Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Spin polarized electron gas.

Книги з теми "Spin polarized electron gas"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-18 книг для дослідження на тему "Spin polarized electron gas".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Samarin, Sergey, Oleg Artamonov, and Jim Williams. Spin-Polarized Two-Electron Spectroscopy of Surfaces. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00657-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

F, Bradamante, and Workshop on Polarized Electron Sources and Polarimeters (2004 : Trieste, Italy), eds. SPIN 2004: Proceedings of the 16th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters, Trieste, Italy, 10-16 October 2004. Hackensack, N.J: World Scientific, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

International, Spin Physics Symposium (15th 2002 Upton N. Y. ). Spin 2002: 15th International Spin Physics Symposium, Upton, New York, 9-14 September 2002 and, Workshop on Polarized Electron Sources and Polarimeters, Danvers, Massachusetts 4-6 September 2002. Melville, N.Y: American Institute Of Physics, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hirohata, A., and J. Y. Kim. Optically Induced and Detected Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0006.

Повний текст джерела
Анотація:
This chapter presents an alternative method of injecting spin-polarized electrons into a nonmagnetic semiconductor through photoexcitation. This method uses circularly-polarized light, whose energy needs to be the same as, or slightly larger than, the semiconductor band-gap, to excite spin-polarized electrons. This process will introduce a spin-polarized electron-hole pair, which can be detected as electrical signals. Such an optically induced spin-polarized current can only be generated in a direct band-gap semiconductor due to the selection rule described in the following sections. This introduction of circularly polarized light can also be used for spin-polarized scanning tunnelling microscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Samarin, Sergey, Oleg Artamonov, and Jim Williams. Spin-Polarized Two-Electron Spectroscopy of Surfaces. Springer, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Samarin, Sergey, Oleg Artamonov, and Jim Williams. Spin-Polarized Two-Electron Spectroscopy of Surfaces. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Takanashi, K., and Y. Sakuraba. Spin polarization in magnets. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0005.

Повний текст джерела
Анотація:
This chapter explains how the exchange splitting between up- and down-spin bands in ferromagnets unexceptionally generates spin-polarized electronic states at the Fermi energy. The quantity of spin polarization P in ferromagnets is one of the important parameters for application in spintronics, since a ferromagnet having a higher P is able to generate larger various spin-dependent effects such as the magnetoresistance effect, spin transfer torque, spin accumulation, and so on. However, the spin polarizations of general 3d transition metals or alloys generally limit the size of spin-dependent effects. Thus,“‘half-metals” attract much interest as an ideal source of spin current and spin-dependent scattering because they possess perfectly spin-polarized conduction electrons due to the energy band gap in either the up- or down-spin channel at the Fermi level.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aulenbacher, Kurt, Italy) Spin 200 (2004 Trieste, and Workshop on Polarized Electron Sources A. Spin 2004: 16th International Spin Physics Symposium; Workshop On Polerized Electron Sources and Polarimeters. World Scientific Publishing Company, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Morris, Robert Alan. Electron cyclotron and spin resonance studies in the gas phase. 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fromme, Bärbel. D-D Excitations in Transition-Metal Oxides: A Spin-Polarized Electron Energy-Loss Spectroscopy Study. Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Glazov, M. M. Electron Spin Precession Mode Locking and Nuclei-Induced Frequency Focusing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0009.

Повний текст джерела
Анотація:
This chapter addresses a rich variety of effects in spin dynamics arising under the conditions of pump-probe experiments. Here we consider the case where the electron spin is injected by a periodic train of circularly polarized pump pulses and precesses between the pulses in an external magnetic field. Nontrivial effects such as resonant spin amplification and spin coherence mode-locking take place due to commensurability of the repetition period of pump pulses and the charge carrier spin precession period. Theoretical approaches to describing the electron and nuclear spin coherence and experimental manifestations of these unusual regimes of spin dynamics are discussed in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

(Editor), Yousef I. Makdisi, Alfredo U. Luccio (Editor), and William W. MacKay (Editor), eds. SPIN 2002: 15th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters, Upton, NY, 9-14 September 2002 (AIP Conference Proceedings / High Energy Physics). American Institute of Physics, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

d-d Excitations in Transition-Metal Oxides: A Spin-Polarized Electron Energy-Loss Spectroscopy (SPEELS) Study (Springer Tracts in Modern Physics). Springer, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zook, Anthony L. Development of a spin polarized noble gas generator for sensitivity enhanced xenon-129 nuclear magnetic resonance spectroscopy and imaging. 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kimura, T., and Y. Otani. Magnetization switching due to nonlocal spin injection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0021.

Повний текст джерела
Анотація:
This chapter discusses and presents a schematic illustration of nonlocal spin injection. In this case, the spin-polarized electrons are injected from the ferromagnet and are extracted from the left-hand side of the nonmagnet. This results in the accumulation of nonequilibrium spins in the vicinity of the F/N junctions. Since the electrochemical potential on the left-hand side is lower than that underneath the F/N junction, the electron flows by the electric field. On the right-hand side, although there is no electric field, the diffusion process from the nonequilibrium into the equilibrium state induces the motion of the electrons. Since the excess up-spin electrons exist underneath the F/N junction, the up-spin electrons diffuse into the right-hand side. On the other hand, the deficiency of the down-spin electrons induces the incoming flow of the down-spin electrons opposite to the motion of the up-spin electron.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Nitta, J. Spin generation and manipulation based on spin-orbit interaction in semiconductors. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0013.

Повний текст джерела
Анотація:
This chapter focuses on the electron spin degree of freedom in semiconductor spintronics. In particular, the electrostatic control of the spin degree of freedom is an advantageous technology over metal-based spintronics. Spin–orbit interaction (SOI), which gives rise to an effective magnetic field. The essence of SOI is that the moving electrons in an electric field feel an effective magnetic field even without any external magnetic field. Rashba spin–orbit interaction is important since the strength is controlled by the gate voltage on top of the semiconductor’s two-dimensional electron gas. By utilizing the effective magnetic field induced by the SOI, spin generation and manipulation are possible by electrostatic ways. The origin of spin-orbit interactions in semiconductors and the electrical generation and manipulation of spins by electrical means are discussed. Long spin coherence is achieved by special spin helix state where both strengths of Rashba and Dresselhaus SOI are equal.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Glazov, M. M. Interaction of Spins with Light. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0006.

Повний текст джерела
Анотація:
This chapter presents the details of the optical manipulation of electron spin states. It also addresses manifestations of the electron and nuclear spin dynamics in optical response of semiconductor nanostructures via spin-Faraday and -Kerr effects. Coupling of spins with light provides the most efficient method of nonmagnetic spin manipulation. The main aim of this chapter is to provide the theoretical grounds for optical spin injection, ultrafast spin control, and readout of spin states by means of circularly and linearly polarized light pulses. The Faraday and Kerr effects induced by the electron and nuclear spin polarization are analyzed both by means of a macroscopic, semi-phenomenological approach and by using the microscopic quantum mechanical model. Theoretical analysis is supported by experimental data.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Glazov, M. M. Dynamical Nuclear Polarization. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0005.

Повний текст джерела
Анотація:
The transfer of nonequilibrium spin polarization between the electron and nuclear subsystems is studied in detail. Usually, a thermal orientation of nuclei in magnetic field is negligible due to their small magnetic moments, but if electron spins are optically oriented, efficient nuclear spin polarization can occur. The microscopic approach to the dynamical nuclear polarization effect based on the kinetic equation method, along with a phenomenological but very powerful description of dynamical nuclear polarization in terms of the nuclear spin temperature concept is given. In this way, one can account for the interaction between neighbouring nuclei without solving a complex many-body problem. The hyperfine interaction also induces the feedback of polarized nuclei on the electron spin system giving rise to a number of nonlinear effects: bistability of nuclear spin polarization and anomalous Hanle effect, dragging and locking of optical resonances in quantum dots. Theory is illustrated by experimental data on dynamical nuclear polarization.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії