Добірка наукової літератури з теми "Splitting graph . AMS subject classification: 05C78"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Splitting graph . AMS subject classification: 05C78".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Splitting graph . AMS subject classification: 05C78"

1

M.K., Karthik Chidambaram, S.Athisayanathan, and R.Ponraj. "GROUP {1, −1, i, −i} CORDIAL LABELING OF SOME SPLITTING GRAPHS." GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES 4, no. 11 (2017): 83–88. https://doi.org/10.5281/zenodo.1059417.

Повний текст джерела
Анотація:
Let G be a (p,q)graph and A be a group. Let f : V (G) → A be a function. The order of a ∈ A is the least positive integer n such that a<sup>N</sup> = e. We denote the order of a by o(a). For each edge uv assign the label 1 if (o(f (u)), o(f (v))) = 1or 0 otherwise. f is called a group A Cordial labeling if |v<sub>F</sub> (a) − v<sub>F</sub> (b)| ≤ 1 and |e<sub>F</sub> (0) − e<sub>F</sub> (1)| ≤ 1, where v<sub>F</sub> (x) and e<sub>F</sub> (n) respectively denote the number of vertices labeled with an element x and number of edges labeled with n(n = 0, 1). A graph which admits a group A Cordial
Стилі APA, Harvard, Vancouver, ISO та ін.
2

R. Pappathi, M. P. Syed Ali Nisaya. "l-HILBERT MEAN LABELING OF SOME PATH RELATED GRAPHS." Tuijin Jishu/Journal of Propulsion Technology 44, no. 3 (2023): 4710–16. http://dx.doi.org/10.52783/tjjpt.v44.i3.2637.

Повний текст джерела
Анотація:
Let be a graph with vertices and edges. The th hilbert number is denoted by and is defined by where A - hilbert mean labeling is an injective function , where that induces a bijection defined by&#x0D; for all . A graph which admits such labeling is called a - hilbert mean graph. In this paper, a new type of labeling called - hilbert mean labeling is introduced and the path related graphs is studied.&#x0D; AMS Subject Classification – 05C78
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Christy, T., and G. Palani. "Divided square difference cordial Labeling of join some spider graphs." E3S Web of Conferences 389 (2023): 09040. http://dx.doi.org/10.1051/e3sconf/202338909040.

Повний текст джерела
Анотація:
Let G be a graph with its vertices and edges. On defining bijective function ρ:V(G) →{0,1,...,p}. For each edge assign the label with 1 if ρ*(ab)= | ρ(a)2−ρ(b)2/ρ(a)−ρ(b) | is odd or 0 otherwise such that |eρ(1) − eρ(0)| ≤ 1 then the labeling is called as divided square difference cordial labeling graph. We prove in this paper for relatively possible set of spider graphs with atmost one legs greater than one namely J(SP(1m,2n)) ,J(SP(1m,2n,31)), (SP(1m,2n,32)),J(SP(1m,2n,41)),J(SP(1m,2n,51). AMS Mathematics Subject Classification:05C78.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

AN, Bhavale, and Shelke DS. "Graceful Labeling of Posets." Annals of Mathematics and Physics 8, no. 1 (2025): 018–28. https://doi.org/10.17352/amp.000142.

Повний текст джерела
Анотація:
The concept of graph labeling was introduced in the mid-1960s by Rosa. In this paper, we introduce a notion of graceful labeling of a finite poset. We obtain graceful labeling of some postes such as a chain, a fence, and a crown. In 2002 Thakare, Pawar, and Waphare introduced the `adjunct' operation of two lattices with respect to an adjunct pair of elements. We obtain the graceful labeling of an adjunct sum of two chains with respect to an adjunct pair (0, 1). AMS Subject Classification 2020: 06A05, 06A06, 05C78
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A, Lourdusamy, Veronisha E, and Joy Beaula F. "Group S4 Difference Cordial Labeling." Indian Journal of Science and Technology 15, no. 32 (2022): 1561–68. https://doi.org/10.17485/IJST/v15i32.614.

Повний текст джерела
Анотація:
Abstract <strong>Objective:</strong>&nbsp;To find the Group S4 difference cordial labeling of some standard graphs.&nbsp;<strong>Method:</strong>&nbsp;Path, Cycle and some standard graphs are converted into Group S4 difference cordial graphs by labeling the vertices with the elements of S4 and the edges as the difference of the order of the elements labeled to the vertices of the graph.&nbsp;<strong>Findings:</strong>&nbsp;Group S4 difference cordial labeling for path, cycle and some standard graphs.&nbsp;<strong>Novelty:</strong>&nbsp;Graph labeling can use for issues in Mobile Adhoc Networks
Стилі APA, Harvard, Vancouver, ISO та ін.
6

A., A. Bhatti∗ Aster Nisar∗ Maria Kanwal∗. "Radio Number Of Wheel Like Graphs." December 18, 2011. https://doi.org/10.5281/zenodo.1212746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

A., A. Bhatti, Nisar Aster, and Kanwal Maria. "Radio Number Of Wheel Like Graphs." May 4, 2021. https://doi.org/10.5281/zenodo.4737119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Subtract Divisor Cordial Labeling." International Journal of Innovative Technology and Exploring Engineering 8, no. 6S4 (2019): 541–45. http://dx.doi.org/10.35940/ijitee.f1112.0486s419.

Повний текст джерела
Анотація:
A subtract divisor cordial labeling is bijection r: Z (G+ ) → {1,2,…,|V(G+ )|} in such a way that an edge uv give the label 1 if r(u) - r(v) is divisible by 2 otherwise give the label 0, then absolute difference of number of edges having label 1 and 0 is at most 1. A graph which fulfill the condition of subtract divisor cordial labeling is called subtract divisor cordial graph. In given paper, we found ten new graphs satisfying the condition of subtract divisor cordial labeling. AMS Subject classification number: 05C78
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kalaimathi, M., B. J. Balamurugan, and Atulya K. Nagar. "k-Zumkeller graphs through mycielski transformation." Journal of Intelligent & Fuzzy Systems, February 13, 2024, 1–10. http://dx.doi.org/10.3233/jifs-231095.

Повний текст джерела
Анотація:
Let G = (V, E) be a simple graph. A 1-1 function f : V → ℕ , where ℕ is the set of natural numbers, is said to induce a k-Zumkeller graph G if the induced edge function f * : E → ℕ defined by f * (xy) = f (x) f (y) satisfies the following conditions: (i) f * (xy) is a Zumkeller number for every xy ∈ E. (ii) The total number of distinct Zumkeller numbers on the edges of G is k. A Mycielski transformation of a graph is a larger graph having more vertices and edges. In this article, the Mycielski transformation of a graphs such as path, cycle and star graphs have been computed and their k-Zumkell
Стилі APA, Harvard, Vancouver, ISO та ін.
10

J.Baskar, Babujee, and S.Babitha. "Distance Two labeling for Multi-Storey Graphs." October 15, 2018. https://doi.org/10.5281/zenodo.1462250.

Повний текст джерела
Анотація:
An L (2, 1)-labeling of a graph G (also called distance two labeling) is a function f from the vertex set V (G) to the non negative integers {0,1,&hellip;, k }such that |f(x)-f(y)| &ge;2 if d(x, y) =1 and | f(x)- f(y)| &ge;1 if d(x, y) =2. The L (2, 1)-labeling number &lambda; (G) or span of G is the smallest k such that there is a f with max {f (v) : vє V(G)}= k. In this paper we introduce a new type of graph called multi-storey graph. The distance two labeling of multi-storey of path, cycle, Star graph, Grid, Planar graph with maximal edges and its span value is determined. Further maximum u
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!