Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Spin polarized electron gas.

Статті в журналах з теми "Spin polarized electron gas"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Spin polarized electron gas".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

LU, MAOWANG. "VOLTAGE-TUNABLE SPIN POLARIZATION OF TWO-DIMENSIONAL ELECTRON GAS IN FERROMAGNETIC/SEMICONDUCTOR HYBRID NANOSYSTEM." Surface Review and Letters 13, no. 05 (October 2006): 599–605. http://dx.doi.org/10.1142/s0218625x06008554.

Повний текст джерела
Анотація:
The spin-dependent electron transport in a two-dimensional electron gas (2DEG) modulated by a stripe of magnetized ferromagnetic metal under an applied voltage was investigated theoretically. It is revealed that highly spin-polarized current can be achieved in this kind of nanosystems. It is also shown that the spin polarity of the electron transport can be switched by adjusting the applied voltage to the stripe in the device. These interesting properties may provide an alternative scheme to spin polarize electrons into semiconductors, and this device may be used as a voltage-tunable spin filter.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baboux, F., F. Perez, C. A. Ullrich, G. Karczewski, and T. Wojtowicz. "Spin-orbit stiffness of the spin-polarized electron gas." physica status solidi (RRL) - Rapid Research Letters 10, no. 4 (February 25, 2016): 315–19. http://dx.doi.org/10.1002/pssr.201600032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Valizadeh, Mohammad M., and Sashi Satpathy. "RKKY interaction for the spin-polarized electron gas." International Journal of Modern Physics B 29, no. 30 (November 18, 2015): 1550219. http://dx.doi.org/10.1142/s0217979215502197.

Повний текст джерела
Анотація:
We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky–Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form [Formula: see text]. We find that for the spin-polarized electron gas, a nonzero tensor interaction [Formula: see text] is present in addition to the scalar RKKY interaction [Formula: see text], while [Formula: see text] is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta [Formula: see text] and [Formula: see text], while the [Formula: see text] distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yi, K. S., and J. J. Quinn. "Charge and spin response of the spin-polarized electron gas." Physical Review B 54, no. 19 (November 15, 1996): 13398–401. http://dx.doi.org/10.1103/physrevb.54.13398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Govorov, A. O., and A. V. Chaplik. "Inelastic light scattering by spin polarized electron gas." Solid State Communications 85, no. 9 (March 1993): 827–28. http://dx.doi.org/10.1016/0038-1098(93)90679-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fomin, Igor Vadimovich, and Pavel Vasilievich Sasorov. "Relaxation of spin-polarized low-density electron gas." Keldysh Institute Preprints, no. 67 (2017): 1–23. http://dx.doi.org/10.20948/prepr-2017-67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Berger, Michael, Dominik Schulz, and Jamal Berakdar. "Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas." Nanomaterials 11, no. 5 (May 11, 2021): 1258. http://dx.doi.org/10.3390/nano11051258.

Повний текст джерела
Анотація:
Quantum scars refer to an enhanced localization of the probability density of states in the spectral region with a high energy level density. Scars are discussed for a number of confined pure and impurity-doped electronic systems. Here, we studied the role of spin on quantum scarring for a generic system, namely a semiconductor-heterostructure-based two-dimensional electron gas subjected to a confining potential, an external magnetic field, and a Rashba-type spin-orbit coupling. Calculating the high energy spectrum for each spin channel and corresponding states, as well as employing statistical methods known for the spinless case, we showed that spin-dependent scarring occurs in a spin-coupled electronic system. Scars can be spin mixed or spin polarized and may be detected via transport measurements or spin-polarized scanning tunneling spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tereshchenko, Oleg E., Vladimir A. Golyashov, Vadim S. Rusetsky, Andrey V. Mironov, Alexander Yu Demin, and Vladimir V. Aksenov. "A new imaging concept in spin polarimetry based on the spin-filter effect." Journal of Synchrotron Radiation 28, no. 3 (March 30, 2021): 864–75. http://dx.doi.org/10.1107/s1600577521002307.

Повний текст джерела
Анотація:
The concept of an imaging-type 3D spin detector, based on the combination of spin-exchange interactions in the ferromagnetic (FM) film and spin selectivity of the electron–photon conversion effect in a semiconductor heterostructure, is proposed and demonstrated on a model system. This novel multichannel concept is based on the idea of direct transfer of a 2D spin-polarized electron distribution to image cathodoluminescence (CL). The detector is a hybrid structure consisting of a thin magnetic layer deposited on a semiconductor structure allowing measurement of the spatial and polarization-dependent CL intensity from injected spin-polarized free electrons. The idea is to use spin-dependent electron transmission through in-plane magnetized FM film for in-plane spin detection by measuring the CL intensity from recombined electrons transmitted in the semiconductor. For the incoming electrons with out-of-plane spin polarization, the intensity of circularly polarized CL light can be detected from recombined polarized electrons with holes in the semiconductor. In order to demonstrate the ability of the solid-state spin detector in the image-type mode operation, a spin detector prototype was developed, which consists of a compact proximity focused vacuum tube with a spin-polarized electron source [p-GaAs(Cs,O)], a negative electron affinity (NEA) photocathode and the target [semiconductor heterostructure with quantum wells also with NEA]. The injection of polarized low-energy electrons into the target by varying the kinetic energy in the range 0.5–3.0 eV and up to 1.3 keV was studied in image-type mode. The figure of merit as a function of electron kinetic energy and the target temperature is determined. The spin asymmetry of the CL intensity in a ferromagnetic/semiconductor (FM-SC) junction provides a compact optical method for measuring spin polarization of free-electron beams in image-type mode. The FM-SC detector has the potential for realizing multichannel 3D vectorial reconstruction of spin polarization in momentum microscope and angle-resolved photoelectron spectroscopy systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rassolov, Vitaly A., John A. Pople, and Mark A. Ratner. "Correlation holes in a spin-polarized dense electron gas." Physical Review B 59, no. 24 (June 15, 1999): 15625–31. http://dx.doi.org/10.1103/physrevb.59.15625.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Valizadeh, Mohammad Mahdi, and Sashi Satpathy. "Magnetic exchange interaction in the spin-polarized electron gas." physica status solidi (b) 253, no. 11 (September 8, 2016): 2245–51. http://dx.doi.org/10.1002/pssb.201600188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Marinescu, D. C., J. J. Quinn, and K. S. Yi. "Coupled spin and charge collective excitations in a spin-polarized electron gas." Physica B: Condensed Matter 249-251 (June 1998): 727–30. http://dx.doi.org/10.1016/s0921-4526(98)00301-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Perez, F., B. Jusserand, D. Richards, and G. Karczewski. "Spin waves of the spin-polarized electron gas in semimagnetic quantum wells." physica status solidi (b) 243, no. 4 (March 2006): 873–77. http://dx.doi.org/10.1002/pssb.200564603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tereshchenko, Oleg E., Vladimir A. Golyashov, Vadim S. Rusetsky, Danil A. Kustov, Andrey V. Mironov, and Alexander Yu Demin. "Vacuum Spin LED: First Step towards Vacuum Semiconductor Spintronics." Nanomaterials 13, no. 3 (January 19, 2023): 422. http://dx.doi.org/10.3390/nano13030422.

Повний текст джерела
Анотація:
Improving the efficiency of spin generation, injection, and detection remains a key challenge for semiconductor spintronics. Electrical injection and optical orientation are two methods of creating spin polarization in semiconductors, which traditionally require specially tailored p-n junctions, tunnel or Schottky barriers. Alternatively, we introduce here a novel concept for spin-polarized electron emission/injection combining the optocoupler principle based on vacuum spin-polarized light-emitting diode (spin VLED) making it possible to measure the free electron beam polarization injected into the III-V heterostructure with quantum wells (QWs) based on the detection of polarized cathodoluminescence (CL). To study the spin-dependent emission/injection, we developed spin VLEDs, which consist of a compact proximity-focused vacuum tube with a spin-polarized electron source (p-GaAs(Cs,O) or Na2KSb) and the spin detector (III-V heterostructure), both activated to a negative electron affinity (NEA) state. The coupling between the photon helicity and the spin angular momentum of the electrons in the photoemission and injection/detection processes is realized without using either magnetic material or a magnetic field. Spin-current detection efficiency in spin VLED is found to be 27% at room temperature. The created vacuum spin LED paves the way for optical generation and spin manipulation in the developing vacuum semiconductor spintronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

SHIBATA, TOSHI-AKI. "SPIN STRUCTURE OF THE NUCLEON STUDIED BY HERMES." International Journal of Modern Physics A 18, no. 08 (March 30, 2003): 1161–68. http://dx.doi.org/10.1142/s0217751x03014472.

Повний текст джерела
Анотація:
The spin structure of the proton and neutron is studied by polarized deep inelastic scattering at HERMES. The longitudinally polarized electron beam at 27.6 GeV, polarized internal gas targets of 3 He , H and D, and a wide acceptance magnetic spectrometer with a particle identification capability are the important ingredients of the experiment. The basic concepts of the measurements at HERMES as well as recent physics results are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Calmels, L., and A. Gold. "Spin-polarized electron gas in quantum wires: Anisotropic confinement model." Solid State Communications 106, no. 3 (April 1998): 139–43. http://dx.doi.org/10.1016/s0038-1098(98)00015-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Terada, Jumpei, and Tsuneya Ando. "Many-body effects in spin-polarized two-dimensional electron gas." Physica E: Low-dimensional Systems and Nanostructures 34, no. 1-2 (August 2006): 367–70. http://dx.doi.org/10.1016/j.physe.2006.03.095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Alducin, M., R. Dı́ez Muiño, and J. I. Juaristi. "Ion induced electronic excitations in a spin-polarized electron gas." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 203 (April 2003): 83–88. http://dx.doi.org/10.1016/s0168-583x(02)02178-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ortiz, G., and P. Ballone. "The Correlation Energy of the Spin-Polarized Uniform Electron Gas." Europhysics Letters (EPL) 23, no. 1 (July 1, 1993): 7–13. http://dx.doi.org/10.1209/0295-5075/23/1/002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Albar, A., and U. Schwingenschlögl. "Polar catastrophe at the MgO(100)/SnO2(110) interface." Journal of Materials Chemistry C 4, no. 47 (2016): 11129–34. http://dx.doi.org/10.1039/c6tc04264c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

KÜMMELL, T., M. GHALI, J. HUANG, R. ARIANS, G. BACHER, J. WENISCH, and K. BRUNNER. "ELECTRICAL INJECTION AND OPTICAL READOUT OF SPIN STATES IN A SINGLE QUANTUM DOT." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2826–35. http://dx.doi.org/10.1142/s0217979209062402.

Повний текст джерела
Анотація:
We demonstrate electrically driven spin injection into a single semiconductor quantum dot. Spin polarized electrons are transferred from a diluted magnetic semiconductor ( ZnMnSe ) into InAs quantum dots embedded into GaAs barriers. The spin information can be extracted directly from the polarization degree of the electroluminescence signal stemming from an individual quantum dot. By slightly modifying the device design, we demonstrate a concept to electrically charge the quantum dot by a spin polarized electron and present a simple way to probe this spin state optically.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Schmidt, Karla, Stefan Kurth, Jianmin Tao, and John P. Perdew. "Comment on “Correlation holes in a spin-polarized dense electron gas”." Physical Review B 62, no. 3 (July 15, 2000): 2227–31. http://dx.doi.org/10.1103/physrevb.62.2227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ryan, J. C. "Collective excitations in a spin-polarized quasi-two-dimensional electron gas." Physical Review B 43, no. 5 (February 15, 1991): 4499–502. http://dx.doi.org/10.1103/physrevb.43.4499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Yarlagadda, S. "Mixed charge–spin response functions of an arbitrarily polarized electron gas." Solid State Communications 116, no. 3 (September 2000): 167–70. http://dx.doi.org/10.1016/s0038-1098(00)00300-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hoffman, Gary G. "Correlation energy of a spin-polarized electron gas at high density." Physical Review B 45, no. 15 (April 15, 1992): 8730–33. http://dx.doi.org/10.1103/physrevb.45.8730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Capurro, F., R. Asgari, B. Davoudi, M. Polini, and P. Tosi. "Pair Densities in a Two-dimensional Electron Gas (Jellium) at Strong Coupling from Scattering Theory with Kukkonen-Overhauser Effective Interactions." Zeitschrift für Naturforschung A 57, no. 5 (May 1, 2002): 237–43. http://dx.doi.org/10.1515/zna-2002-0506.

Повний текст джерела
Анотація:
We present a calculation of the spin-averaged and spin-resolved pair distribution functions for a homogeneous gas of electrons moving in a plane with e2/r interactions at coupling strength rs = 10. The calculation is based on the solution of a two-electron scattering problem for both parallelspin- and antiparallel-spin-pairs interacting via effective spin-dependent many-body potentials. The scattering potentials are modeled within the approach proposed by Kukkonen and Overhauser to treat exchange and correlations under close constraints imposed by sum rules. We find very good agreement with quantum MonteCarlo data for the spin-averaged pair density. We also find that short-range pairing between parallel-spin electrons is beginning to emerge in the paramagnetic fluid at this coupling strength, as a precursor of a transition to a fully spin-polarized fluid state occurring at stronger coupling.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wang, C. M., M. Q. Pang, S. Y. Liu, and X. L. Lei. "Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin–orbit coupling." Physics Letters A 374, no. 10 (February 2010): 1286–91. http://dx.doi.org/10.1016/j.physleta.2010.01.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Lafont, Fabien, Amir Rosenblatt, Moty Heiblum, and Vladimir Umansky. "Counter-propagating charge transport in the quantum Hall effect regime." Science 363, no. 6422 (January 3, 2019): 54–57. http://dx.doi.org/10.1126/science.aar3766.

Повний текст джерела
Анотація:
The quantum Hall effect, observed in a two-dimensional (2D) electron gas subjected to a perpendicular magnetic field, imposes a 1D-like chiral, downstream, transport of charge carriers along the sample edges. Although this picture remains valid for electrons and Laughlin’s fractional quasiparticles, it no longer holds for quasiparticles in the so-called hole-conjugate states. These states are expected, when disorder and interactions are weak, to harbor upstream charge modes. However, so far, charge currents were observed to flow exclusively downstream in the quantum Hall regime. Studying the canonical spin-polarized and spin-unpolarized v = 2/3 hole-like states in GaAs-AlGaAs heterostructures, we observed a significant upstream charge current at short propagation distances in the spin unpolarized state.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Campos, Abraham Federico, Thomas Duden, and Antonio Tejeda. "On the energy resolution of a GaAs-based electron source for spin-resolved inverse photoemission." EPJ Web of Conferences 273 (2022): 01010. http://dx.doi.org/10.1051/epjconf/202227301010.

Повний текст джерела
Анотація:
The spin resolution in inverse photoemission spectroscopy is achieved by injecting spin-polarized electrons, usually produced by GaAs-based cold cathodes that replace hot-filament electron guns of spin-integrated setups. The overall energy resolution of the system can be enhanced by adjusting either the optical bandpass of the photon detector or the energy distribution of the electron beam. Here we discuss the influence of the photocurrent and the photocathode temperature on the energy broadening of the electron beam through the inverse photoemission spectra of the spin-splitted Shockley surface state of Au(111). First, we find that cooling down the GaAs photocathode to 77 K increases the band gap and reduces the number of allowed vertical transitions, monochromatizing the electron beam with an enhancement of about 30 meV for the energy resolution. Second, we observe a correlation between the generated photocurrent at the electron source, and the space-charge effects at the sample as a reduction of lifetime and spin asymmetry of a polarized bulk state. These observations allow defining a threshold of current density for the optimum acquisition in the measurements of spin-resolved inverse photoemission in Au.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Tae, Gikoan, Jonghwa Eom, Jindong Song, and Kwangyoun Kim. "Spin-Polarized Hot Electron Injection into Two-Dimensional Electron Gas by Magnetic Tunnel Transistor." Japanese Journal of Applied Physics 46, no. 12 (December 6, 2007): 7717–19. http://dx.doi.org/10.1143/jjap.46.7717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

GANICHEV, S. D. "MAGNETO-GYROTROPIC PHOTOGALVANIC EFFECTS IN SEMICONDUCTOR QUANTUM WELLS." International Journal of Modern Physics B 22, no. 01n02 (January 20, 2008): 115–16. http://dx.doi.org/10.1142/s0217979208046189.

Повний текст джерела
Анотація:
The spin-orbit coupling provides a versatile tool to generate and to manipulate the spin degree of freedom in low-dimensional semiconductor structures. The spin Hall effect, where an electric current drives a transverse spin current and causes a nonequilibrium spin accumulation near the sample boundary,1,2 the spin-galvanic effect, where a nonequilibrium spin polarization drives an electric current3,4 or the reverse process, in which an electrical current generates a non-equilibrium spin-polarization,5–9 are all consequences of spin-orbit coupling. In order to observe a spin Hall effect a bias driven current is an essential prerequisite. Then spin separation is caused via spin-orbit coupling either by Mott scattering (extrinsic spin Hall effect) or by spin splitting of the band structure (intrinsic spin Hall effect). Recently an elementary effect causing spin separation which is fundamentally different from that of the spin Hall effect has been observed.10 In contrast to the spin Hall effect it does not require an electric current to flow: it is spin separation achieved by spin-dependent scattering of electrons in media with suitable symmetry. It is show that by free carrier (Drude) absorption of terahertz radiation spin separation is achieved in a wide range of temperatures from liquid helium temperature up to room temperature. Moreover the experimental results demonstrate that simple electron gas heating by any means is already sufficient to yield spin separation due to spin-dependent energy relaxation processes of non-equilibrium carriers. In order to demonstrate the existence of the spin separation due to asymmetric scattering the pure spin current was converted into an electric current. It is achieved by application of a magnetic field which polarizes spins. This is analogues to spin-dependent scattering in transport experiments: spin-dependent scattering in an unpolarized electron gas causes the extrinsic spin Hall effect, whereas in a spin-polarized electron gas a charge current, the anomalous Hall effect, can be observed. As both magnetic fields and gyrotropic mechanisms were used authors introduced the notation "magneto-gyrotropic photogalvanic effects" for this class of phenomena. The effect is observed in GaAs and InAs low dimensional structures at free-carrier absorption of terahertz radiation in a wide range of temperatures from liquid helium temperature up to room temperature. The results are well described by the phenomenological description based on the symmetry. Experimental and theoretical analysis evidences unumbiguously that the observed photocurrents are spin-dependent. Microscopic theory of this effect based on asymmetry of photoexcitation and relaxation processes are developed being in a good agreement with experimental data. Note from Publisher: This article contains the abstract only.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Bamshad, Zahra. "Spin Polarized Transport through Structures Consist of the Ferromagnetic Semiconductor in Presence of a Inhomogeneous Magnetic Field." Advanced Materials Research 194-196 (February 2011): 679–82. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.679.

Повний текст джерела
Анотація:
The spin-polarized transport is investigated in a magnetic tunnel junction which consists of two ferromagnetic electrodes separated by a magnetic barrier and a nonmagnetic metallic spacer placed in distance above the two dimensional electron gas (2DEG) in presence of an inhomogeneous external modulated magnetic field and a perpendicular wave vector dependent effective potential. Based on the transfer matrix method and the nearly-free-electron approximation the dependence of the conductance and spin polarization on the Fermi energy of the electrons are studied theoretically the. strong oscillations with large amplitude investigated in spin polarization in terms of the Fermi energy due to the inhomogeneous magnetic field. The conductance in terms of the Fermi energy shows no oscillation in low energy but has a strong pick in middle region. this results may be useful for the development of spin electronic devices based on coherent transport, or may be used as a tunable spin-filter.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Vincent, R., J. I. Juaristi, and I. Nagy. "Z1 oscillations in the spin polarization of electrons excited by slow ions in a spin-polarized electron gas." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, no. 1 (May 2007): 79–82. http://dx.doi.org/10.1016/j.nimb.2006.12.174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kato, T., Y. Ishikawa, H. Itoh, and J. Inoue. "Magnetoresistance and Hall effect in spin-polarized two-dimensional electron gas with spin-orbit interaction." physica status solidi (b) 244, no. 12 (December 2007): 4403–6. http://dx.doi.org/10.1002/pssb.200777260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Kim, J. S., S. Park, and K. S. Yi. "Many-body Effects on Dielectric Responses of a Spin-polarized Electron Gas." Journal of the Korean Physical Society 58, no. 5(1) (May 13, 2011): 1429–33. http://dx.doi.org/10.3938/jkps.58.1429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Gold, A. "Spin-polarized one-dimensional electron gas with short-range interaction: analytical results." Journal of Physics: Condensed Matter 10, no. 18 (May 11, 1998): 3959–67. http://dx.doi.org/10.1088/0953-8984/10/18/006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ţifrea, I., and D. C. Marinescu. "Collective modes of a bilayer quasi-two-dimensional spin polarized electron gas." Physica E: Low-dimensional Systems and Nanostructures 15, no. 1 (September 2002): 13–22. http://dx.doi.org/10.1016/s1386-9477(02)00441-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Han, K., N. Tang, J. D. Ye, J. X. Duan, Y. C. Liu, K. L. Teo, and B. Shen. "Spin-polarized two-dimensional electron gas in undoped MgxZn1−xO/ZnO heterostructures." Applied Physics Letters 100, no. 19 (May 7, 2012): 192105. http://dx.doi.org/10.1063/1.4711775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Valizadeh, M. M. "Anisotropic Heisenberg form of RKKY interaction in the one-dimensional spin-polarized electron gas." International Journal of Modern Physics B 30, no. 32 (December 14, 2016): 1650234. http://dx.doi.org/10.1142/s0217979216502349.

Повний текст джерела
Анотація:
We study the indirect exchange interaction between two localized magnetic moments, known as Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, in a one-dimensional (1D) spin-polarized electron gas. We find explicit expressions for each term of this interaction, study their oscillatory behaviors as a function of the distance between two magnetic moments, [Formula: see text], and compare them with the known results for RKKY interaction in the case of 1D standard electron gas. We show this interaction can be written in an anisotropic Heisenberg form, [Formula: see text], coming from broken time-reversal symmetry of the host material.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Yakimenko, Irina I., and Ivan P. Yakimenko. "Electronic properties of semiconductor quantum wires for shallow symmetric and asymmetric confinements." Journal of Physics: Condensed Matter 34, no. 10 (December 20, 2021): 105302. http://dx.doi.org/10.1088/1361-648x/ac3f01.

Повний текст джерела
Анотація:
Abstract Quantum wires (QWs) and quantum point contacts (QPCs) have been realized in GaAs/AlGaAs heterostructures in which a two-dimensional electron gas resides at the interface between GaAs and AlGaAs layered semiconductors. The electron transport in these structures has previously been studied experimentally and theoretically, and a 0.7 conductance anomaly has been discovered. The present paper is motivated by experiments with a QW in shallow symmetric and asymmetric confinements that have shown additional conductance anomalies at zero magnetic field. The proposed device consists of a QPC that is formed by split gates and a top gate between two large electron reservoirs. This paper is focussed on the theoretical study of electron transport through a wide top-gated QPC in a low-density regime and is based on density functional theory. The electron–electron interaction and shallow confinement make the splitting of the conduction channel into two channels possible. Each of them becomes spin-polarized at certain split and top gates voltages and may contribute to conductance giving rise to additional conductance anomalies. For symmetrically loaded split gates two conduction channels contribute equally to conductance. For the case of asymmetrically applied voltage between split gates conductance anomalies may occur between values of 0.25(2e 2/h) and 0.7(2e 2/h) depending on the increased asymmetry in split gates voltages. This corresponds to different degrees of spin-polarization in the two conduction channels that contribute differently to conductance. In the case of a strong asymmetry in split gates voltages one channel of conduction is pinched off and just the one remaining channel contributes to conductance. We have found that on the perimeter of the anti-dot there are spin-polarized states. These states may also contribute to conductance if the radius of the anti-dot is small enough and tunneling between these states may occur. The spin-polarized states in the QPC with shallow confinement tuned by electric means may be used for the purposes of quantum technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

QIAO, S., A. KIMURA, A. MORIHARA, S. HASUI, E. KOTANI, H. TAKAYAMA, K. SHIMADA, H. NAMATAME, and M. TANIGUCHI. "ELECTRON OPTICS WITH CYLINDRICAL DEFLECTOR FOR SPIN-RESOLVED INVERSE PHOTOEMISSION SPECTROSCOPY." Surface Review and Letters 09, no. 01 (February 2002): 487–89. http://dx.doi.org/10.1142/s0218625x02002506.

Повний текст джерела
Анотація:
For a spin-resolved inverse photoemission spectrometer, the most important component is the electron optics system consisting of a 90° deflector and lenses to transfer the spin-polarized electrons from a GaAs photocathode to the sample at high transmission. We adopt a cylindrical deflector when we construct a spin-resolved inverse photoemission spectrometer. A performance test shows that our electronic optics system has achieved 83% transmission, and also that the cylindrical deflector has no shortcoming compared to the spherical type.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zhang, Ya, Feng Zhai, and Lin Yi. "Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas." Physics Letters A 380, no. 46 (December 2016): 3908–13. http://dx.doi.org/10.1016/j.physleta.2016.09.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ren, L. "Nonvanishing anomalous Hall conductivity in spin-polarized two-dimensional electron gas with Rashba spin–orbit interaction." Journal of Physics: Condensed Matter 20, no. 7 (January 28, 2008): 075216. http://dx.doi.org/10.1088/0953-8984/20/7/075216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Schmidt-Böcking, Horst, and Gernot Gruber. "On Producing Long-Lived Spin Polarized Metastable Atoms—Feasibility of Storing Electric Energy." Atoms 10, no. 3 (July 18, 2022): 76. http://dx.doi.org/10.3390/atoms10030076.

Повний текст джерела
Анотація:
We describe a method of producing long-lived multiply excited spin polarized atoms or ions, the decay of which is strongly delayed or even blocked by intra-ionic magnetic stabilization. Special configurations with huge internal magnetic fields capture only spin polarized electrons in collisions with spin aligned atomic hydrogen gas targets. It is expected that the spin aligned configuration yields an extremely high internal magnetic field which will effectively block spin flip transitions. By this the lifetime of inner shell vacancies is expected to strongly increase.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Gold, A. "Mobility of the non-polarized and the spin-polarized electron gas in Si/SiGe heterostructures: Remote impurities." EPL (Europhysics Letters) 92, no. 6 (December 1, 2010): 67002. http://dx.doi.org/10.1209/0295-5075/92/67002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

YAKOVLEV, D. R., E. A. ZHUKOV, M. BAYER, G. KARCZEWSKI, T. WOJTOWICZ, and J. KOSSUT. "COHERENT SPIN DYNAMICS OF ELECTRONS IN II-VI SEMICONDUCTOR QUANTUM WELLS." International Journal of Modern Physics B 21, no. 08n09 (April 10, 2007): 1336–46. http://dx.doi.org/10.1142/s021797920704280x.

Повний текст джерела
Анотація:
Coherent spin dynamics of electrons and holes is studied experimentally in CdTe/Cd 0.78 Mg 0.22 Te quantum wells with a two-dimensional electron gas of low density. A picosecond pump-probe Kerr rotation and time-resolved polarized photoluminescence detected by a streak camera are used as experimental techniques. Strong Coulomb interaction between electrons and holes, which results in large binding energies of neutral and negatively charged excitons (trions), allows selective addressing of exciton and trion states with resonant optical excitation. Spin dephasing time of electrons up to 30 ns is achieved at a low temperature of 1.9 K and in a zero magnetic field limit. It decreases for higher lattice temperatures and with increase of excitation density. Spin relaxation times for exciton of 65 ps and trion of 25 ps have been measured under quasi-resonant excitation of excitons.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Tang Zhen-Kun, Wang Ling-Ling, Tang Li-Ming, You Kai-Ming, and Zou Bing-Suo. "Spin polarized transport of two-dimensional electron gas through step-magnetic barrier structure." Acta Physica Sinica 57, no. 9 (2008): 5899. http://dx.doi.org/10.7498/aps.57.5899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Pinczuk, A., B. S. Dennis, D. Heiman, C. Kallin, L. Brey, C. Tejedor, S. Schmitt-Rink, L. N. Pfeiffer, and K. W. West. "Spectroscopic measurement of large exchange enhancement of a spin-polarized 2D electron gas." Physical Review Letters 68, no. 24 (June 15, 1992): 3623–26. http://dx.doi.org/10.1103/physrevlett.68.3623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Rassolov, Vitaly A., John A. Pople, and Mark A. Ratner. "Reply to “Comment on ‘Correlation holes in a spin-polarized dense electron gas’ ”." Physical Review B 62, no. 3 (July 15, 2000): 2232–35. http://dx.doi.org/10.1103/physrevb.62.2232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Yang, W., Kai Chang, X. G. Wu, and H. Z. Zheng. "Spin-polarized transport in a lateral two-dimensional diluted magnetic semiconductor electron gas." Applied Physics Letters 88, no. 8 (February 20, 2006): 082107. http://dx.doi.org/10.1063/1.2177373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ciftja, Orion. "Properties of a finite fully spin-polarized free homogeneous one-dimensional electron gas." AIP Advances 5, no. 1 (January 2015): 017148. http://dx.doi.org/10.1063/1.4907104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії