Статті в журналах з теми "Spectroscopies exaltées de surface"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Spectroscopies exaltées de surface.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Spectroscopies exaltées de surface".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Boubekeur-Lecaque, Leïla, Nordin Felidj, and Marc Lamy de la Chapelle. "Comprendre. La diffusion Raman exaltée de surface." Photoniques, no. 90 (January 2018): 41–44. http://dx.doi.org/10.1051/photon/20189041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La spectroscopie Raman est une spectroscopie vibrationnelle très peu sensible qui limite l’analyse d’espèces chimiques aux fortes concentrations. Néanmoins, lorsque des molécules sont placées au voisinage d’une surface métallique nanostructurée, il est possible d’exalter considérablement leur signature Raman. On parle alors de diffusion Raman exaltée de surface. Les remarquables potentialités de cette technique ont nourri de nombreux champs d’étude tant pour le design de substrats dits SERS-actifs, que pour l’exploration d’applications en médecine, pharmacologie, défense ou le monde de l’art.
2

Felidj, Nordin. "Introduction à la spectroscopie Raman classique et à la diffusion Raman exaltée de surface." Photoniques, no. 96 (May 2019): 39–42. http://dx.doi.org/10.1051/photon/20199639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Parmi les méthodes analytiques instrumentales, les techniques de spectroscopie vibrationnelle se sont imposées depuis longtemps. Elles permettent d’identifier la composition chimique de substances et de les quantifier. Parmi ces techniques, la spectroscopie Raman exploite un effet qui tient son nom d’un physicien Indien, Sir Raman, qui, le premier en 1928, mit en évidence ce phénomène (il obtint le prix Nobel pour cela en 1930).
3

Felidj, Nordin. "Introduction à… La spectroscopie Raman et la diffusion exaltée de surface." Photoniques, no. 81 (April 2016): 46–49. http://dx.doi.org/10.1051/photon/20168146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Richardson, Neville V., and David A. King. "Surface Spectroscopies." Physics Bulletin 36, no. 3 (March 1985): 114–17. http://dx.doi.org/10.1088/0031-9112/36/3/021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Holze, Rudolf, and Sebastian Schlücker. "Surface-enhanced spectroscopies." Physical Chemistry Chemical Physics 17, no. 33 (2015): 21045. http://dx.doi.org/10.1039/c5cp90032h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Madix, Robert J. "Surface reactivity and surface spectroscopies." Ultramicroscopy 31, no. 1 (September 1989): 58–66. http://dx.doi.org/10.1016/0304-3991(89)90034-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kelley, Michael J. "Imaging with Surface Spectroscopies." MRS Bulletin 16, no. 3 (March 1991): 46–49. http://dx.doi.org/10.1557/s0883769400057407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A little more than 20 years ago we learned how to direct photons, electrons, or ions a few keV or lower energy onto a surface and measure the energy or mass distribution of backscattered or emitted species. By arranging conditions so that the bombarding or detected species is strongly attenuated by matter, the information obtained is restricted to not more than the outermost several atomic layers. We then learned how to infer the composition, chemical state, and (sometimes) the molecular structure of the surface from these spectra. So began the era of “alphabet soup.” The ensuing decades brought several things:■ The commercial availability of major surface spectroscopies. Even if not totally user friendly, they aren't outright hostile and work for most people on most days. Instrument makers seeking increased sales volume will continue to improve their ease of operation and reliability.■ The scrutiny of most materials and structures. There is reliable literature about the very large majority of applications. We know where to begin interpretation and what are the major pitfalls. We have little excuse for the egregious errors we sometimes still make.■ Many good research groups. When something really new comes along (e.g., the high temperature superconductors), the correct understanding of the data is worked out quickly enough to use it as a tool, guiding research and development.■ The seeming reluctance, outside certain specialized areas, of the materials community to integrate surface spectroscopies into other than basic research. Expense is often cited as a barrier, but this is hardly credible when the daily cost of top-notch spectroscopy isn't more than twice typical industrial researcher internal billine rates.
8

Belton, D. N., and S. J. Schmieg. "Surface spectroscopies for diamond." Carbon 28, no. 6 (1990): 760. http://dx.doi.org/10.1016/0008-6223(90)90275-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Salma, K., Z. J. Ding, H. M. Li, and Z. M. Zhang. "Surface excitation probabilities in surface electron spectroscopies." Surface Science 600, no. 7 (April 2006): 1526–39. http://dx.doi.org/10.1016/j.susc.2006.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barkley, P. Glenn, Joseph P. Hornak, and Jack H. Freed. "Surface‐suppressed electron resonance spectroscopies." Journal of Chemical Physics 84, no. 3 (February 1986): 1886–900. http://dx.doi.org/10.1063/1.450437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Solomon, J. S. "Factor analysis in surface spectroscopies." Thin Solid Films 154, no. 1-2 (November 1987): 11–20. http://dx.doi.org/10.1016/0040-6090(87)90347-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Borders, James A. "Ion spectroscopies for surface analysis." Journal of Colloid and Interface Science 153, no. 1 (October 1992): 302. http://dx.doi.org/10.1016/0021-9797(92)90323-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Jablonski, A. "Quantification of surface-sensitive electron spectroscopies." Surface Science 603, no. 10-12 (June 2009): 1342–52. http://dx.doi.org/10.1016/j.susc.2008.08.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Larmour, Iain A., and Duncan Graham. "Surface enhanced optical spectroscopies for bioanalysis." Analyst 136, no. 19 (2011): 3831. http://dx.doi.org/10.1039/c1an15452d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

BORENSZTEIN, YVES. "LINEAR OPTICAL SPECTROSCOPIES FOR SURFACE STUDIES." Surface Review and Letters 07, no. 04 (August 2000): 399–410. http://dx.doi.org/10.1142/s0218625x00000403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Plummer, E. W., C. T. Chen, W. K. Ford, W. Eberhardt, R. P. Messmer, and H. J. Freund. "A comparison of surface electron spectroscopies." Surface Science 158, no. 1-3 (July 1985): 58–83. http://dx.doi.org/10.1016/0039-6028(85)90288-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lagowski, Jacek. "Semiconductor surface spectroscopies: the early years." Surface Science 299-300 (January 1994): 92–101. http://dx.doi.org/10.1016/0039-6028(94)90648-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Plummer, E. W., C. T. Chen, W. K. Ford, W. Eberhardt, R. P. Messmer, and H. J. Freund. "A comparison of surface electron spectroscopies." Surface Science Letters 158, no. 1-3 (July 1985): A415. http://dx.doi.org/10.1016/0167-2584(85)90006-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Shin, Kwanwoo. "Surface characterization of biological monolayers using by surface sensitive non-linear optical spectroscopies, Surface vibrational spectroscopies and X-ray reflection." Rapid Communication in Photoscience 1, no. 2 (June 1, 2012): 54. http://dx.doi.org/10.5857/rcp.2012.1.2.054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lal, Surbhi, Nathaniel K. Grady, Janardan Kundu, Carly S. Levin, J. Britt Lassiter, and Naomi J. Halas. "Tailoring plasmonic substrates for surface enhanced spectroscopies." Chemical Society Reviews 37, no. 5 (2008): 898. http://dx.doi.org/10.1039/b705969h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Charles, Catherine, Gervais Leclerc, Jean-Jacques Pireaux, and Jean-Paul Rasson. "Introduction to wavelet applications in surface spectroscopies." Surface and Interface Analysis 36, no. 1 (January 2004): 49–60. http://dx.doi.org/10.1002/sia.1648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

TANUMA, Shigeo. "Electron Scattering Effect in Surface Electron Spectroscopies." Hyomen Kagaku 27, no. 11 (2006): 657–61. http://dx.doi.org/10.1380/jsssj.27.657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Roseburgh, D. S., and R. J. Cole. "A comparison of surface sensitive reflection spectroscopies." Journal of Physics: Condensed Matter 16, no. 39 (September 21, 2004): S4279—S4288. http://dx.doi.org/10.1088/0953-8984/16/39/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Aouani, Heykel, Mohsen Rahmani, Hana Šípová, Victor Torres, Kateřina Hegnerová, Miguel Beruete, Jiří Homola, Minghui Hong, Miguel Navarro-Cía, and Stefan A. Maier. "Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies." Journal of Physical Chemistry C 117, no. 36 (August 29, 2013): 18620–26. http://dx.doi.org/10.1021/jp404535x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Krawczyk, Mirosław, Marcin Pisarek, Wojciech Lisowski, and Aleksander Jablonski. "Surface studies of praseodymium by electron spectroscopies." Applied Surface Science 388 (December 2016): 691–95. http://dx.doi.org/10.1016/j.apsusc.2016.01.150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Henzi, P., D. Schild, and J. Halbritter. "Corrosion and surface spectroscopies of high-temperature superconductors." Applied Physics A Materials Science & Processing 72, S2 (April 2001): S271—S272. http://dx.doi.org/10.1007/s003390100658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Thurgate, S. M. "Coincidence measurements in the electron spectroscopies: Surface studies." Surface and Interface Analysis 20, no. 8 (July 1993): 627–36. http://dx.doi.org/10.1002/sia.740200804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Li, X. L., and R. W. Paynter. "Analysis of TdeV guard limiters by surface spectroscopies." Surface and Interface Analysis 21, no. 3 (March 1994): 184–91. http://dx.doi.org/10.1002/sia.740210304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Taglauer, E., and H. Knözinger. "Characterization of Supported Catalyst Systems with Surface Spectroscopies." physica status solidi (b) 192, no. 2 (December 1, 1995): 465–75. http://dx.doi.org/10.1002/pssb.2221920216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Lis, Dan, and Francesca Cecchet. "Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity." Beilstein Journal of Nanotechnology 5 (November 28, 2014): 2275–92. http://dx.doi.org/10.3762/bjnano.5.237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR) are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS). They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman scattering (SERS) techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis.
31

Chulhai, Dhabih V., Zhongwei Hu, Justin E. Moore, Xing Chen, and Lasse Jensen. "Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies." Annual Review of Physical Chemistry 67, no. 1 (May 27, 2016): 541–64. http://dx.doi.org/10.1146/annurev-physchem-040215-112347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

D'Olimpio, Gianluca, Danil W. Boukhvalov, Jun Fujii, Piero Torelli, Andrea Marchionni, Jonathan Filippi, Chia-Nung Kuo, et al. "Catalytic activity of PtSn4: Insights from surface-science spectroscopies." Applied Surface Science 514 (June 2020): 145925. http://dx.doi.org/10.1016/j.apsusc.2020.145925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kantarovich, Keren, Inbal Tsarfati-BarAd, Levi A. Gheber, Karsten Haupt, and Ilana Bar. "Reading Biochips by Raman and Surface-Enhanced Raman Spectroscopies." Plasmonics 8, no. 1 (May 15, 2012): 3–12. http://dx.doi.org/10.1007/s11468-012-9367-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Lin, Jia-Sheng, Petar M. Radjenovic, Huaizhou Jin, and Jian-Feng Li. "Plasmonic Core–Shell Nanoparticle Enhanced Spectroscopies for Surface Analysis." Analytical Chemistry 93, no. 17 (April 22, 2021): 6573–82. http://dx.doi.org/10.1021/acs.analchem.1c00233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Puchin, V. E., J. D. Gale, A. L. Shluger, E. A. Kotomin, J. Günster, M. Brause, and V. Kempter. "Atomic and electronic structure of the corundum (0001) surface: comparison with surface spectroscopies." Surface Science 370, no. 2-3 (January 1997): 190–200. http://dx.doi.org/10.1016/s0039-6028(96)00971-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ekgasit, Sanong, Chuchaat Thammacharoen, Fang Yu, and Wolfgang Knoll. "Evanescent Field in Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopies." Analytical Chemistry 76, no. 8 (April 2004): 2210–19. http://dx.doi.org/10.1021/ac035326f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Parker, Stewart F., Devashibhai Adroja, Mónica Jiménez-Ruiz, Markus Tischer, Konrad Möbus, Stefan D. Wieland, and Peter Albers. "Characterisation of the surface of freshly prepared precious metal catalysts." Physical Chemistry Chemical Physics 18, no. 26 (2016): 17196–201. http://dx.doi.org/10.1039/c6cp01027j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Freshly prepared precious metal catalysts have been investigated by electron microscopy, X-ray and neutron spectroscopies and computational methods. At least half the surface is metallic with the remainder covered by oxygen, largely as hydroxide.
38

Chiarotti, G., P. Chiaradia, F. Arciprete, and C. Goletti. "Sum rules in surface differential reflectivity and reflectance anisotropy spectroscopies." Applied Surface Science 175-176 (May 2001): 777–82. http://dx.doi.org/10.1016/s0169-4332(01)00066-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

ANDO, Toshihiro, Takashi AIZAWA, Mikka N. GAMO, Isao SAKAGUCHI, LOH Kian PING, and Yoichiro SATO. "Diamond Surface Reactions and Their Mechanisms Studied by Vibrational Spectroscopies." Hyomen Kagaku 18, no. 6 (1997): 332–41. http://dx.doi.org/10.1380/jsssj.18.332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Aliaga, A. E., P. Leyton, R. E. Clavijo, and M. M. Campos-Vallette. "Fluorescence and surface-enhanced vibrational spectroscopies of lawsone and plumbagin." Spectroscopy Letters 49, no. 5 (January 29, 2016): 326–35. http://dx.doi.org/10.1080/00387010.2016.1146772.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Naudin, C., J. L. Bruneel, M. Chami, B. Desbat, J. Grondin, J. C. Lassègues, and L. Servant. "Characterization of the lithium surface by infrared and Raman spectroscopies." Journal of Power Sources 124, no. 2 (November 2003): 518–25. http://dx.doi.org/10.1016/s0378-7753(03)00798-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhang, Chi, Jie Wang, Alexander Khmaladze, Yuwei Liu, Bei Ding, Joshua Jasensky, and Zhan Chen. "Examining surface and bulk structures using combined nonlinear vibrational spectroscopies." Optics Letters 36, no. 12 (June 10, 2011): 2272. http://dx.doi.org/10.1364/ol.36.002272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

TAGLAUER, E., and H. KNOEZINGER. "ChemInform Abstract: Characterization of Supported Catalyst Systems with Surface Spectroscopies." ChemInform 27, no. 20 (August 5, 2010): no. http://dx.doi.org/10.1002/chin.199620275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Krawczyk, M., L. Zommer, B. Lesiak, and A. Jablonski. "Surface Composition of the CoPd Alloys Studied by Electron Spectroscopies." Surface and Interface Analysis 25, no. 5 (May 1997): 356–65. http://dx.doi.org/10.1002/(sici)1096-9918(199705)25:5<356::aid-sia244>3.0.co;2-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Borensztein, Yves. "Surface optical reflectance spectroscopies: Application to semiconductor and metal surfaces." Physica A: Statistical Mechanics and its Applications 207, no. 1-3 (June 1994): 293–301. http://dx.doi.org/10.1016/0378-4371(94)90387-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Grumich, Ryan, Trevor Griggs-Demmin, Megan Glover, and Bogdan Negru. "Fabrication of Stabilized Gold Nanoparticle Oligomers for Surface-Enhanced Spectroscopies." ACS Omega 6, no. 47 (November 16, 2021): 31818–21. http://dx.doi.org/10.1021/acsomega.1c04503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sobola, Dinara, Nikola Papež, Rashid Dallaev, Shikhgasan Ramazanov, Dušan Hemzal, and Vladimír Holcman. "Characterization of nanoblisters on HOPG surface." Journal of Electrical Engineering 70, no. 7 (December 1, 2019): 132–36. http://dx.doi.org/10.2478/jee-2019-0055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We report on influence of the surface functionalization on the properties of highly oriented pyrolytic graphite. The samples were processed in nitric acid and characterized by XPS, Raman and EDX spectroscopies, AFM, SEM and optical microscopy. It is shown that interaction of nitric acid with the surface of HOPG leads to two types of reactions: oxidation of the graphite and intercalation of the nitrate ions at the blistered areas.
48

Rusciano, Giulia, Gianluigi Zito, Giuseppe Pesce, and Antonio Sasso. "Cell Imaging by Spontaneous and Amplified Raman Spectroscopies." Journal of Spectroscopy 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2193656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Raman spectroscopy (RS) is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba), which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis). Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores) aimed at studying cell membranes with these techniques.
49

Starr, David E., Golnaz Sadoughi, Evelyn Handick, Regan G. Wilks, Jan H. Alsmeier, Leonard Köhler, Mihaela Gorgoi, Henry J. Snaith, and Marcus Bär. "Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3−xClx layers: surface depletion and interface enrichment." Energy & Environmental Science 8, no. 5 (2015): 1609–15. http://dx.doi.org/10.1039/c5ee00403a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Negahdar, Leila, Christopher M. A. Parlett, Mark A. Isaacs, Andrew M. Beale, Karen Wilson, and Adam F. Lee. "Shining light on the solid–liquid interface: in situ/operando monitoring of surface catalysis." Catalysis Science & Technology 10, no. 16 (2020): 5362–85. http://dx.doi.org/10.1039/d0cy00555j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many industrially important chemical transformations occur at the interface between a solid catalyst and liquid reactants. In situ and operando spectroscopies offer unique insight into the reactivity of such catalytically active solid–liquid interfaces.

До бібліографії