period through SPS process, compared with the conventional Hot Press sintering (HP) process. The bending strength of MgAlON specimens prepared by SPS process was higher than 500MPa while bending strength of HP specimens was much lower. The open porosity was almost eliminated in SPS MgAlON specimens. Spark Plasma Sintered MgAlON had a single phase of MgAlON
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fang, Ming Hao, Wei Pan, Sui Lin Shi, and Zhen Yi Fang. "Kinetics Model for the Initial Stage of Spark Plasma Sintering." Key Engineering Materials 336-338 (April 2007): 2366–68. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.2366.

Повний текст джерела
Анотація:
The sintering kinetics model of initial stage by spark plasma sintering (SPS) is discussed in this paper. During SPS, there are discharges among the powder particles. And the particles surface will be melted and form viscose flow. These phenomena accelerate the particles rearrangement and reduce the sintering time. The relationship between the shrinkage ratio of particles and the sintering time during the initial stages of sintering by SPS has been obtained. The results show that L/L0 is linear to the time.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Ji-Sun, Chae-Myung Chang, Young IL Lee, Jong-Heun Lee, and Seong-Hyeon Hong. "Spark Plasma Sintering (SPS) of NASICON Ceramics." Journal of the American Ceramic Society 87, no. 2 (2004): 305–7. http://dx.doi.org/10.1111/j.1551-2916.2004.00305.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dudina, Dina, Boris Bokhonov, and Eugene Olevsky. "Fabrication of Porous Materials by Spark Plasma Sintering: A Review." Materials 12, no. 3 (2019): 541. http://dx.doi.org/10.3390/ma12030541.

Повний текст джерела
Анотація:
Spark plasma sintering (SPS), a sintering method that uses the action of pulsed direct current and pressure, has received a lot of attention due to its capability of exerting control over the microstructure of the sintered material and flexibility in terms of the heating rate and heating mode. Historically, SPS was developed in search of ways to preserve a fine-grained structure of the sintered material while eliminating porosity and reaching a high relative density. These goals have, therefore, been pursued in the majority of studies on the behavior of materials during SPS. Recently, the pote
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Spark Plasma Sintering (SPS)"

1

Zgalat-Lozynskyy, O., M. Herrmann, and A. Ragulya. "Spark Plasma and Rate Controlled Sintering of High-Melting Point Nanocomposites." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35077.

Повний текст джерела
Анотація:
Over the last decade, nano-structured materials, including nanocrystalline monolithic aggregates and nano-composites, became the object of increasing interest. To consolidate the nanocomposites and achieve desired properties the new technological processes have been applied. Rate Controlled Sintering and Spark Plasma Sintering are successfully used to obtain near fully dense high melting nanocomposites with grain size within nanometric scale and make sintering process faster and cheaper. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guyon, Julien. "Évolution des microstructures et mécanismes de densification d'un alliage TiAl lors du frittage par Spark Plasma Sintering." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0244/document.

Повний текст джерела
Анотація:
Ce travail porte sur l'évolution microstructurale d'un alliage TiAl lors du frittage par un procédé appelé Spark Plasma Sintering (SPS). Les poudres initiales, élaborées par atomisation, sont constituées principalement d'une phase métastable. Les transformations qui accompagnent le retour à l'équilibre de cette dernière durant un chauffage sont finement caractérisées par MEB, MET et EBSD. Ces transformations seront ensuite utilisées comme marqueur thermique lors de la densification SPS afin de mieux estimer les amplitudes des gradients thermiques et mécaniques du procédé de frittage. Les mécan
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lallemant, Lucile. "Obtention d’alumines α dopées polycristallines transparentes par Spark Plasma Sintering". Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0082/document.

Повний текст джерела
Анотація:
L'élaboration de céramiques polycristallines transparentes constitue un défi technologique important. Les matériaux transparents actuellement utilisés (verres ou monocristaux) possèdent des propriétés mécaniques (dureté, résistance à l'usure) et physico-chimiques (résistance à la corrosion) moins intéressantes que celles des céramiques polycristallines. Par ailleurs, le coût de production de ces dernières est inférieur à celui des monocristaux. Les deux principaux paramètres à contrôler afin d'augmenter les propriétés optiques de l'alumine alpha polycristalline sont sa porosité, comme pour tou
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Carneiro, Marcelo Bertolete. "Fabricação de ferramentas de corte em gradação funcional por Spark Plasma Sintering (SPS)." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-14122014-155118/.

Повний текст джерела
Анотація:
O objetivo do trabalho foi fabricar ferramentas de corte para usinagem a partir de materiais em gradação funcional (Functionally Graded Materials FGM), fazendo uso da técnica de sinterização por plasma pulsado (Spark Plasma Sintering SPS), a qual permite taxa de aquecimento e resfriamento maior do que as técnicas tradicionais, menor temperatura e tempo de operação, melhor controle energético e alta repetibilidade. Os materiais utilizados foram pós cerâmicos a base de alumina (Al2O3-ZrO2 e Al2O3-TiC) e metal duro (WC-Co), de modo que dois insertos foram desenvolvidos, um de cerâmica branca (A
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lallemant, Lucile. "Obtention d'alumines α dopées polycristallines transparentes par Spark Plasma Sintering". Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00808873.

Повний текст джерела
Анотація:
L'élaboration de céramiques polycristallines transparentes constitue un défi technologique important. Les matériaux transparents actuellement utilisés (verres ou monocristaux) possèdent des propriétés mécaniques (dureté, résistance à l'usure) et physico-chimiques (résistance à la corrosion) moins intéressantes que celles des céramiques polycristallines. Par ailleurs, le coût de production de ces dernières est inférieur à celui des monocristaux. Les deux principaux paramètres à contrôler afin d'augmenter les propriétés optiques de l'alumine alpha polycristalline sont sa porosité, comme pour tou
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moleková, Kristína. "Zpracování práškových materiálů na bázi Mg metodou SPS." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-401923.

Повний текст джерела
Анотація:
Diploma thesis occupy with preparation of porous material from magnesium powder with a HAp admixture by cold pressing followed by spark plasma sintering (SPS). This thesis contain both preparation of bulk material, diffusion plot and charakterization of materials based on the compaction process conditions. On the basis of physical mechanical characteristics, the impact of the pressing process on the subsequent sintering and the resulting material properties are evaluated. Bulk material is characterized considering to structure and physical–mechanical properties. Properties of final metarial wi
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Madec, Clémentine. "Elaboration de matériaux à gradient de fonction céramique / métal par SPS pour la protection balistique." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS057/document.

Повний текст джерела
Анотація:
Les propriétés idéales d’un matériau de blindage sont la combinaison d’une extrême dureté pour casserles noyaux des projectiles et d’une grande ductilité pour résister à l’impact et arrêter les fragments du projectile. Or cettecombinaison de propriétés est incompatible avec un matériau unique. Pour pallier ce problème, les concepteurs de blindageassocient un matériau dur (céramique) à un matériau ductile (métal). Une autre solution serait de réaliser un matériauprésentant un gradient de propriétés mécaniques : dans le cas présent, d’une très grande dureté de la face avant à une grandeductilité
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Van, der Laan Antoine. "Etude du procédé de frittage par Spark Plasma Sintering (SPS) de formes complexes : de la modélisation à la fabrication." Electronic Thesis or Diss., Toulouse 3, 2021. http://www.theses.fr/2021TOU30302.

Повний текст джерела
Анотація:
Le frittage par spark plasma sintering (SPS) est une méthode de densification de poudres qui permet, grâce à l’application d’un courant pulsé et d’une pression uniaxiale, de densifier une large gamme de matériaux (céramiques, métaux, alliages, matériaux réfractaires, etc.). Les caractéristiques du frittage SPS en font un procédé compétitif car il permet notamment de réduire les temps de fabrication tout en conservant une microstructure fine et donc de meilleures propriétés mécaniques comparés aux procédés conventionnels. Grâce à ces avantages, le frittage SPS un candidat de choix pour la produ
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Motsi, Glenda Tsholofelo. "Spark plasma sintering de composites base titane renforcés par des carbures pour applications en tribocorrosion." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30309.

Повний текст джерела
Анотація:
La faible résistance à l'usure du titane et de ses alliages limite leur application dans laquelle l'effet combiné de l'usure et de la corrosion peut être rencontré. À cet égard, l'ajout de phases céramiques sous forme de whiskers (TiB) ou de particules (TiB2 et TiC) dans une matrice à base de titane pour former des composites avancés à matrice de titane (TMC), peut aider à réduire les pertes de matériau et à prolonger la durée de vie. Dans cette étude, les composites de titane à base de TiB2, TiB et TiC ont été produits par Spark Plasma Sintering (SPS) réactif de titane pur commercial (CP-Ti)
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Trapp, Johannes. "Mikroskopische Aspekte beim feldaktivierten Sintern metallischer Systeme." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-224118.

Повний текст джерела
Анотація:
1. Beim feldaktivierten Sintern im Temperaturbereich von 500 bis 1000 °C fließen elektrische Ströme mit einer Dichte von 1 bis 3 A/mm². 2. Daraus folgt für die größten verwendeten Pulverteilchen mit einem Radius von 50 µm ein Strom je Teilchenkontakt von 10 bis 50 mA. 3. Die durch das Aufbringen des prozesstechnisch notwendigen Pressdruckes gebildeten relativen Kontaktradien (Kontaktradius geteilt durch Teilchenradius) haben eine Größe von 0,05 bis 0,3. 4. Die Einengung der Strompfade im Kontakt der Pulverteilchen erhöht, zusammen mit dem elektrischen Widerstand der Oxidschicht auf den Pulve
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Spark Plasma Sintering (SPS)"

1

Cavaliere, Pasquale, ed. Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Spark Plasma Sintering. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-02428-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cao, Giacomo, Javier Garay, Claude Estournes, and Roberto Orru. Spark Plasma Sintering: Current Status, New Developments and Challenges. Elsevier, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cao, Giacomo, Roberto Orrù, Javier Garay, and Claude Estournes. Spark Plasma Sintering: Current Status, New Developments and Challenges. Elsevier, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cavaliere, Pasquale. Spark Plasma Sintering of Materials: Advances in Processing and Applications. Springer, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Spark-Plasma Sintering and Related Field- Assisted Powder Consolidation Technologies. MDPI, 2017. http://dx.doi.org/10.3390/books978-3-03842-383-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Decker, Sabine. Entwicklung Der Mikrostruktur Und Der Mechanischen Eigenschaften Eines Mg-Psz-Partikelverstarkten Trip-Matrix-Composits Wahrend Spark Plasma Sintering. Logos Verlag Berlin, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Spark Plasma Sintering (SPS)"

1

Mitra, Sunanda, and Tanmoy Maiti. "Thermoelectric Materials Synthesized by Spark Plasma Sintering (SPS) for Clean Energy Generation." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Voisin, Thomas, Jean-Philippe Monchoux, and Alain Couret. "Near-Net Shaping of Titanium-Aluminum Jet Engine Turbine Blades by SPS." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sharma, N., S. N. Alam, and B. C. Ray. "Fundamentals of Spark Plasma Sintering (SPS): An Ideal Processing Technique for Fabrication of Metal Matrix Nanocomposites." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nokhrin, Aleksey, Maksim Boldin, Aleksandr Piskunov, et al. "The Use of SPS for High-Rate Diffusion Welding of High-Strength Ultrafine-Grained α-Titanium Alloy Ti-5Al-2V." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nokhrin, Aleksey, Vladimir Chuvil’deev, Maksim Boldin, et al. "Impact of High-Energy Mechanical Activation on Sintering Kinetics and Mechanical Properties of UFG Heavy Tungsten Alloys: SPS Versus Sintering in Hydrogen." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Drouet, Christophe, C. Largeot, G. Raimbeaux, et al. "Bioceramics: Spark Plasma Sintering (SPS) of Calcium Phosphates." In Advances in Science and Technology. Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-05-2.45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Olevsky, Eugene A., and Dina V. Dudina. "Sintering by Low-Voltage Electric Pulses (Including Spark Plasma Sintering (SPS))." In Field-Assisted Sintering. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76032-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Karandikar, P., S. Wong, M. Duke, R. Haber, Minh Vu, and J. Singh. "Comparison of Armor Ceramics Made by Spark Plasma Sintering (SPS) and Pressureless Sintering." In Advances in Ceramic Armor IX. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807576.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tokita, Masao. "Development of Advanced Spark Plasma Sintering (SPS) Systems and its Industrial Applications." In Ceramic Transactions Series. John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470082751.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aigbodion, Victor Sunday. "High Strength and Electrical Conductivity of α-Al-CNTs + GAgNPs Nanocomposites." In Lecture Notes in Mechanical Engineering. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_30.

Повний текст джерела
Анотація:
AbstractThe development of new advanced material of α-Al- carbon nanotubes (CNTs and green synthesis silver nanoparticles (GAgNPs) superconductor nanocomposites was sudied. Green synthesis silver nanoparticles (GAgNPs) was used for the decoration of CNTS. The composites were by modified spark plasma sintering (SPS). The microstructure, strength and electrical conductivity of the nanocomposites were determined. The formation of sub-grain in the Al-4%CNTs + 2%GAg.NPs composite generates more dislocation density. The addition of GAgNPs to Al-CNTs significantly enhanced the ductility mode of fracture associated with the AlAg3(110) and AlAg2(100) phases and the small sub-grain formed at the surface. It can be concluded that a higher strength, electrical conductivity can be made from the developed nanocomposite.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Spark Plasma Sintering (SPS)"

1

Khor, K. A., L. G. Yu, and P. Cheang. "Spark Plasma Sintering of Plasma Sprayed HA Coatings." In ITSC2002, edited by C. C. Berndt and E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p1024.

Повний текст джерела
Анотація:
Abstract This paper examines the influence of spark plasma sintering (SPS) on plasma-sprayed hydroxyapatite (HA) coatings. For comparison purposes, a conventional heat treatment is also carried out. The surface microstructure as well as the crystallinity of each layer is determined by means of SEM and XRD analysis. Test results show that the crystallinity of the layers increases with increasing SPS temperature up to 800 °C and a large amount of β tricalcium phosphate is formed. Paper includes a German-language abstract.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Prawara, B., H. Yara, Y. Miyagi, and T. Fukushima. "Densification of Thermal Sprayed Coatings with Spark Plasma Sintering (SPS)." In ITSC2002, edited by C. C. Berndt and E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p0639.

Повний текст джерела
Анотація:
Abstract This paper examines the effects of spark plasma sintering (SPS) on flame-sprayed zirconia coatings. It describes how the zirconia layers were produced, treated, and tested. The combination of heating and loading increased coating hardness and adhesion strength by a factor of three and caused a significant reduction in porosity. It also led to phase transformations which, in some cases, had an offsetting effect on coating properties. Paper includes a German-language abstract.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kuo, Chia-Hung, Chii-Shyang Hwang, Jie-Ren Ku, Ming-Shan Jeng, and Fang-Hei Tsau. "Spark Plasma Sintering of PbTe Thermoelectric Bulk Materials With Small Grains." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52181.

Повний текст джерела
Анотація:
PbTe is a conventional thermoelectric material for thermoelectric generator at intermediate temperature. Small grain size effect has been reported to improve PbTe ZT values (figure of merit). We report a combination process of attrition milling and spark plasma sintering (SPS) for preparing PbTe bulk materials with small grain sizes. The PbTe powders were milled by attrition under 600 rpm for 6–96 h and followed by SPS process under the sintering temperature of 573–773 K, the heating rate of 100 K/min, and the sintering pressure of 50 MPa. The powders and bulk materials as-prepared were then s
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khor, K. A., X. J. Chen, and S. H. Chan. "Post-Spray Treatment of Plasma Sprayed Yttria Stabilized Zirconia (YSZ) Electrolyte with Spark Plasma Sintering (SPS) Technique." In ITSC2004, edited by Basil R. Marple and Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0027.

Повний текст джерела
Анотація:
Abstract Spark-plasma sintering (SPS) was adopted in this study as a rapid post-spray treatment for yttria stabilized zirconia (YSZ) electrolytes prepared through the direct current (dc) plasma spray process. The lamellar microstructure in the as-sprayed samples was found to significantly reduced the ionic conductivity of the YSZ electrolytes. However, the ionic conductivity (at 1053 °C) increased sharply from 0.065 S/cm for the as-sprayed electrolyte to 0.122 S/cm for electrolyte post-spray treated through SPS at 1400°C for 3 minutes. These phenomena were attributed to the microstructure tran
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Thet, N. S., I. M. Makhadilov, A. P. Malakhinsk, and P. Solis. "The influence of DC pulse current pattern on the different materials properties of samples obtained by spark plasma sintering." In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.s4-o-014401.

Повний текст джерела
Анотація:
Spark plasma sintering (SPS) also known as pulsed electric current sintering (PECS) or field-assisted sintering technique (FAST), belongs to a class of powder metallurgy techniques. The fundamental of this technique is appeared over last 50 years ago, but modern SPS technique is appeared within the last 20 years depending on this principle. The variation of this factor is so extensive for each material that only a few papers have been devoted to this research. This review paper summarizes the latest research findings with respect to experimental procedures, densification behaviors, microstruct
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Dielectric investigation of polytetrafluoroethylene manufactured by a newly spark plasma sintering (SPS) technique." In 1st International Symposium on Dielectric Materials and Applications. Materials Research Forum LLC, 2016. http://dx.doi.org/10.21741/9781945291197-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Masuoka, Tadashi, Shin-ichi Moriya, Akihide Kurosu, and Akinaga Kumakawa. "Evaluation of Spark Plasma Sintering (SPS) Forming Method for Liquid Rocket Combustion Chambers." In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-7148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Khor, K. A., L. G. Yu, S. H. Chan, and X. J. Chen. "Spark Plasma Sintering (SPS) of Plasma Sprayed YSZ Electrolyte for Solid Oxide Fuel Cell (SOFC) Application." In ITSC2002, edited by C. C. Berndt and E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p0644.

Повний текст джерела
Анотація:
Abstract Plasma spraying is a fast and inexpensive process for fabricating YSZ electrolyte for SOFCs. In this investigation, free-standing plasma sprayed YSZ disks are treated by spark plasma sintering at different temperatures, soak times, and loading cycles. SEM examination shows that the lamellar microstructure of the as-sprayed zirconia is converted to a predominantly granular structure with no significant phase changes as per XRD analysis. Microhardness and laser flash diffusivity measurements show that the SPS treatments also improve YSZ layer density, tensile modulus, and thermal conduc
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Shufeng, Hiroshi Izui, Michiharu Okano, Weihua Zhang, and Taku Watanabe. "Microstructure and Mechanical Properties of ZrO2(Y2O3)-Al2O3 Nano Composites Prepared by Spark Plasma Sintering." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72322.

Повний текст джерела
Анотація:
Zirconia (Y2O3)-alumina ceramic nanocomposites were fabricated by spark plasma sintering (SPS). A commercially available nanocomposite powder TZP-3Y20A was used as starting powder, the other from conventionally mechanical mixed powder 3YSZ-20A used for comparison. The effect of sintering temperature on the densification, sintering behavior, mechanical properties, and microstructure of the composites were investigated. The results show that the density increase with increasing of sintering temperature, and thus mechanical properties were strengthened with enhancing of densification. The nanocom
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nam, Duk-Hyun, Chang-Young Son, Chang Kyu Kim, and Sunghak Lee. "Mechanical Properties of Cu-Based Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47048.

Повний текст джерела
Анотація:
In this study, microstructure and mechanical properties of Cu-based amorphous alloy matrix composites consolidated by spark plasma sintering (SPS) equipment were investigated. Amorphous alloy powders were mixed with 10∼40 vol.% of pure Cu powders, and were consolidated at 460°C for 1/2 minute under 300 or 700 MPa. The consolidated composites contained Cu particles homogeneously distributed in the amorphous matrix, and showed a considerable plastic strain, whereas their compressive strength was lower than that of the monolithic amorphous alloys. The compressive strength and plastic strain of th
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Spark Plasma Sintering (SPS)"

1

Taya, Minoru. Spark Plasma Sintering (SPS) for Nanostructured Smart Materials. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada443838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hill, Curtis W., Lynn A. Boatner, Dennis Tucker, James A. Kolopus, and Zhongyang Cheng. Spark Plasma Sintering of Ultracapacitors. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1236598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Olevsky, Eugene. Fundamentals of Spark-Plasma Sintering - Final Report. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1877929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Charit, Indrajit, Darryl Butt, Megan Frary, and Mark Carroll. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1054226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Subhash, Ghatu, Kuang-Hsi Wu, and James Tulenko. Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1128531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lissenden, Cliff, Tasnim Hassan, and Vijaya Rangari. Development of a Innovative High Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1183653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!