Добірка наукової літератури з теми "Spatiotemporal metrics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spatiotemporal metrics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Spatiotemporal metrics"
Gonçalves, Bruno, Diogo Coutinho, Bruno Travassos, João Brito, and Pedro Figueiredo. "Match Analysis of Soccer Refereeing Using Spatiotemporal Data: A Case Study." Sensors 21, no. 7 (April 5, 2021): 2541. http://dx.doi.org/10.3390/s21072541.
Повний текст джерелаHacker, Kathryn P., Andrew J. Greenlee, Alison L. Hill, Daniel Schneider, and Michael Z. Levy. "Spatiotemporal trends in bed bug metrics: New York City." PLOS ONE 17, no. 5 (May 26, 2022): e0268798. http://dx.doi.org/10.1371/journal.pone.0268798.
Повний текст джерелаShiu, Janice, Sarah Fletcher, and Dara Entekhabi. "Spatiotemporal monsoon characteristics and maize yields in West Africa." Environmental Research Communications 3, no. 12 (December 1, 2021): 125007. http://dx.doi.org/10.1088/2515-7620/ac3776.
Повний текст джерелаMandal, Somnath, Sanjit Kundu, Subrata Haldar, Subhasis Bhattacharya, and Suman Paul. "Monitoring and Measuring the Urban Forms Using Spatial Metrics of Howrah City, India." Remote Sensing of Land 4, no. 1-2 (November 22, 2020): 19–39. http://dx.doi.org/10.21523/gcj1.20040103.
Повний текст джерелаPaley, Derek A., and Artur Wolek. "Mobile Sensor Networks and Control: Adaptive Sampling of Spatiotemporal Processes." Annual Review of Control, Robotics, and Autonomous Systems 3, no. 1 (May 3, 2020): 91–114. http://dx.doi.org/10.1146/annurev-control-073119-090634.
Повний текст джерелаParrott, Lael, Raphaël Proulx, and Xavier Thibert-Plante. "Three-dimensional metrics for the analysis of spatiotemporal data in ecology." Ecological Informatics 3, no. 6 (December 2008): 343–53. http://dx.doi.org/10.1016/j.ecoinf.2008.07.001.
Повний текст джерелаZhao, Jie, Wenfu Yang, Junhuan Peng, Cheng Li, Zhen Li, and Xiaosong Liu. "ANALYZING AND MODELING THE SPATIOTEMPORAL DYNAMICS OF URBAN EXPANSION: A CASE STUDY OF HANGZHOU CITY, CHINA." Journal of Environmental Engineering and Landscape Management 27, no. 4 (November 28, 2019): 228–41. http://dx.doi.org/10.3846/jeelm.2019.11561.
Повний текст джерелаHornberger, Zachary, Bruce Cox, and Raymond R. Hill. "Analysis of the effects of spatiotemporal demand data aggregation methods on distance and volume errors." Journal of Defense Analytics and Logistics 5, no. 1 (May 10, 2021): 29–45. http://dx.doi.org/10.1108/jdal-03-2020-0003.
Повний текст джерелаNouri, Milad, and Mehdi Homaee. "Spatiotemporal changes of snow metrics in mountainous data-scarce areas using reanalyses." Journal of Hydrology 603 (December 2021): 126858. http://dx.doi.org/10.1016/j.jhydrol.2021.126858.
Повний текст джерелаAdams, David K., Henrique M. J. Barbosa, and Karen Patricia Gaitán De Los Ríos. "A Spatiotemporal Water Vapor–Deep Convection Correlation Metric Derived from the Amazon Dense GNSS Meteorological Network." Monthly Weather Review 145, no. 1 (January 1, 2017): 279–88. http://dx.doi.org/10.1175/mwr-d-16-0140.1.
Повний текст джерелаДисертації з теми "Spatiotemporal metrics"
Mirambell, Alberto Benito. "Application of spatiotemporal techniques to estimate evapotranspiration in the Paraíba do Sul river watershed." Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/6909.
Повний текст джерелаApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-07-03T15:27:23Z (GMT) No. of bitstreams: 1 albertobenitomirambell.pdf: 7805095 bytes, checksum: 69d22876f49a364f6fb31b967f70c3ba (MD5)
Made available in DSpace on 2018-07-03T15:27:23Z (GMT). No. of bitstreams: 1 albertobenitomirambell.pdf: 7805095 bytes, checksum: 69d22876f49a364f6fb31b967f70c3ba (MD5) Previous issue date: 2018-02-23
No dia de hoje, qualquer estudo relacionado aos recursos hídricos e seus usos, tais como irrigação, abastecimento de água e geração de energia, é de suma importância em função dos cenários que vivemos atualmente face às variabilidades climáticas. O uso eficiente desses recursos faz-se cada vez mais necessário, envolvendo fatores como a estimativa de algumas variáveis relacionadas ao ciclo hidrológico, notadamente a evapotranspiração. Há quase trinta anos a FAO recomendou o uso da equação de Penman-Monteith para a estimativa da evapotranspiração de referência. Desde então tem sido aplicada com sucesso em diferentes regiões e sob diferentes climas. No entanto, esta abordagem tem algumas desvantagens, entre elas, o fato de depender de medições de campo de parâmetros climáticos, tais como temperatura, humidade do ar, velocidade do vento e radiação solar. Além disso, essas medições são pontuais em referência ao local de operação da estação meteorológica e podem não representar de forma fidedigna as condições climáticas dos ambientes circundantes. Nos últimos tempos, com o avanço da tecnologia, o desenvolvimento de potentes linguagens de programação orientados à análise de dados, o surgimento das técnicas na área de inteligência artificial e do tratamento de grandes volumes de dados (“Big Data”), surgiram ferramentas com grande potencial para melhorar a forma como se tratam os eventos naturais ou antrópicos, permitindo maior eficiência e produtividade. Nessa linha, o objetivo principal do presente estudo é o uso desse conjunto de tecnologias para uma estimação confiável e robusta da evapotranspiração, na medida que constitui uma variável fundamental no fechamento do balanço hídrico no nível de uma bacia hidrográfica. Complementarmente, essa estimativa poderia ser também empregada como indicativo da perda água em uma cultura pelo agricultor. Em especial, dois procedimentos foram aplicados ao longo deste trabalho: redes neurais artificiais (RNA’s) e o algoritmo METRIC. O primeiro está associado a uma ferramenta com base em inteligência artificial, capaz de reproduzir o comportamento de certas variáveis com um alto nível de semelhança abrindo a possibilidade de gerar predições a curto-maio prazo que ajude no gerenciamento dos recursos hídricos por parte dos comités de bacia e outros entes responsáveis por eles. Por outro lado, METRIC permite usar imagens de satélite para estimar evapotranspiração em escala horária, capturando as abruptas mudanças que sofrem algumas variáveis climáticas ao longo do dia, sendo esta uma informação de vital importância para os agricultores determinarem a irrigação com maior confiabilidade. Os resultados obtidos após a aplicação de ambos os procedimentos, que compõem a abordagem metodológica deste trabalho, foram muito satisfatórios e com uma alta correlação com aqueles gerados pela metodologia considerada como referência. Assim sendo, pode-se concluir que ambos procedimentos formam um referencial apropriado na estimativa de valores de evapotranspiração que podem ser transferidos à prática agrícola com a certeza de uma melhora constante a tenor da rápida e imparável evolução da tecnologia na área da agricultura de precisão.
Nowadays, any study related to water resources and its usage, such as irrigation, water consumption and energy production is a central issue due to the climate change scenario we are currently living. The efficient use of such resources is a must and involves several factors, among them, the estimate of some hydrologic cycle-related variables, highlighting evapotranspiration, among them. About thirty years ago, the FAO recommended Penman-Monteith equation as the most trustworthy and representative methodology to estimate reference crop evapotranspiration. Since then, it has been applied successfully over different regions and under diverse weather conditions. However, this approach has some cons, such as its dependency on ground measurements of most common climatological parameters: temperature, relative air humidity, wind speed or solar radiation. In addition, these measurements are punctual on the weather station’s location and may not fully represent surrounding environments’ conditions. Lately, thanks to technological advances, the development of powerful programming data analysis-oriented languages, the rising of artificial intelligence, as well as big data, we have a wide variety of tools to improve the way we analyse natural phenomena, making it more efficient and productive. Therefore, the main objective of the present study is the use of such technologies aiming to estimate reliable evapotranspiration values, as a central parameter on water resources management at watershed basis, or even as an indicator of crop water loss, by farmers. Mainly, two different technology-based approaches have been applied along this dissertation pursuing the objective previously mentioned: artificial neural networks (ANN’s) and METRIC algorithm. The former is an artificial intelligence-based tool, capable of “recording” specific variables behaviour and succeed in “mimicking” them at a high resemblance level, favouring the possibility of short-half term forecasts to help watershed committees and other responsible bodies manage water resources. On the other hand, METRIC algorithm uses satellite imagery in order to estimate evapotranspiration hourly and able thus to catch the disrupting changes some of the climatological variables suffer along the day, turning into a vital piece of information for farmers, since they can design irrigation schedule more precisely. Results obtained after both procedures’ application, which compose the methodological approach throughout this study, fully satisfied our expectations and showed a high correlation to those results estimated by the methodology of reference. To sum up, we conclude that both approaches are reliable at estimating reference crop evapotranspiration and can be transferred to the agricultural management assuring a steady improvement due to the quick and unstoppable evolution in technology on the “agriculture of precision” field.
Hengenius, James B. "Quantitative modeling of spatiotemporal systems| Simulation of biological systems and analysis of error metric effects on model fitting." Thesis, Purdue University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3687049.
Повний текст джерелаUnderstanding the biophysical processes underlying biological and biotechnological processes is a prerequisite for therapeutic treatments and technological innovation. With the exponential growth of computational processing speed, experimental findings in these fields have been complemented by dynamic simulations of developmental signaling and genetic interactions. Models provide means to evaluate "emergent" properties of systems sometimes inaccessible by reductionist approaches, making them test beds for biological inference and technological refinement.
The complexity and interconnectedness of biological processes pose special challenges to modelers; biological models typically possess a large number of unknown parameters relative to their counterparts in other physical sciences. Estimating these parameter values requires iterative testing of parameter values to find values that produce low error between model and data. This is a task whose length grows exponentially with the number of unknown parameters. Many biological systems require spatial representation (i.e., they are not well-mixed systems and change over space and time). Adding spatial dimensions complicates parameter estimation by increasing computational time for each model evaluation. Defining error for model-data comparison is also complicated on spatial domains. Different metrics compare different features of data and simulation, and the desired features are dependent on the underlying research question.
This dissertation documents the modeling, parameter estimation, and simulation of two spatiotemporal modeling studies. Each study addresses an unanswered research question in the respective experimental system. The former is a 3D model of a nanoscale amperometric glucose biosensor; the model was used to optimize the sensor's design for improved sensitivity to glucose. The latter is a 3D model of the developmental gap gene system that helps establish the bodyplan of Drosophila melanogaster; I wished to determine if the embryo's geometry alone was capable of accounting for observed spatial distributions of gap gene products and to infer feasible genetic regulatory networks (GRNs) via parameter estimation of the GRN interaction terms. Simulation of the biosensor successfully predicted an optimal electrode density on the biosensor surface, allowing us to fabricate improved biosensors. Simulation of the gap gene system on 1D and 3D embryonic demonstrated that geometric effects were insufficient to produce observed distributions when simulated with previously reported GRNs. Noting the effects of the error definition on the outcome of parameter estimation, I conclude with a characterization of assorted error definitions (objective functions), describe data characteristics to which they are sensitive, and end with a suggested procedure for objective function selection. Choice of objective function is important in parameter estimation of spatiotemporal system models in varied biological and biotechnological disciplines.
Kim, Woojin. "The Persistent Topology of Dynamic Data." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587503336988272.
Повний текст джерелаAlexander, Jeremy P. "A framework for quantifying tactical team behaviour in Australian Rules Football." Thesis, 2020. https://vuir.vu.edu.au/40991/.
Повний текст джерелаLEE, YI-SHENG, and 李易陞. "No-reference Video Quality Metric Computation Using Spatial, Temporal, Transform, and Spatiotemporal Features." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/q8h52q.
Повний текст джерела國立中正大學
資訊工程研究所
106
Nowadays, Internet is booming and the perception of video quality by video providers and users is becoming more important, but limit by the bandwidth of network transmission. No reference video quality computation is the best and well-known in three types of video quality assessment metrics. In this study, the proposed video quality computation metric is based on no reference and extracted spatial, temporal, transform, and spatiotemporal features as the basis for predicting quality scores. First, edge detection and blockiness are extracted as the spatial features and difference of luminance and motion are extracted as temporal features. The pairwise products of discrete cosine transform and wavelet transform are extracted to enhance the center point pixel and surrounding neighbor pixels, and are regarded as transform features. Considering that spatial and temporal information can extracted simultaneously, the statistical properties of trajectory and three-dimensional discrete cosine transform are taken as spatiotemporal features. Finally, support vector regression is utilized to predict the final quality score. This experiment using LIVE video quality assessment database and experimental results show that the results have better results than other existing metrics.
CHUNG, KUO-CHUN, and 鍾國君. "No-reference Stereoscopic Video Quality Metric Computation Using Spatial, Depth, Transform, and Spatiotemporal Features." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/27s73g.
Повний текст джерела國立中正大學
資訊工程研究所
106
In recent year, 3D technology application provides a new viewing experience and has become more and more widespread. Due to the reason mentioned above, humans will pay more attention on stereoscopic video quality. In other words, it is necessary to develop the stereoscopic video quality assessment approaches. Full-reference and reduced-reference stereoscopic video quality assessment methods usually obtain better performance since these approaches can make use of the information of original videos. However, it is hard to get original videos when transmitting. Hence, no-reference stereoscopic video quality assessment technology is mainly focused in this study. First, features from four domains, including spatial, depth, transform, and spatiotemporal features are extracted. On the spatial domain, blockiness, cyclopean view, binocular rivalry, cross entropy, and edge are extracted. On the depth domain, disparity saliency, depth structure, NSS, and depth entropy are extracted. On the transform domain, discrete wavelet transform (DWT) and contourlet transform information are extracted. On the spatiotemporal domain, depth motion and 3D-DCT information are extracted. The feature vectors from the left-view and right-view videos are averaged and represented as statistical feature and normalize to the same distribution. Then, support vector regression (SVR) is applied to measure the stereoscopic video quality score. Finally, experimental results show that the proposed approach is better than the other NR approach on NAMA3DS1_COSPAD1 database.
Книги з теми "Spatiotemporal metrics"
Silberstein, Michael, W. M. Stuckey, and Timothy McDevitt. Resolving Puzzles, Problems, and Paradoxes from General Relativity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807087.003.0004.
Повний текст джерелаЧастини книг з теми "Spatiotemporal metrics"
Sharmiladevi, S., and S. Siva Sathya. "Evaluation Metrics of Spatial and Spatiotemporal Data Mining Techniques." In Emerging Technologies in Data Mining and Information Security, 449–63. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9774-9_42.
Повний текст джерелаGholipour, Ali, Catherine Limperopoulos, Sean Clancy, Cedric Clouchoux, Alireza Akhondi-Asl, Judy A. Estroff, and Simon K. Warfield. "Construction of a Deformable Spatiotemporal MRI Atlas of the Fetal Brain: Evaluation of Similarity Metrics and Deformation Models." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, 292–99. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10470-6_37.
Повний текст джерелаXu, Hengpeng, Yao Zhang, Jinmao Wei, Zhenglu Yang, and Jun Wang. "Spatiotemporal-Aware Region Recommendation with Deep Metric Learning." In Database Systems for Advanced Applications, 491–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18590-9_73.
Повний текст джерелаChristakos, George. "Space–Time Metrics." In Spatiotemporal Random Fields, 83–120. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803012-7.00003-9.
Повний текст джерелаJoos, Fortunat, and Thomas L. Frölicher. "Impact of Climate Change Mitigation On Ocean Acidification Projections." In Ocean Acidification. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199591091.003.0019.
Повний текст джерелаBigaj, Tomasz. "Radical Structural Essentialism for the Spacetime Substantivalist." In The Foundation of Reality, 217–32. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198831501.003.0013.
Повний текст джерелаТези доповідей конференцій з теми "Spatiotemporal metrics"
Stapenhurst, Robert, Jinyun Lu, and Dimitris Agrafiotis. "Performance evaluation of objective video quality metrics on mixed spatiotemporal resolution content." In 2013 20th IEEE International Conference on Image Processing (ICIP). IEEE, 2013. http://dx.doi.org/10.1109/icip.2013.6738014.
Повний текст джерелаChurch, George. "Hunger for new technologies, metrics, and spatiotemporal models in functional genomic (abstract only)." In the fifth annual international conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/369133.369179.
Повний текст джерелаZhang, Zhenlong, Lingde Jiang, Rui Peng, and Yixing Yin. "The spatiotemporal change of urban form in Nanjing, China: Based on SLEUTH and spatial metrics analysis." In 2010 18th International Conference on Geoinformatics. IEEE, 2010. http://dx.doi.org/10.1109/geoinformatics.2010.5567753.
Повний текст джерелаTaubenböck, Hannes, Martin Wegmann, Michael Wurm, Tobias Ullmann, and Stefan Dech. "The global trend of urbanization: spatiotemporal analysis of megacities using multi-temporal remote sensing, landscape metrics, and gradient analysis." In Remote Sensing, edited by Ulrich Michel and Daniel L. Civco. SPIE, 2010. http://dx.doi.org/10.1117/12.864917.
Повний текст джерелаArellano-González, Juan C., Hugo I. Medellín-Castillo, and J. Jesús Cervantes-Sánchez. "Identification and Analysis of the Biomechanical Parameters Used for the Assessment of Normal and Pathological Gait: A Literature Review." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10140.
Повний текст джерелаGoroshin, Ross, Joan Bruna, Jonathan Tompson, David Eigen, and Yann LeCun. "Unsupervised Learning of Spatiotemporally Coherent Metrics." In 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015. http://dx.doi.org/10.1109/iccv.2015.465.
Повний текст джерелаJiang, Zhanhong, and Soumik Sarkar. "Understanding Wind Turbine Interactions Using Spatiotemporal Pattern Network." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9784.
Повний текст джерелаJunyong You, Miska M. Hannuksela, and Moncef Gabbouj. "An objective video quality metric based on spatiotemporal distortion." In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5413900.
Повний текст джерелаGielniak, Michael J., and Andrea L. Thomaz. "Spatiotemporal correspondence as a metric for human-like robot motion." In the 6th international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1957656.1957676.
Повний текст джерелаKwong, Ngai-Wing, Sik-Ho Tsang, Yui-Lam Chan, Daniel Pak-Kong Lun, and Tsz-Kwan Lee. "No-reference video quality assessment metric using spatiotemporal features through LSTM." In International Workshop on Advanced Image Technology 2021, edited by Wen-Nung Lie, Qian Kemao, Jae-Gon Kim, and Masayuki Nakajima. SPIE, 2021. http://dx.doi.org/10.1117/12.2590406.
Повний текст джерелаЗвіти організацій з теми "Spatiotemporal metrics"
Perdigão, Rui A. P., and Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, November 2020. http://dx.doi.org/10.46337/201111.
Повний текст джерелаPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.
Повний текст джерела